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Abstract
Background The molecular diversity exhibited by diffuse large B-cell lymphoma (DLBCL) is a significant obstacle 
facing current precision therapies. However, scoring using the International Prognostic Index (IPI) is inadequate when 
fully predicting the development of DLBCL. Reprogramming lipid metabolism is crucial for DLBCL carcinogenesis and 
expansion, while a predictive approach derived from lipid metabolism-associated genes (LMAGs) has not yet been 
recognized for DLBCL.

Methods Gene expression profiles of DLBCL were generated using the Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) databases. The LASSO Cox regression was used to construct an effective predictive 
risk-scoring model for DLBCL patients. The Kaplan-Meier survival assessment was employed to compare a given 
risk score with the IPI score and its impact on the survival of DLBCL patients. Functional enrichment examination 
was performed utilizing the KEGG pathway. After identifying hub genes via single-sample GSEA (ssGSEA), 
immunohistochemical staining and immunofluorescence were performed on lymph node samples from control and 
DLBCL patients to confirm these identified genes.

Results Sixteen lipid metabolism- and survival-associated genes were identified to construct a prognostic 
risk-scoring approach. This model demonstrated robust performance over various datasets and emerged as 
an autonomous risk factor for predicting the development of DLBCL patients. The risk score could significantly 
distinguish the development of DLBCL patients from the low-risk and elevated-risk IPI classes. Results from the 
inhibitory immune-related pathways and lower immune scores suggested an immunosuppressive phenotype within 
the elevated-risk group. Three hub genes, MECR, ARSK, and RAN, were identified to be negatively correlated with 
activated CD8 T cells and natural killer T cells in the elevated-risk score class. Ultimately, it was determined that these 
three genes were expressed by lymphoma cells but not by T cells in clinical samples from DLBCL patients.

Conclusion The risk level model derived from 16 lipid metabolism-associated genes represents a prognostic 
biomarker for DLBCL that is novel, robust, and may have an immunosuppressive role. It can compensate for the 
limitations of the IPI score in predicting overall survival and has potential clinical application value.
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Introduction
Diffuse large B-cell lymphoma (DLBCL) has the highest 
prevalence of any class of non-Hodgkin lymphoma [1]. 
In spite of the high cure rates associated with DLBCL, 
outcomes exhibit significant variation, often due to 
the heterogeneity observed at the clinical, pathologi-
cal, and molecular levels [2–4]. Accurate prediction and 
risk stratification are imperative for selecting appropri-
ate treatment approaches. The International Prognostic 
Index (IPI) scoring approach, is comprised of five clini-
cal factors: age, Eastern Cooperative Oncology Group 
(ECOG) status, Ann Arbor stage, lactate dehydroge-
nase (LDH) quantity, and extranodal site involvement, 
has been used for over two decades and is endorsed by 
multiple reports [5]. However, the aggregate incidence 
of disease progression after five years for individu-
als with a low-risk IPI varies from 15 to 22%, while the 
5-year overall survival (OS) level for patients possessing 
an elevated-risk IPI ranges from 49 to 59%. These statis-
tics underscore that some patients do not align with the 
expected early or late-stage disease categories [6, 7]. Inte-
grating molecular and other tumor immune microenvi-
ronment features into current clinical scoring approaches 
is a promising avenue.

Dysregulated lipid breakdown and usage are critical for 
the growth and expansion of tumors, with increasing evi-
dence highlighting its essential reprogramming in tumors 
[8–11]. This reprogramming is progressively recognized 
as a novel key characteristic of tumor malignancy. Clini-
cal investigations have demonstrated the use of statins 
as a practical approach for the reduction of occurrence 
risk and an increase in the response rate to DLBCL che-
motherapy [12, 13], suggesting the involvement of lipid 
metabolism in DLBCL onset and chemoresistance. Fur-
thermore, altered fatty acid metabolism has been sug-
gested as a significant oncogenic factor in DLBCL [14]. 
Overexpression of fatty acid synthase (FASN) and fatty 
acid translocatase CD36 have been linked to chemother-
apy sensitivity and limited clinical projection for DLBCL 
[15–17]. While numerous studies have documented the 
predictive potential of risk characteristics derived from 
lipid metabolism-associated genes (LMAGs) across vari-
ous solid tumors [18–22], the utility of LMAG-based risk 
models in characterizing DLBCL subtypes as well as the 
development of disease has remained undefined.

Lipids not only support cancer progression via energy 
production and lipid accumulation in tumor cells but 
also exert influence on the tumor immune microenvi-
ronment through interactions with stromal and immune 
cells [10]. In this study, available datasets were utilized 
for the construction and validation of DLBCL prognostic 

characteristics according to LMAGs. Furthermore, an 
LMAG-derived risk model was developed to improve the 
risk stratification provided by the IPI score in DLBCL. 
Pathway analysis and immune infiltration assessment 
revealed that MECR, RAN, and ARSK were associated 
with an immunosuppressive tumor immune microenvi-
ronment in the elevated-risk score class. This investiga-
tion aimed to identify potential LMAGs with diagnostic 
value and establish a potential risk model, serving as pos-
sible clinically significant biomarkers and providing a ref-
erence for the identification and development of DLBCL.

Methods
Data source
Six human lipid metabolism pathways were acquired 
from the Molecular Signature Database (MSigDB) [23]. 
These pathways encompass peroxisome proliferator-
activated receptor alpha, metabolism of lipids, tran-
scriptional regulation of white adipocyte differentiation, 
sphingolipid metabolism, glycerophospholipid metabo-
lism, and fatty acid metabolism. From these lipid metab-
olism pathways, 776 genes linked to lipid metabolism 
were extracted (Supplementary Table 1). A total of four 
cohorts with clinical characteristics related to DLBCL 
patients from the Gene Expression Omnibus (GEO) 
database and The Cancer Genome Atlas (TCGA) data-
base were obtained [24, 25]. Specifically, the GSE181063 
cohort was designated as the training cohort since it 
contains the largest sample size, while the remaining 
datasets, GSE10846, GSE11318, and TCGA-NCICCR, 
served as validation cohorts. Patients lacking complete 
expression and clinical data were excluded, resulting in 
an analysis of 644 patients from GSE181063, 233 patients 
treated with R-CHOP (rituximab combined with cyclo-
phosphamide, doxorubicin, vincristine, and predniso-
lone) from GSE10846, 181 patients treated with CHOP 
from GSE10846, 234 from TCGA-NCICCR, and 163 
from GSE11318 (Table  1). A total of 523 genes associ-
ated with lipid metabolism from the expression profiles 
of these four cohorts as candidate genes were utilized in 
this study (Supplementary Table 1).

Construction and confirmation of the forecast model
Univariate Cox regression examination was conducted 
to find genes with prognostic value from the 523 can-
didate genes. To circumvent over-fitting, the “glmnet” 
package was employed to analyze the prognosis-related 
LMAGs via least absolute shrinkage and selection oper-
ator (LASSO) Cox regression analysis. Hazard ratios 
(HR) > 1.2 and HR < 0.8 were identified as cutoff points. 
Subsequently, a lipid-associated prognostic risk-scoring 
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approach was established via multivariate Cox regres-
sion. To ensure its robustness, internal confirmation of 
the final multivariate model was conducted by employ-
ing bootstrapping with 1000 bootstrap samples. This 
process yielded shrinkage factors for fine-tuning regres-
sion coefficients and adjusted model intercepts. These 
adjustments were then applied to prediction formulas 
and helped evaluate model performance, considering 

optimism-corrected measures. For each patient, the risk 
score was computed using the following formula:

 RiskScore =
∑n

i=1
Coef (mRNAi)× Expression (mRNAi)

According to the median risk score, DLBCL patients 
were separated into low- and elevated-risk classes. Subse-
quently, the variability in overall persistence across these 
two classes was examined using Kaplan-Meier curves as 

Table 1 Clinical pathological characteristics of DLBCL cases identified in the training and validating datasets
Clinical features Training cohort Validating cohorts

GSE181063
(n = 644)

NCICCR
(n = 234)

GSE10846 
RCHOP(n = 233)

GSE10846 CHOP
(n = 181)

GSE11318
(n = 163)

Tissue unknown lymph node lymph node lymph node lymph node

Firstline regimen RCHOP RCHOP or CHOP RCHOP CHOP CHOP

Event
0 354(54.97%) 136(58.12%) 173(74.25%) 76(41.99%) 67(41.10%)

1 290(45.03%) 98(41.88%) 60(25.75%) 105(58.01%) 96(58.90%)

Gender
Female 326(50.62%) 95(40.60%) 99(42.49%) 73(40.33%) 73(44.79%)

Male 318(49.38%) 139(59.40%) 134(57.51%) 90(49.72%) 90(55.21%)

unknown 0 0 0 18(9.94%) 0

Age
≤ 60 190(29.50%) 116(49.57%) 113(48.50%) 75(41.44%) 69(42.33%)

> 60 454(70.50%) 118(50.43%) 120(51.50%) 106(58.56%) 94(57.67%)

ECOG, PS
< 2 473(73.45%) 163(69.66%) 158(67.81%) 138(76.24%) 122(74.85%)

≥ 2 121(18.79%) 49(20.94%) 52(22.32%) 41(22.65%) 39(23.93%)

unknown 50(7.76%) 22(9.40%) 23(9.87%) 2(1.10%) 2(1.23%)

Ann Arbor stage
I + II 223(34.63%) 110(47.01%) 105(45.06%) 83(45.86%) 75(46.01%)

III + IV 351(54.50%) 121(51.71%) 121(51.93%) 97(53.59%) 87(53.37%)

unknown 70(10.87%) 3(1.28%) 7(3.00%) 1(0.55%) 1(0.61%)

LDH
>UNL 327(50.78%) 105(44.87%) 93(39.91%) 85(46.96%) 76(46.63%)

≤UNL 193(29.97%) 97(41.45%) 99(42.49%) 74(40.88%) 68(41.72%)

unknown 124(19.25%) 32(13.68%) 41(17.60%) 22(12.15%) 19(11.66%)

Cell of origin
GCB type 306(47.52%) 110(47.01%) 107(45.92%) 76(41.99%) 66(40.49%)

ABC type 179(27.80%) 82(35.04%) 93(39.91%) 74(40.88%) 70(42.94%)

MHG type 45(6.99%) 0 0 0 0

UNC type 114(17.70%) 42(17.95%) 33(14.16%) 31(17.13%) 27(16.56%)

B symptoms
Yes 247(38.35%) unknown unknown unknown unknown

No 397(61.65%) unknown unknown unknown unknown

IPI score
0–2 277(43.01%) 126(53.85%) unknown unknown unknown

3–5 208(32.30%) 67(28.63%) unknown unknown unknown

unknown 159(24.69%) 41(17.52%) unknown unknown unknown

Extranodal involvement
Yes 254(39.44%) 111(47.44%) 116(49.79%) 29(16.02%) 28(17.18%)

No 305(47.36%) 109(46.58%) 87(37.34%) 151(83.43%) 134(82.21%)

unknown 85(13.20%) 14(5.98%) 30(12.88%) 1(0.55%) 1(0.61%)
Abbreviations: ECOG, Eastern Cooperative Oncology Group; PS, performance status; GCB, germinal center B-cell like; ABC, activated B-cell like; MHG, molecular high-
grade; UNC, unclassified; IPI, International Prognostic Index; LDH, lactate dehydrogenase; UNL, upper limit of normal
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well as a log-rank test. Ultimately, the time-dependent 
receiver operating characteristic (ROC) curve examina-
tion was employed to determine the specificity and sen-
sitivity of the risk signature utilizing the “survivalROC” 
R package. The area under the curve (AUC) value was 
determined and used to designate the effect of ROC.

Development and assessment of a nomogram according to 
the risk level approach
Cox regressions using both univariate and multivariate 
data were employed to obtain independent prognostic 
factors according to the risk-scoring model as well as the 
IPI score from the GSE181063 dataset. Subsequently, a 
nomogram was generated through the use of the “rms” R 
package using independent prognostic factors. The pre-
dictive effect of this nomogram was examined through 
the concordance index (C-index) as well as calibration 
plots. A C-index of 0.5 demonstrates the lack of predic-
tive discrimination, while a C-index value of 1.0 sug-
gests an ideal separation of patients possessing different 
prognoses. Calibration plots were employed to assess the 
nomogram prediction probabilities in comparison to the 
observed rates. The nomogram was subsequently con-
firmed using the TCGA-NCICCR dataset.

Functional enrichment analysis
To investigate the differences in possible KEGG path-
ways enriched between high- and low-risk patients, 
gene set variation analysis (GSVA) was conducted uti-
lizing the clusterProfiler package on four datasets. “c2.
cp.kegg.v7.5.1.entrez. gmt” was obtained as the reference 
gene set. Furthermore, the differentially expressed genes 
(DEGs) over the two groups were examined, and gene set 
enrichment analysis (GSEA) was conducted. The condi-
tion was perceived as enriched in situations in which 
the nominal (NOM) P-value < 0.05, false discovery rate 
(FDR), q value < 0.25, and the normalized enrichment 
score (|NES|) > 1. Single sample GSEA (ssGSEA) analy-
sis was conducted on specified KEGG pathways using 
the GSVA R package, and correlation analysis was con-
ducted between KEGG pathways and LMAGs expression 
information.

Immune infiltrating analysis
The patient’s ESTIMATE Score, Immune Score, and Stro-
mal Score were acquired using an estimate package to 
predict the infiltration of stromal and immune cells into 
the tumor immune microenvironment. Analysis using 
ssGSEA was conducted on specific immune cells utilizing 
the GSVA package to examine the immunological char-
acteristics of the elevated-risk and low-risk score groups.

Immunohistochemical and immunofluorescence staining
Immunohistochemistry, as well as immunofluorescence 
on lymph node biopsies from DLBCL patients, were con-
ducted as outlined previously [26]. The sections were 
stained using a primary antibody (anti-MECR, Protein-
tech, Cat. NO: 51027-2-AP; anti-RAN, Proteintech, Cat. 
NO: 67500-1-Ig; anti-ARSK, Bioss, Cat. NO: bs-9102R; 
anti-CD3, Proteintech, Cat. NO: 60181-1-Ig; anti-CD20, 
Proteintech, Cat. NO: 60271-1-Ig). The nucleus was 
stained using DAPI (Solarbio, Beijing, China) for use in 
immunofluorescence. Images of stained slides for these 
markers were scanned at 400× magnification using an 
optical microscope (Olympus Co., Tokyo, Japan). Immu-
nohistochemistry results were quantified by counting the 
area of positive signals using Image J software. Fluores-
cent images were captured via a confocal laser micros-
copy system (Leica SP2).

Statistical analyses
Statistical data were analyzed using R software (version 
4.2.1) and GraphPad Prism 8 software (GraphPad, Inc., 
USA). Kendall rank correlation was used to estimate rela-
tions between IPI score and lipid metabolism-based risk 
levels. Comparisons between groups were conducted 
through the use of the Student’s t-test. Survival curves 
were plotted based on the Kaplan-Meier method. P < 0.05 
indicated the significance.

Results
Construction of a lipid metabolism-based risk score model 
for DLBCL patients
To identify prognostic genes for DLBCL, four cohorts 
with clinical information and overall survival data from 
the GEO and TCGA databases were screened. By inter-
secting with lipid metabolism pathways, 523 LMAGs 
were selected (Fig. 1A). The GSE181063 cohort, contain-
ing the largest sample size, was utilized as a training set 
for the establishment of the predictive approach. Fol-
lowing LASSO Cox regression analysis, 16 LMAGs pos-
sessing the most elevated normalized enrichment levels 
were selected from these 523 LMAGs for the building of 
the lipid metabolism-associated risk level model in the 
GSE181063 dataset (Fig. 1B and C). The forest plot dem-
onstrates the relationship between the expression quan-
tities of these 16 LMAGs and overall survival (Fig.  1D). 
Notably, ACSM3, ARSK, CEPT1, DGKE, EHHADH, 
ENPP7, FABP4, FASN, LPGAT1, MECR, PTDSS2, and 
RAN were identified to be significantly associated with a 
negative outcome, whereas ARSJ, CYP27A1, FAM120B, 
and PIK3CG exhibited the opposite effect. Kaplan-Meier 
analysis confirmed the prognostic significance of these 16 
LMAGs in DLBCL (Supplementary Fig. 1), underscoring 
their individual roles in DLBCL prognosis.
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Fig. 1 (See legend on next page.)
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To construct the risk score model for DLBCL, coef-
ficients for the 16 LMAGs were identified using a Cox 
regression model (Fig.  1E). Subsequently, the lipid 
metabolism-related risk score was computed for indi-
vidual patients within the training set. Individuals with 
DLBCL were stratified into low- and elevated-risk cat-
egories according to the median risk score. Visualiza-
tion of risk score distribution and survival status in this 
dataset is outlined in Fig.  1F. Furthermore, the Kaplan-
Meier analysis determined that the elevated-risk group 
was associated with significantly reduced overall survival 
compared to the reduced-risk group within the training 
set (Fig. 1G). When compared to single-gene models, the 
risk score model, according to the 16 LMAGs, possessed 
superior predictive efficiency, as indicated by the C-index 
and AUC values (Supplementary Fig. 2A and B).

Reliable validation of the risk score model across diverse 
groups
In order to examine the reliability of the model, identical 
coefficients were applied to internal testing cohorts, such 
as TCGA-NCICCR, GSE10846, and GSE11318 cohorts. 
Given the significant improvement in DLBCL prognosis 
upon rituximab plus polychemotherapy (R-CHOP) in the 
era of immunotherapy, the GSE10846 cohort was further 
divided into GSE10846-RCHOP and GSE10846-CHOP 
according to the treatment received. The division of risk 
scores as well as survival across these cohorts is indicated 
in Fig. 2A, C, E, and G. Remarkably, patients possessing 
high-risk levels exhibited substantially elevated levels of 
death compared to those possessing low-risk scores, con-
sistent with training set findings. Kaplan-Meier exami-
nation verified the significant prognostic differences 
between elevated-risk and reduced-risk classes across the 
entirety of the testing cohorts (Fig. 2B, D, F, and H). These 
results highlight the robustness of the lipid metabolism-
based risk score model, which retains stable prognostic 
predictive capability across various cohorts, including 
those containing immunotherapy-treated patients.

The risk score approach can be a unique predictor in 
DLBCL
Given that various clinical characteristics may obstruct 
the risk score, patients from the GSE181063 dataset 
were divided into several classes based on age, cell of 
origin, ECOG grade, extranodal involvement, gender, 

IPI, Ann Arbor stage, B symptoms, or LDH. Regardless 
of the clinical subgroups, the reduced-risk group con-
sistently exhibited increased survivorship probabilities 
compared to the elevated-risk group (Supplementary 
Fig. 3, p < 0.05), confirming independence in our risk level 
model relative to clinical characteristics as well as its reli-
able predictive power for DLBCL survival.

Various IPI scores were compared to the lipid metab-
olism-based risk score via Cox regression analysis. In 
the GSE181063 dataset, it was found that the risk score 
ranged from a minimum of 156 to a maximum of 203, 
with an average of 180. A similar pattern was observed 
in the NCICCR dataset. Therefore, the change in mortal-
ity risk among the study population was evaluated when 
the risk score increases by 10 units. Analysis utilizing 
GSE181063 and TCGA-NCICCR datasets (the only data-
sets with available IPI score information) indicated that 
each 10 units increase in the lipid metabolism-based risk 
score was tied to a corresponding relative mortality risk 
of 1.934 (95% CI: 1.577–2.373) in the GSE181063 data-
set and a relative risk of 1.290 (95% CI: 1.010–1.647) in 
the TCGA-NCICCR dataset (Tables 2 and 3). To further 
verify the independence of the lipid metabolism-based 
risk score model, the association between risk score and 
the IPI score was analyzed. As shown in Table 4, the level 
of risk score showed a weak positive correlation with the 
IPI score in the datasets. These findings verified the lipid 
metabolism-based risk score model was an independent 
predictor of overall survival in DLBCL patients.

Comparison of the lipid metabolism-based risk level as 
well as IPI score
In order to examine the respective impacts lipid metabo-
lism-based risk scores and the IPI score have on DLBCL 
prognostic accuracy, a time-dependent ROC analysis 
utilizing the GSE181063 and TCGA-NCICCR datasets 
was conducted. As illustrated in Fig.  3A and B, no sig-
nificant difference was observed concerning the AUC 
from 2 to 5 years. However, from 5 to 10 years, the AUC 
for the IPI score surpassed that of the lipid metabolism-
derived risk level, especially within the TCGA-NCICCR 
data. Interestingly, after 10 years, the AUC for the lipid 
metabolism-based risk score outperformed the IPI 
score. Kaplan-Meier plots of OS demonstrated that the 
lipid metabolism-associated risk level was able to sig-
nificantly distinguish the prognosis of DLBCL patients 

(See figure on previous page.)
Fig. 1 Development of the lipid metabolism-based risk level approach for DLBCL patients. (A) Authentication of 523 lipid metabolism-related genes 
in three datasets (GSE181063, GSE10846, and NCICCR) using Venn diagrams. Changes in color denote differences in datasets. (B) LASSO coefficients of 
16 obtained LMAGs over the 10-fold cross-validation approach. Vertical dotted lines denote the optimal values utilizing the minimum and 1-SE criteria. 
(C) Partial likelihood variance was uncovered using the LASSO regression model as well as the 10-fold cross-validation. Vertical dotted lines denote the 
optimal values utilizing the minimum and 1-SE criteria. (D) Forest plot of the linkages between the infiltrating levels of 16 prognostic molecules as well as 
the OS of the training cohort. The HR, 95% CI, and P-value were computed using univariate Cox regression analysis. (E) Coefficients for the 16 prognostic 
molecules within the Cox regression model. (F) The risk score distribution and survival levels of 16-gene signatures from the GSE181063 dataset. (G) 
Survival curves across the two risk groups from the GSE181063 dataset
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possessing a reduced-risk IPI (score = 0–1) and an ele-
vated-risk IPI (score = 4–5) in both the GSE181063 and 
TCGA-NCICCR datasets (Fig.  3C and D). However, no 
significant prognostic change was observed between the 
high-risk score class and the low-risk score class among 

DLBCL patients with IPI score = 2 or IPI score = 3. These 
findings indicate that a lipid metabolism-derived risk 
score approach is able to compensate for the limitations 
of the IPI score in predicting OS, particularly in low-risk 
and high-risk IPI groups.

Table 2 Cox analysis of lipid metabolism-based risk scores as 
well as the IPI for the overall survival of patients with DLBCL from 
the GSE181063 cohort

Univariate Cox 
Regression

Multivariate Cox 
Regression

Variables HR (95% CI) P value HR (95% CI) P 
value

IPI
IPI 0–1 0.187 

(0.124–0.282)
< 0.001 0.226 

(0.149–0.342)
< 0.001

IPI2 0.335 
(0.229–0.489)

< 0.001 0.344 
(0.235–0.503)

< 0.001

IPI3 0.432 
(0.294–0.610)

< 0.001 0.438 
(0.303–0.632)

< 0.001

IPI 4–5 1 (reference) 1 (reference)

LMAGs_RiskS-
core, per 10 units

2.101 
(1.722–2.563)

< 0.001 1.934 
(1.577–2.373)

< 0.001

Table 3 Cox analysis with lipid metabolism-based risk levels as 
well as the IPI for the overall survival of patients with DLBCL from 
the NCICCR cohort

Univariate Cox 
Regression

Multivariate Cox 
Regression

Variables HR (95% CI) P value HR (95% CI) P 
value

IPI
IPI 0–1 0.177 

(0.093–0.339)
< 0.001 0.209 

(0.108–0.407)
< 0.001

IPI2 0.340 
(0.178–0.653)

0.001 0.371 
(0.192–0.715)

0.003

IPI3 0.510 
(0.272–0.958)

0.036 0.544 
(0.288–1.027)

0.060

IPI 4–5 1 (reference) 1 (reference)

LMAGs_RiskS-
core, per 10 units

1.456 
(1.159–1.829)

0.001 1.290 
(1.010–1.647)

0.041

Fig. 2 Robust confirmation of risk score approach in testing cohorts. Division of risk score and survival status of 16-gene signatures from the NCICCR 
dataset (A), GSE10846 R-CHOP dataset (C), GSE10846 CHOP dataset (E), and GSE11318 dataset (G). Survival curves across two risk classes in the NCICCR 
dataset (B), GSE10846 R-CHOP dataset (D), GSE10846 CHOP dataset (F), and GSE11318 dataset (H)
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Establishment of a nomogram combined lipid metabolism-
based risk score with IPI score
To enhance the reliability and accuracy of prognos-
tic predictions, a predictive nomogram integrating 
the risk score model as well as the IPI score was devel-
oped (Fig. 4A). Each patient received a total point score 

through addition of the points given for each element, 
with a higher number correlating with more nega-
tive outcomes. Time-dependent C-index curves in the 
GSE181063 and TCGA-NCICCR cohorts uncovered 
that the nomogram exhibited the highest index among 
all variables, outperforming discrete factors (Fig. 4B and 
C). Moreover, calibration curves exhibited substantial 
agreement across the nomogram-derived probabili-
ties of three-, five-, and seven-year OS and the true OS 
in both the GSE181063 (Fig.  4D) and TCGA-NCICCR 
datasets (Fig.  4E). These results confirm the reliability 
and accuracy of the nomogram using lipid metabolism-
based signature risk scores for the prediction DLBCL 
development.

Table 4 Association of lipid metabolism-based risk levels with 
IPI score

LMAGs_RiskScore

GSE181063 NCICCR

Kendall’s 
tau-b

P value Kendall’s 
tau-b

P 
value

IPI score 0.192 < 0.001 0.194 < 0.001

0–1

2

3

4–5

Fig. 3 Comparison of the lipid metabolism-based risk level and IPI score. (A-B) AUC values of risk score and IPI score over the course of 12 years from the 
GSE181063 and NCICCR datasets. (C-D) Kaplan-Meier curves denoting OS between the high- and low-risk groups from DLBCL patients possessing differ-
ent IPI scores from the GSE181063 and NCICCR datasets
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Functional enrichment examination of the lipid 
metabolism-based risk level model
In order to elucidate the underlying methods contribut-
ing to the different findings identified by the risk score 
model, a KEGG pathway examination was performed. 
The findings of this analysis revealed that the most sig-
nificantly activated pathways in the high-risk class were 
related to metabolism, including fatty acid metabo-
lism, glucose metabolism, and amino acid metabolism 
(Fig.  5A). Conversely, immune-related pathways includ-
ing natural killer cell-mediated cytotoxicity, T-cell 
receptor signaling, and Toll-like receptor signaling were 
reduced in the high-risk subgroup (Fig.  5A). GSEA 
results from various datasets suggested that the path-
ways of T-cell receptor signaling, natural killer cell-medi-
ated cytotoxicity, and Toll-like receptor signaling were 
elevated in the low-risk score class (Fig. 5B and Supple-
mentary Fig.  4). Moreover, the ESTIMATE algorithm 
determined that the high-risk group had lower immune 
scores, suggesting decreased immune cell infiltration in 
the tumor microenvironment (Fig.  5C and Supplemen-
tary Fig. 5). CIBERSORT analysis further revealed signifi-
cant differences in the levels of infiltrating immune cells 
across the low-risk and high-risk score groups (Fig.  5D 
and Supplementary Fig.  6). The lowered abundance of 
immune-killing cells in the elevated-risk class implied the 
presence of an immunosuppressive tumor microenviron-
ment, aligned with the documented negative prognosis.

Screening for hub genes negative with immune
Given the relationship between lipid metabolism-derived 
risk level and the immune response, ssGSEA analysis 
was employed to uncover critical LMAGs influencing 
immune responses. MECR, RAN, and ARSK exhibited 
negative correlations with the T-cell receptor signal-
ing pathway as well as natural killer cell-mediated cyto-
toxicity, while CYP27A1 alongside FAM120B exhibited 
positive correlations with these pathways (Fig.  6A and 
B). Moreover, the immune infiltration examination of 
the GSE181063 dataset demonstrated that the levels 
of MECR, RAN, and ARSK were correlated with sev-
eral immune cells (Fig.  6C). Comparable results were 
observed in GSE10846-CHOP, GSE10846-RCHOP, 
NCICCR, and GSE11318 datasets (Supplementary 
Fig.  7). Natural killer T cells, as the first line of defense 
against cancer, and CD8 T cells are considered as vital 
anti-tumor immune cells. Our results showed that the 
levels of MECR, RAN, and ARSK were negatively cor-
related with both activated CD8 T cells as well as natu-
ral killer T cells, indicating that these three genes could 
inhibit immune response. In addition, analysis utiliz-
ing the GEPIA database uncovered higher expression 
levels of ARSK, CYP27A1, FAM120B, MECR, and RAN 
in DLBCL patients in comparison to normal controls 

(Fig.  6D). By combining expression patterns with their 
effects on survival, it was postulated that MECR, RAN, 
and ARSK played significant parts in the poor develop-
ment of DLBCL through modulation of the immune 
response.

Clinical specimens’ verification
To validate the expression of MECR, RAN, and ARSK in 
clinical specimens, lymph node biopsies from DLBCL 
and lymphoid hyperplasia patients were assessed. Immu-
nohistochemistry demonstrated significantly elevated 
expression of MECR, RAN, and ARSK in DLBCL patients 
(Fig.  7A). Immunofluorescence analysis of DLBCL sec-
tions showed that every MECR + cell expressed CD20, 
and the same pattern was observed in RAN + cells or 
ARSK + cells, indicating the expression of these genes in 
lymphoma cells (Fig.  7B). Importantly, these three pro-
teins were not observed to be expressed in CD3+ cells 
(Fig.  7C), suggesting that they may impact the immune 
response indirectly via tumor cells rather than directly 
manipulating T cells.

Discussion
The molecular heterogeneity of DLBCL poses a sig-
nificant obstacle to current precision therapy strategies. 
While the IPI scoring system, which uses clinical charac-
teristics, has been valuable, it does not fully capture the 
complexity of DLBCL prognosis, especially for patients 
with low or high mortality risk. In this research, a robust 
lipid metabolism-associated risk score approach related 
to DLBCL patients has been revealed, which not only 
complements the limitations of the IPI score but also 
stands as an independent prognostic factor. Additionally, 
this analysis has uncovered three hub genes linked to an 
immunosuppressive microenvironment throughout the 
elevated-risk score individuals, shedding light on puta-
tive targets within lipid metabolic pathways for precise 
immunotherapy in DLBCL.

The reported risk score model consists of 16 lipid 
metabolism-related genes that have been previously 
investigated in solid cancers, with the exception of ARSK. 
Several of these genes have shown promise as potential 
prognostic biomarkers in cancer, such as FAMA120B 
in ovarian cancer [27], ARSJ in colorectal cancer, and 
PTDSS2 in hepatocellular carcinoma [28, 29]. Many of 
these genes have been associated with cancer progres-
sion, proliferation, metastasis, inhibition of apoptosis, 
and chemotherapy resistance [29–38]. However, it is 
worth noting that ACSM3 has demonstrated tumor-
immunosuppressive properties in high-grade serous 
ovarian cancer, and ENPP7 activity has been relatively 
low in diseases with an increased risk of liver tumori-
genesis [39, 40]. Among the 16 genes, only FASN and 
CYP27A1 have been previously reported in DLBCL [15, 
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Fig. 4 Creation of a nomogram combining the risk score with the IPI score. (A) The 1-year, 3-year, and 5-year survivability of DLBCL patients was predicted 
by a nomogram based on their risk scores, IPI, and total points. (B-C) Time-dependent C-index chart for the nomogram as well as various clinical factors 
from the GSE181063 and NCICCR datasets. (D-E) Calibration plots used for prediction in DLBCL patients with 3-, 5-, and 7-year OS in the GSE181063 and 
NCICCR datasets. X-axis showed the nomogram-predicted survivability, while y-axis displayed the actual survivability
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16, 41, 42]. Nevertheless, the biological processes in 
which these 16 genes are involved have been well-estab-
lished in DLBCL, including biosynthesis, transport, and 
beta-oxidation of fatty acids, as well as acyl-CoA flux 
within cells and lipid metabolism [16, 17, 43–45]. There-
fore, the findings of this study support the potential of 
a predictive approach according to lipid metabolism for 
DLBCL.

The IPI score model, a widely used prognostic scoring 
system, classifies patients into four risk classes accord-
ing to their complete score (from low, low-intermediate, 

high-intermediate, to high risk) [5]. This scoring system 
assigns one point to each negative prognostic factor, such 
as over 60 years old, increased LDH levels, stage-III/IV 
Ann Arbor disease, ≥ 2 ECOG performance status, and 
more than one site with extranodal involvement. The 
findings presented in this study demonstrate that the 
lipid metabolism-associated risk level may significantly 
discriminate the individual’s OS with DLBCL possess-
ing low-risk or high-risk IPI scores. This suggests the 
need to integrate biological tumor features into existing 
clinical scoring systems. Additionally, this work provided 

Fig. 5 Functional enrichment examination of the lipid metabolism-derived risk level approach. (A) GSVA examination of the biological pathways within 
the high- and low-risk score groups from the GSE181063, GSE10846 R-CHOP, GSE10846 CHOP, GSE11318, and NCICCR datasets. Orange and blue indicates 
the activation and inhibition of biological pathways, respectively. (B) GSEA indicates a significant increase in natural killer cell-mediated cytotoxicity, and 
T-cell receptor signaling pathways in the GSE181063 cohort. (C) Estimate score, immunity score, and stromal score across the high- and low-risk groups 
from the GSE181063 cohort. (D) ssGSEA comparison of the scores from various infiltrating immunity cells across DLBCL patients with high- and low-risk 
scores from the GSE181063 cohort. ***P < 0.001; **P < 0.01; *P < 0.05
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evidence for low-risk IPI patients with high recurrence 
rates and high-risk IPI patients with long-term survival. 
The risk score model presented in this study has the 
potential to classify patients into six risk groups, enabling 
a new prognostic model in combination with the IPI.

In terms of the activities within the tumor immune 
microenvironment, this study exhibited the inhibition 
of several immune-related pathways throughout the 
elevated-risk score class, suggesting the presence of an 
immunosuppressive tumor microenvironment within 
DLBCL patients with elevated-risk scores. Further-
more, three hub genes linked to immunosuppression in 

DLBCL were identified. Those outside of ARSK, MECR, 
and RAN have been implicated as oncogenes in solid can-
cers [46–49]. The bioinformatics analysis demonstrated 
the high expression of these three genes within DLBCL. 
Moreover, the levels of these genes were negatively cor-
related with OS, suggesting potential roles as oncogenes 
in DLBCL. Immunofluorescence verified these gene 
expressions within lymphoma but not T cells, indicat-
ing that these genes may indirectly influence the immune 
response by modulating tumor cells. To date, there have 
been no reports on the direct impact of MECR, ARSK, 
and RAN on the immune response. The results presented 

Fig. 6 Identification of Immune-Independent Hub Genes. (A) Correlation analysis of the 16 genes associated with the T-cell receptor signaling pathway 
across multiple datasets, including GSE181063, GSE10846 R-CHOP, GSE10846 CHOP, GSE11318, and NCICCR. (B) Examination of the correlation between 
the 16 genes and natural killer cell-mediated cytotoxicity in the same datasets as in (A). (C) Pearson correlation analysis illustrating the relationship be-
tween the expression of the 5 lipid metabolism/survival-related genes and the levels of infiltrating immune cells in the GSE181063 dataset. (D) Box plots 
displaying the expression patterns of the 5 genes analyzed using the GEPIA website. DLBCL patients are represented in red, while normal controls are 
depicted in grey. *P < 0.05
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suggest that these genes affect DLBCL prognosis by indi-
rectly inhibiting the immune response. However, while 
it was documented that the function of circulatory NK 
cells was inhibited in DLBCL [50], the gene expression of 
NK cells was not assessed due to the limited number of 
NK cells in the lymph node paraffin sections of DLBCL. 
More studies are required to deepen the understanding 
how lipid metabolism-related genes affect immune cells.

Strengths and limitations
This is the first report of an LMAGs-derived risk model 
for DLBCL patients, and it has been validated using mul-
ticenter public datasets. Moreover, the risk approach may 
further discriminate the diverse prognosis of DLBCL-
patients into low-risk or high-risk IPI scores, comple-
menting the limitations of the IPI score, and offering a 
new prognostic model for clinical judgment. Of course, 

limitations are present within this research. To begin 
with, the clinical information profiles from samples found 
in public databases are finite. The established nomogram 
should be validated using prospective clinical trials with a 
larger sample size. Second, the effect of any lipid metab-
olism-based risk score on progression-free survival (PFS) 
in DLBCL was not analyzed because of the limited avail-
ability of PFS data in public databases. Finally, further in 
vivo experiments will be considered to strengthen our 
results.

Conclusions
A risk score model based on the lipid metabolism rep-
resents a robust prognostic signature for DLBCL, linked 
to an immunosuppressive tumor microenvironment. 
This risk score model has the ability to further stratify 
DLBCL patients, particularly those classified as low-risk 

Fig. 7 Clinical sample verification. (A) Microscopic images illustrating immunohistochemical staining for RAN, MECR, and ARSK in lymph node sections 
from both controls and DLBCL patients. Both images were captured at 400× magnification. The horizontal bar on the right demarcates the region dis-
playing positive signal expression of RAN, MECR, and ARSK in the lymph node sections between these two groups. Scale bar corresponds to 200 pixels. 
***P < 0.001; **P < 0.01; *P < 0.05. (B-C) Selected immunofluorescent photograph depicting the expression of RAN, MECR, and ARSK alongside the marker 
for lymphoma cell (CD20 in B) or the T cell (CD3 in C) in lymph node sections obtained from DLBCL patients. DAPI was utilized for nuclear staining (bar 
= 500 pixels)
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or high-risk based on IPI groups. Overall, systematic 
investigation of lipid metabolism allows for insights into 
individual risk stratification and offers innovative per-
spectives for personalized therapy targeting DLBCL.
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