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Abstract
Background and aims  Current research has suggested that asialoglycoprotein receptor 1 (ASGR1) is involved 
in cholesterol metabolism and is also related to systemic inflammation. This study aimed to assess the correlation 
between the serum soluble ASGR1 (sASGR1) concentration and inflammatory marker levels. Moreover, the second 
objective of the study was to assess the association between sASGR1 levels and the presence of coronary artery 
disease (CAD).

Methods  The study subjects included 160 patients who underwent coronary angiography. Ninety patients were 
diagnosed with CAD, while seventy age- and sex-matched non-CAD patients served as controls. We measured the 
serum sASGR1 levels using an ELISA kit after collecting clinical baseline characteristics.

Results  Patients with CAD had higher serum sASGR1 levels than non-CAD patients did (P < 0.0001). sASGR1 was 
independently correlated with the risk of CAD after adjusting for confounding variables (OR = 1.522, P = 0.012). The 
receiver operating characteristic (ROC) curve showed that sASGR1 had a larger area under the curve (AUC) than did 
the conventional biomarkers apolipoprotein B (APO-B) and low-density lipoprotein cholesterol (LDL-C). In addition, 
multivariate linear regression models revealed that sASGR1 is independently and positively correlated with high-
sensitivity C-reactive protein (CRP) (β = 0.86, P < 0.001) and WBC (β = 0.13, P = 0.004) counts even after adjusting for lipid 
parameters. According to our subgroup analysis, this relationship existed only for CAD patients.

Conclusion  Our research demonstrated the link between CAD and sASGR1 levels, suggesting that sASGR1 may 
be an independent risk factor for CAD. In addition, this study provides a reference for revealing the potential role of 
sASGR1 in the inflammation of atherosclerosis.

Keywords  Soluble asialoglycoprotein receptor 1, Lipid metabolism, Coronary artery disease, High-sensitivity 
C-reactive protein, White blood cell count, Inflammation
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Introduction
Atherosclerotic cardiovascular disease (ASCVD) is a fatal 
disease with a complex etiology worldwide. Over the last 
few decades, there has been constant updating and even 
subversion of the understanding of atherosclerosis [1]. In 
parallel, an increasing number of atherosclerotic markers 
have been discovered [2, 3]. Disorders of lipid metabo-
lism, especially hypercholesterolemia, are well-known 
pathogenic risk factors for ASCVD [4]. Lipoproteins are 
the initial points of interest. Oxidized low-density lipo-
protein (ox-LDL) or small dense LDL enters the artery 
wall, which constitutes the classic early stage of athero-
sclerosis [2, 5]. Of course, circulating adhesion molecules 
such as vascular cell adhesion molecule-1 (VCAM), 
intercellular adhesion molecule-1 (ICAM), and mono-
cyte chemotactic protein-1 (MCP-1) play crucial roles 
in this stage [5, 6]. High triglyceride (TG) and residual 
cholesterol levels are important pathogenic factors of 
ASCVD and were recognized when residual cardiovas-
cular risk associated with statins was discovered [7, 8]. 
Other lipoproteins, such as lipoprotein(a) [Lp(a)] and 
apolipoprotein B (APO-B), have also been found to be 
associated with the risk of atherosclerosis [5]. Evaluating 
the characteristics of coronary artery plaques using the 
latest invasive or noninvasive imaging methods can help 
predict the risk of cardiac events and guide personalized 
treatment strategies [9–11]. A higher plaque burden and 
high risk plaques are independent risk factors for myo-
cardial ischemia [11–13]. In addition, recent studies have 
established that inflammatory markers participate in all 
stages of atherosclerosis, making them one of the most 
promising therapeutic targets for treating this disease 
[14, 15].

Asialoglycoprotein receptor (ASGR) is a hepatic C-type 
lectin that is expressed mainly on the sinusoidal surface 
of hepatocytes [16, 17]. The primary function of ASGR 
is to bind glycoproteins containing terminal galactose 
or GlcNAc residues (such as asialoglycoproteins) in cir-
culation [18, 19]. The complex is subsequently internal-
ized under the coat of clathrin and transported to the 
lysosome for degradation [20]. As a hepatocyte mem-
brane receptor, asialoglycoprotein receptor 1 (ASGR1) 
regulates hepatic cholesterol homeostasis by interacting 
with circulating asialoglycoproteins [21]. In animal stud-
ies, inhibiting hepatic ASGR1 or its binding to circulat-
ing asialoglycoproteins reduces serum cholesterol levels 
by promoting cholesterol efflux into the bile [21]. ASGR1 
loss-of-function mutations are linked to a 0.4 mmol/l 
decrease in circulating non-high-density lipoprotein cho-
lesterol (non-HDL-C) and a 34% reduction in the inci-
dence of coronary artery disease (CAD) [22]. Notably, 
the effect of the ASGR1 mutation on the risk of CAD is 
significantly greater than that on non-HDL-C levels, sug-
gesting that the significant reduction in the risk of CAD is 

not entirely explained by the effect of ASGR1 mutations 
on non-HDL-C levels [22, 23]. Therefore, ASGR1 muta-
tions may be involved in other protective mechanisms 
than the regulation of cholesterol homeostasis, such as 
inflammation. Indeed, some direct or indirect evidence 
has shown that ASGR1 is involved in biological processes 
related to systemic inflammation and vascular inflamma-
tion [24–27]. For example, proinflammatory cytokines 
upregulate the expression of ASGR1 [24]. The interaction 
of ASGR1 with epidermal growth factor receptor (EGFR) 
activates the extracellular signal-regulated kinase (ERK) 
pathway [25], which has been linked to inflammatory 
regulation and atherosclerosis [28, 29]. However, the rela-
tionship between ASGR1 and inflammation in patients 
with CAD is unclear.

In contrast to ASGR1, which is located on the liver sur-
face mentioned above, serum soluble ASGR1 (sASGR1), 
which is secreted by the liver, is another splicing variant 
of liver ASGR1 and is located in the circulation due to the 
absence of a transmembrane domain [30]. However, cur-
rent research on sASGR1 is very limited. Although our 
previous study showed that sASGR1 is associated with 
LDL-C levels [31], the relationship between sASGR1 lev-
els and the risk of CAD is still unclear.

C-reactive protein (CRP) levels and white blood cell 
(WBC) counts are the most basic and widely used indi-
cators of systemic inflammation. In addition, CRP lev-
els are positively correlated with the degree of coronary 
artery stenosis in patients with CAD [32]. Two recent 
studies have established that high-sensitivity C-reactive 
protein (hs-CRP) levels exhibit superior predictive power 
for future cardiovascular events and mortality risk when 
compared to circulating cholesterol levels in patients 
receiving statin therapy [33, 34]. Similarly, WBC counts 
have been widely confirmed to be closely related to ath-
erosclerosis and CAD [35–37]. Currently, there are no 
simple or effective methods for determining the level of 
ASGR1 expression on the hepatocyte membrane in clini-
cal practice. Therefore, the purpose of this study was to 
assess the correlation between sASGR1 levels and inflam-
matory marker levels, including hs-CRP levels, WBC 
counts, and WBC subsets. Moreover, the second objec-
tive of the study was to assess the association between 
sASGR1 levels and the presence of CAD.

Materials and methods
Study population
We consecutively included 160 patients admitted to the 
Second Xiangya Hospital of Central South University 
between September 2022 and September 2023 in this 
study. All patients underwent coronary angiography. 
Patients were categorized into two groups based on the 
results of coronary angiography: 90 patients with CAD 
and 70 patients without CAD. We matched the groups 
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for age and sex. Four experienced angiographers per-
formed coronary angiography, two of whom evaluated 
the vessels. To determine the severity of CAD, CAD 
patients were further subdivided into acute myocardial 
infarction (AMI) (n = 26) and CAD without AMI (n = 64) 
groups. The severity of coronary lesions was determined 
by the number of major coronary artery stenoses, which 
were classified as vessels ≤ 2 (n = 51) or vessels > 2 (n = 39). 
Furthermore, the Gensini score was also calculated to 
assess the severity of CAD. We excluded patients with 
infections, autoimmune diseases, liver diseases, renal 
failure, malignancies, or other serious diseases.

The diagnosis of CAD was based on angina pectoris 
manifestations, electrocardiogram changes, and coronary 
angiography, which indicated that the major vessel had a 
degree of stenosis greater than or equal to 50%. Elevated 
plasma troponin levels, together with evidence of acute 
myocardial ischemia, are diagnostic criteria for AMI [38]. 
Fasting blood glucose levels ≥ 126  mg/dl (7.0 mmol/L) 
or 2-hour postprandial blood glucose levels ≥ 200  mg/
dL (11.1 mmol/L) were used to diagnose type 2 diabetes 
mellitus (T2DM). Repeated measures of blood pressure 
greater than or equal to 140/90 mmHg were used to diag-
nose hypertension.

The study was authorized by the ethics committee 
of Second Xiangya Hospital, which also found that it 
adhered to the ethical principles of the Declaration of 
Helsinki. Informed permission was obtained from all 
patients.

Sample size calculation
In the study assessing the association between sASGR1 
levels and the presence of coronary artery disease (CAD), 
we used Power Analysis and Sample Size (PASS) soft-
ware for sample size calculations. We set bilateral α = 0.05 
and power = 0.9. The ratio of the sample size between 
the CAD group and the control group was 1.28:1. We 
set the mean and standard deviation of the sASGR1 lev-
els for the two groups based on our preliminary results. 
The sample size calculation revealed that a sample of 55 
CAD patients and 43 non-CAD patients achieved 90.31% 
power to reject the null hypothesis of equal means when 
the population mean difference was µ1- µ2 = 4–2.1 = 1.9 
with standard deviations of 4 for the CAD group and 1.3 
for the non-CAD group. Ultimately, 90 CAD patients and 
70 non-CAD patients composed the sample.

Clinical characteristics and laboratory measurements
Basic information, including age, sex, body mass index 
(BMI), smoking status, and statin use, was collected and 
recorded. Peripheral blood samples were collected from 
patients through the elbow vein after they had fasted 
overnight. The serum was collected after centrifuging the 
blood sample for 10 min at 3,000 rpm and subsequently 

stored at -80 °C. Serum lipid parameters and hs-CRP lev-
els were measured using a fully automated biochemical 
analyzer. WBCs, neutrophils, lymphocytes, and mono-
cytes were counted using an automatic blood cell counter.

ELISA for determining the sASGR1 concentration
The serum concentration of sASGR1 was determined 
using sandwich enzyme-linked immunosorbent assay 
(ELISA) kits (JL41965; Jianglai Biology, Shanghai). Two 
measurements were repeated per sample to reduce ran-
dom variations. Both the intraplate and interplate coef-
ficients of variation (CVs) were less than 10%, suggesting 
that the assay has good repeatability. The recovery rate 
and linearity of this reagent kit were 95% and 91%, 
respectively (with a dilution ratio of 1:2). The minimum 
detectable concentration of serum sASGR1 was 0.156 ng/
mL.

Statistical analyses
For the data analysis, we employed SPSS 25.0 statistical 
software. In addition, EmpowerStats statistical software 
(version 4.1) and R language (version 4.2.0) were used for 
subgroup analysis and interaction testing. P = 0.05 was 
used as the statistical criterion.

The continuous variables are displayed as the 
mean ± standard deviation or as medians and quartiles 
(Q1-Q3), and group comparisons were conducted using 
the independent-samples t test or Mann‒Whitney U test 
according to the type of data distribution. Chi-square 
tests were used to compare differences among categorical 
variables, which are presented as frequencies or percent-
ages. The data were analyzed for a normal distribution 
by the D’Agostino–Pearson omnibus normality test. 
The Kruskal‒Wallis test was used to assess the associa-
tion between sASGR1 levels and the severity of CAD. A 
multivariate logistic regression model was used to iden-
tify the factors that influence the presence of CAD. The 
diagnostic value of sASGR1 and traditional biomarkers in 
patients with CAD was assessed using receiver operating 
characteristic (ROC) curves. To further analyze the rela-
tionship between sASGR1 and inflammatory markers, 
we employed a stepwise multivariate regression model in 
which inflammatory markers were used as the dependent 
variables. For subgroup analysis, stratified linear regres-
sion models were employed, and likelihood ratio tests 
were applied to find any variations or interactions.

Results
Baseline characteristics
The basic details and biochemical characteristics of the 
study subjects are listed in Table  1. BMI, smoking sta-
tus, statin use, history of hypertension, and T2DM sta-
tus were greater in the CAD group than in the non-CAD 
group (P < 0.05). The CAD group had higher serum TG, 
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LDL-C, Lp(a), APO-B, and hs-CRP levels; WBC and 
neutrophil counts; and monocyte counts than did the 
non-CAD group (P < 0.05). HDL-C levels were greater in 
non-CAD patients (P < 0.05). There were no significant 
differences in age, sex, lymphocyte count, or other blood 
lipid parameters between the two patient groups.

Serum sASGR1 levels in the CAD and non-CAD groups
As shown in Fig. 1, the serum level of sASGR1 in CAD 
patients was significantly greater than that in non-
CAD patients [2.58 (1.8, 4.1) vs. 1.71 (1.3, 2.6) ng/ml, 
P < 0.0001]. Subsequently, we investigated the relation-
ship between sASGR1 levels and the severity of CAD. 
As shown in Fig. 2A, a lack of significant difference was 
observed between CAD patients with ≤ 2 diseased ves-
sels and non-CAD patients [2.12 (1.5, 3.0) vs. 1.71 (1.3, 
2.6) ng/ml, P = 0.078]. However, the level of sASGR1 in 
CAD patients with > 2 diseased vessels was significantly 
greater than that in non-CAD patients [2.76 (2.2, 4.8) vs. 
1.71 (1.3, 2.6) ng/ml, P < 0.0001] or in CAD patients with 
≤ 2 diseased vessels [2.76 (2.2, 4.8) vs. 2.12 (1.5, 3.0) ng/
ml, P = 0.033]. Additionally, we separated patients into 
two groups according to the median (60) Gensini score 
to assess the association between sASGR1 level and CAD 
severity more precisely: Gensini score ≤ 60 (n = 45) and 
Gensini score > 60 (n = 45). However, there was no sig-
nificant increase in the level of sASGR1 as the Gensini 
score increased (Fig.  2B). In addition, we were unable 

Table 1  Baseline characteristics of the study participants
Variable CAD (n = 90) Non-CAD (n = 70) P value
Age (year) 56.33 ± 8.70 55.79 ± 9.46 0.686
Sex (male, %) 52 (57.8%) 32 (45.7%) 0.152
BMI (kg/m2) 24.68 ± 3.61 23.05 ± 3.15 0.003
Smoking, n (%) 38 (42.2%) 13 (18.6%) 0.002
Statin use, n (%) 56 (62.2%) 7 (10.0%) < 0.001
Hypertension, n (%) 53 (58.9%) 17 (24.3%) < 0.001
T2DM, n (%) 26 (28.9%) 9 (12.9%) 0.02
TG (mmol/L) 1.86 (1.3, 2.7) 1.00 (0.8, 1.5) < 0.001
TC (mmol/L) 4.42 (3.9, 5.4) 4.31 (3.7, 4.9) 0.104
LDL-C (mmol/L) 3.07 ± 1.05 2.69 ± 0.67 0.010
HDL-C (mmol/L) 1.07 ± 0.28 1.22 ± 0.26 < 0.001
Lp(a) (mg/L) 189.70 (100.5, 482.5) 76.60 (45.5, 164.4) < 0.001
APO-A1 (g/L) 1.02 ± 0.19 1.08 ± 0.16 0.052
APO-B (g/L) 0.84 (0.7, 1.1) 0.77 (0.6, 0.9) 0.022
Hs-CRP (mg/L) 2.96 (1.2, 10.3) 1.04 (0.5, 2.1) < 0.001
WBC count (×109/L) 7.09 (5.7, 8.6) 5.85 (5.0, 6.6) < 0.001
Neutrophil count (×109/L) 4.46 (3.5, 5.8) 3.46 (2.9, 4.0) < 0.001
Monocyte count (×109/L) 0.43 (0.3, 0.5) 0.33 (0.3, 0.4) < 0.001
Lymphocyte count (×109/L) 1.77 ± 0.64 1.80 ± 0.52 0.704
Continuous variables are expressed as the mean ± standard deviation or median (interquartile range); categorical variables are presented as numbers (percentages). 
Abbreviations: BMI, body mass index; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; 
Lp(a), lipoprotein (a); APO-A1, apolipoprotein A1; APO-B, apolipoprotein B; Hs-CRP, high-sensitivity C-reactive protein; WBC, white blood cell; CAD, coronary artery 
disease; T2DM, type 2 diabetes mellitus

Fig. 1  Comparison of serum sASGR1 levels between the CAD and non-
CAD groups. The serum sASGR1 concentration in CAD patients (n = 90) was 
significantly greater than that in non-CAD patients (n = 70). [Mann‒Whit-
ney U test, 2.58 (1.8, 4.1) vs. 1.71 (1.3, 2.6) ng/ml, P < 0.0001]. ****P < 0.0001
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to identify significant differences in the severity of CAD 
between individuals with and without AMI (Fig. 2C).

Diagnostic value of sASGR1 and traditional biomarkers for 
CAD patients
We used receiver operating characteristic (ROC) curves 
to evaluate the diagnostic ability of sASGR1 levels for 
CAD (Fig. 3). The area under the curve (AUC) of sASGR1 

was 0.691 (95% CI = 0.60–0.78, P < 0.001). Its diagnostic 
utility was better than that of the traditional biomark-
ers APO-B (AUC: 0.619, 95% CI: 0.53–0.71, P = 0.023) 
and LDL-C (AUC: 0.599, 95% CI: 0.50–0.69, P = 0.059), 
despite not being comparable to that of hs-CRP (AUC: 
0.775, 95% CI: 0.70–0.85, P < 0.001), TG (AUC: 0.796, 95% 
CI: 0.72–0.87, P < 0.001), or total cholesterol (TC)/high-
density lipoprotein cholesterol (HDL-C) (AUC: 0.723, 
95% CI: 0.64–0.81, P < 0.001). sASGR1 has a cutoff value 
of 1.682 ng/ml for predicting the occurrence of CAD, 
with a sensitivity of 77.6% and a specificity of 54.2%. 
The sensitivity and specificity of the other biomarkers 
for predicting the presence of CAD were as follows: hs-
CRP (sensitivity: 47.1%, specificity: 95.8%), APO-B (sen-
sitivity: 41.2%, specificity: 87.5%), LDL-C (sensitivity: 
35.3%, specificity: 91.7%), TC/HDL-C (sensitivity: 69.4%, 
specificity: 70.8%), and TG (sensitivity: 62.4%, specificity: 
89.6%).

sASGR1 is an independent influencing factor for the 
occurrence of CAD
A multivariate logistic regression model was used to 
identify the factors that influence the presence of CAD. 
We included independent variables based on the results 
of univariate analysis, clinical significance, sample size, 
and multicollinearity. The results showed that sASGR1, 
smoking, TG, hypertension, and T2DM were associ-
ated with an increased risk of CAD after controlling for 
BMI, smoking status, TG, LDL-C, hs-CRP, hyperten-
sion, and T2DM (Table 2). For every unit increase in the 

Fig. 3  ROC curve analysis for the predictive value of serum sASGR1 and 
traditional biomarkers in the presence of CAD

 

Fig. 2  The relationship between sASGR1 levels and the severity of CAD. (A) sASGR1 levels in patients with different CAD statuses and numbers of involved 
vessels. Comparisons were evaluated by the Kruskal‒Wallis test. ns, not statistically significant. *P < 0.05. ****P < 0.0001. For vessels ≤ 2, the number of in-
volved vessels was < 2; for vessels > 2, the number of involved vessels was more than 2. (B) Comparison of sASGR1 levels in patients with different Gensini 
scores. Comparisons were evaluated by the Kruskal‒Wallis test. ns, not statistically significant. *P < 0.05. **P < 0.01. (C) sASGR1 levels in patients with differ-
ent severities of CAD. Comparisons were evaluated by the Kruskal‒Wallis test. ns, not statistically significant. *P < 0.05. ***P < 0.001
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sASGR1 level, the risk of CAD increased by 0.52 times 
(OR = 1.522, 95% CI = 1.095, 2.115; P = 0.012).

Relationships between the serum sASGR1 concentration 
and inflammatory marker level
By setting hs-CRP levels, WBC counts, and WBC sub-
sets as dependent variables, we used stepwise multi-
variate regression models to determine the correlation 
between sASGR1 levels and inflammatory marker levels 
(Table  3). After we adjusted for sex, age, BMI, smoking 
status, statin use, hypertension status, T2DM status, and 
CAD status (Model II), sASGR1 was positively associ-
ated with the levels of inflammatory markers [hs-CRP 
(β = 1.00, p < 0.001), WBC count (β = 0.12, P = 0.004), and 
neutrophil count (β = 0.09, P = 0.011)]. Given that previ-
ous research has indicated a link between blood lipid lev-
els and inflammation [39], we further adjusted for blood 
lipid parameters and found that the serum sASGR1 
concentration was significantly positively correlated 
with the serum hs-CRP level (β = 0.86, P < 0.001), WBC 
count (β = 0.13, P = 0.004), and neutrophil count (β = 0.10, 
P = 0.008). Additionally, a similar association was 
observed between sASGR1 concentration and monocyte 
count (β = 0.009, P = 0.014).

Subgroup analysis of the correlation between sASGR1 and 
inflammatory marker levels
According to the interaction test (Table 4), the effect of 
sASGR1 on the hs-CRP level was significantly affected 
by age (p for interaction = 0.015), sex (p for interac-
tion = 0.007), BMI (p for interaction = 0.002), and hyper-
tension status (P for interaction = 0.019), indicating that 
the association between the sASGR1 concentration and 
the hs-CRP level differed according to these variables. 

Table 2  Multivariate logistic regression analysis of the 
influencing factors of CAD incidence

β OR (95% CI) P value
sASGR1 0.420 1.522 (1.095, 2.115) 0.012
BMI 0.104 1.109 (0.944, 1.304) 0.209
Smoking 1.135 3.110 (1.066, 9.074) 0.038
TG 1.102 3.010 (1.535, 5.900) 0.001
LDL-C 0.012 1.012 (0.534, 1.917) 0.971
Hs-CRP 0.061 1.063 (0.932, 1.213) 0.362
Hypertension 1.760 5.811 (2.106, 16.036) 0.001
T2DM 1.574 4.825 (1.313, 17.738) 0.018
Abbreviations: CI, confidence interval. Other abbreviations are as shown in 
Table 1

Table 3  Association of sASGR1 with hs-CRP levels, WBC counts, and WBC subsets according to the different models
Models Crude Model Model I Model II Model III

β P β P β P β P
(95% CI) (95% CI) (95% CI) (95% CI)

hs-CRP 0.99 < 0.001 1.11 < 0.001 1 < 0.001 0.86 < 0.001
(0.56, 1.42) (0.79, 1.43) (0.67, 1.33) (0.51, 1.20)

WBC 0.17 0.002 0.17 < 0.001 0.12 0.004 0.13 0.004
(0.06, 0.27) (0.09, 0.26) (0.04, 0.21) (0.04, 0.22)

Neutrophil 0.14 0.002 0.14 < 0.001 0.09 0.011 0.1 0.008
(0.05, 0.24) (0.07, 0.22) (0.02, 0.16) (0.03, 0.18)

Monocyte 0.01 0.004 0.01 0.001 0.009 0.006 0.009 0.014
(0.00, 0.02) (0.00, 0.02) (0.00, 0.02) (0.00, 0.02)

Lymphocyte 0.008 0.575 0.01 0.302 0.01 0.392 0.01 0.577
(-0.02, 0.04) (-0.01, 0.04) (-0.02, 0.04) (-0.02, 0.04)

The multivariate regression stepwise models are shown. hs-CRP levels, WBC counts, and WBC subsets were the dependent variables. Model I was adjusted for age, 
sex and BMI; Model II was adjusted for Model I plus smoking status, hypertension, T2DM incidence, statin use, and CAD. Model III was adjusted for Model II plus TG, 
LDL-C and HDL-C

Table 4  Subgroup analysis of the association between sASGR1 
and hs-CRP
Variables Effect size (95% CI) P value P for interaction
Age
  Below 60 0.4 (-0.0, 0.9) 0.07 0.015
  Over 60 1.2 (0.7, 1.8) < 0.001
Sex
  Male 0.5 (0.1, 0.9) 0.028 0.007
  Famale 1.3 (0.8, 1.9) < 0.001
BMI
  <24 1.2 (0.7, 1.7) < 0.001 0.002
  >=24 0.2 (-0.4, 0.7) 0.547
Statin use
  No 1.0 (0.5, 1.4) < 0.001 0.110
  Yes 0.4 (-0.1, 1.0) 0.103
CAD
  No 0.7 (-0.5, 1.9) 0.231 0.980
  Yes 0.8 (0.4, 1.1) < 0.001
Hypertension
  No 0.5 (0.0, 0.9) 0.037 0.019
  Yes 1.2 (0.7, 1.7) < 0.001
T2DM
  No 0.9 (0.5, 1.3) < 0.001 0.084
  Yes 0.3 (-0.4, 0.9) 0.443
Note 1: The above model was adjusted for age, sex, BMI, statin use, smoking 
status, hypertension, T2DM incidence, CAD status, TG, TC, LDL-C and HDL-C

Note 2: For each patient, the model was not adjusted for the stratification 
variable
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Notably, even after we adjusted for factors such as age, 
sex, BMI, statin use, smoking status, and lipid param-
eters, the positive correlation between sASGR1 and 
hs-CRP levels was still significant in patients with CAD 
(β = 0.8, P < 0.001). Among patients without CAD, this 
correlation was not observed (P = 0.231).

Similarly, we also conducted subgroup analysis and 
interaction testing to determine the relationship between 
sASGR1 and WBC count. Age was the sole significant 
factor influencing the association between sASGR1 level 
and WBC count, in contrast to hs-CRP (P for interac-
tion < 0.001), as shown in Table  5. Interestingly, similar 
to that of hs-CRP, a positive correlation between sASGR1 
and WBC was observed only in CAD patients (β = 0.1, 
P = 0.029).

Discussion
According to our study, sASGR1 is independently and 
positively correlated with hs-CRP and WBC. Accord-
ing to our subgroup analysis, this relationship existed 
only for CAD patients. In addition, serum sASGR1 levels 
are elevated in CAD patients. sASGR1 is independently 
correlated with the risk of CAD after adjusting for con-
founding variables, and it has better diagnostic value 
than APO-B and LDL-C.

Since 2016, ASGR1 has received widespread attention 
from researchers due to its involvement in liver choles-
terol metabolism [22]. Recent animal studies have shown 
that inhibiting ASGR1 on the hepatocyte membrane 
(named hASGR1) is expected to become a new strat-
egy for reducing LDL-C levels [21]. Similarly, geneti-
cally mimicked ASGR1 inhibitors were associated with 
lower cholesterol levels and CAD risk [40]. In addition, 
an observational study showed that ASGR1 mRNA lev-
els in peripheral blood mononuclear cells were lower in 
CAD patients than in non-CAD patients, but the under-
lying mechanism is still unknown [23]. However, there 
is currently no research on the role of serum sASGR1 
in CAD patients. sASGR1 and LDL-C levels were found 
to be positively correlated in our recent study [31]. As 
expected, this study showed an increase in sASGR1 lev-
els in CAD patients, which is consistent with the findings 
of a recent study [41]. In the present study, plasma pro-
teomics analysis revealed ASGR1 to be a risk factor for 
ischemic heart disease. Thus, the results of our study lend 
support for sASGR1 as a potential biomarker for CAD. 
We also found that, after controlling for confounding 
variables, sASGR1 remained an independent risk factor 
for CAD (Table 2). As mentioned earlier, hASGR1 regu-
lates liver cholesterol homeostasis by binding to circu-
lating asialoglycoproteins, ultimately affecting plasma 
cholesterol levels and the risk of CAD [21, 22]. Previous 
research revealed that while sASGR1 inhibits the bind-
ing of circulating asialoglycoproteins to hASGR1, it still 
binds to asialoglycoproteins and enters the liver as a 
complex [30, 31]. Taken together, these findings imply 
that the entry of the sASGR1-asialoglycoprotein com-
plex into hepatocytes may exert similar downstream bio-
logical effects as the binding of the asialoglycoprotein to 
hASGR1. Another hypothesis, however, is that the serum 
sASGR1 concentration might reflect the hASGR1 pro-
tein level. Given this, it will be intriguing to investigate 
whether blocking sASGR1 can lower plasma cholesterol 
and the risk of CAD in a manner similar to inhibiting 
hASGR1.

We evaluated the relationship between serum sASGR1 
levels and the severity of CAD. Although the serum 
sASGR1 concentration was associated with the number 
of coronary artery lesions (Fig. 2A), the level of sASGR1 
did not significantly increase as the Gensini score 
increased (Fig.  2B). The serum sASGR1 concentration 
has been reported to be positively correlated with LDL-C 
levels [31], but the correlation between LDL-C level and 
Gensini score is not significant [42, 43]. The relationship 
between serum sASGR1 levels and the severity of CAD 
in this study remains uncertain, even though the Gensini 
score is a more accurate indicator of plaque burden and 
CAD severity than the number of vascular lesions. More 
precise methods, such as intravascular ultrasound and 

Table 5  Subgroup analysis of the association between sASGR1 
and WBC count
Variables Effect size (95% CI) P value P for interaction
Age
  Below 60 -0.0 (-0.1, 0.1) 0.794 < 0.001
  Over 60 0.3 (0.2, 0.5) < 0.001
Sex
  Male 0.1 (-0.0, 0.2) 0.108 0.425
  Female 0.2 (0.0, 0.3) 0.038
BMI
  <24 0.2 (0.0, 0.3) 0017 0.373
  >=24 0.1 (-0.1, 0.2) 0.311
Statin use
  No 0.1 (0.0, 0.3) 0.045 0.791
  Yes 0.1 (-0.0, 0.2) 0.167
CAD
  No 0.2 (-0.2, 0.5) 0.326 0.771
  Yes 0.1 (0.0, 0.2) 0.029
Hypertension
  No 0.1 (-0.1, 0.2) 0.314 0.089
  Yes 0.2 (0.1, 0.3) 0.006
T2DM
  No 0.1 (0.0, 0.3) 0.008 0.159
  Yes 0.0 (-0.2, 0.2) 0.902
Note 1: The above model was adjusted for age, sex, BMI, statin use, smoking 
status, hypertension, T2DM incidence, CAD status, TG, TC, LDL-C and HDL-C.

Note 2: For each patient, the model was not adjusted for the stratification 
variable
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optical coherence tomography, may be needed to evalu-
ate the relationship between sASGR1 and the severity 
of CAD. We failed to find that sASGR1 could be used to 
identify individuals who had an AMI (Fig. 2C). Our pre-
vious study showed that there is no correlation between 
the serum troponin T concentration and sASGR1 level 
[31], which is consistent with the results of this study, 
indicating that the sASGR1 level is not related to the 
degree of myocardial injury.

We analyzed the diagnostic value of the sASGR1 level 
for CAD. Although it does not have the same diagnostic 
efficacy as hs-CRP, it is superior to LDL-C and APO-B. In 
addition, sASGR1 has advantages over hs-CRP (47.1%), 
APO-B (41.2%), TG (62.4%), and TC/HDL-C (69.4%) due 
to its relatively high diagnostic sensitivity (77.6%), indi-
cating an advantage in the early screening of CAD.

In addition to its clear association with cholesterol 
metabolism, a small number of studies have shown that 
ASGR1 is associated with systemic inflammation. The 
most direct evidence shows that knockdown of Asgr1 in 
mouse liver and monocytes suppressed the expression 
of plasma inflammatory cytokines [interleukin-1 (IL-1), 
IL-6, and tumor necrosis factor (TNF-α)] [27]. How-
ever, these studies on the relationship between ASGR1 
and systemic inflammation have focused mainly on the 
role of ASGR1 as a hepatocyte or monocyte membrane 
receptor.  The relationships between serum sASGR1 lev-
els and inflammatory marker levels in healthy individu-
als and patients with disease are unknown. Our findings 
showed that the serum sASGR1 concentration is posi-
tively correlated with inflammatory marker levels (hs-
CRP and WBC), which supports and propels previous 
basic research. However, the causal link between sASGR1 
and inflammatory markers warrants further exploration.

Inflammation is a key factor in the development of ath-
erosclerosis and CAD. As a stable and reliable inflam-
matory marker, CRP has been shown to upregulate the 
expression of adhesion molecules and monocyte chemo-
kines, inhibit the production of endothelial nitric oxide 
synthase (eNOS), and promote arterial thrombosis, indi-
cating direct involvement in the occurrence of athero-
sclerosis [44–46]. Therefore, evaluating hs-CRP levels is 
highly important for CAD patients without hypercho-
lesterolemia, as there is no urgent demand for lipid-low-
ering agents. The CANTOS study identified for the first 
time the ability of anti-inflammatory treatment to reduce 
cardiovascular events, which was independent of blood 
lipid levels [47]. An association between plasma CRP 
and LDL-C levels has been demonstrated in previous 
research [39]. Despite the fact that ASGR1 does affect cir-
culating cholesterol levels, our subgroup analysis results 
showed that sASGR1 remains an independent influenc-
ing factor for hs-CRP and WBC count among individu-
als with CAD even after adjusting for lipid parameters 

(Table 3). Notably, patients without CAD did not exhibit 
this association (Tables 4 and 5). Thus, our findings sug-
gest a potential connection between serum sASGR1 
and inflammation in patients with CAD, independent 
of lipid metabolism disorders. This hypothesis has actu-
ally received indirect support from earlier studies. For 
instance, sialylation mediated by α2,3-sialyltransferases 
has been linked to the recruitment of circulating inflam-
matory myeloid cells to the atherosclerotic vascular 
endothelium [22, 48, 49]. Moreover, sASGR1 levels and 
monocyte counts were positively correlated according to 
the multivariate regression model (model III: β = 0.009, 
p = 0.014). ASGR1 is expressed in peripheral blood 
monocytes [50]. These findings suggest that, in addition 
to being secreted by hepatocytes, serum sASGR1 may 
also be secreted by monocytes. In summary, the positive 
correlation between the serum sASGR1 concentration 
and inflammatory marker (hs-CRP and WBC) levels in 
CAD patients supports the current view that ASGR1 is 
a risk factor for CAD. In addition, our research provides 
a reference for revealing the potential role of sASGR1 in 
the inflammation of atherosclerosis.

Study strengths and limitations
This is the first study in which we investigated the rela-
tionship between serum sASGR1 levels and CAD inci-
dence, as well as inflammatory marker levels. This study 
has several limitations. First, this was a cross-sectional 
investigation, and the causal relationships between the 
serum sASGR1 concentration and CAD incidence or 
inflammatory marker levels could not be determined. 
However, further studies are needed to reveal the role of 
ASGR1 in the inflammation of atherosclerosis. Second, a 
relatively small sample size may hinder the ability to iden-
tify minute differences, even though the results of sample 
size calculations show that our sample size is appropriate 
for the main purpose of the study. These findings need to 
be confirmed in larger-sample studies. Third, the method 
of dividing the patients into groups with and without 
CAD may have resulted in selection bias. Fourth, we did 
not perform Western blot analysis of the serum sASGR1 
concentration to confirm that this parameter is a bio-
marker for CAD, as suitable antibodies were not found. 
Finally, we did not investigate the correlation between 
sASGR1 levels and the levels of other inflammatory cyto-
kines, such as ILs.

Conclusions
Our study suggested that serum sASGR1 levels are ele-
vated in CAD patients and may be an independent risk 
factor for CAD. Moreover, sASGR1 was independently 
and positively correlated with inflammatory marker levels 
in CAD patients, even after controlling for lipid param-
eters. The potential role of sASGR1 in inflammation in 
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atherosclerosis, independent of cholesterol metabolism, 
may need further study.
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