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Abstract 

Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence 
increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identi-
fies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial 
and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published 
literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglyc-
erides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the cor-
responding lipid metabolomic genes responsible for these lipids’ biosynthesis, catabolism, transport, and modification 
processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, 
with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid 
metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol 
pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomy-
elin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated 
in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine 
metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression 
of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting 
lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival 
in individuals affected by PF.
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Introduction
Pulmonary fibrosis (PF) is irreversible, with high mortal-
ity and few effective treatments [1]. The scarring causes 
the lung tissues to become thick and stiff, making it 
harder to absorb oxygen into the bloodstream. Clini-
cally, dyspnoea, dry cough, fatigue and exhaustion are the 
main manifestations of patients with PF. Medical imaging 
studies suggest that PF lungs show high levels of collagen 
fiber deposition, severe alveolar loss and destroyed lung 
architecture.

The incidence of PF is approximately 3–18 per 100,000 
people in idiopathic PF (IPF) and 3–24 per 100,000 peo-
ple in autoimmune PF [2, 3]. Notably, global incidents 
of silicosis, a subtype of PF, have risen by 64.6%, from 
84,821 cases in 1990 to 138,965 in 2019 [4]. PF encom-
passes various etiological subtypes, including IPF of 
unknown cause, connective tissue disease-related PF 
(notably systemic sclerosis and dermatomyositis patients, 
occupational PF (e.g., silica-related silicosis) due to envi-
ronmental exposure, virus-induced PF (exemplified by 
SARS-CoV-2), and genetic spontaneous PF. Genetic 
spontaneous PF can be further classified into familial 
IPF, typically associated with surfactant proteins A and C 
(SP-A and SP-C) mutations, sporadic IPF linked to muta-
tions in poly(A)-specific ribonuclease (PARN), telomer-
ase reverse transcriptase (TERT), regulator of telomere 
elongation helicase 1 (RTEL1), telomerase RNA compo-
nent (TERC), and gain-of-function mucin 5B (MUC5B)-
induced IPF. Mechanistically, familial IPF mutations such 
as SP-C induce endoplasmic reticulum (ER) stress, and 
an acquired impairment in macroautophagy-dependent 
proteostasis and mitophagy increases alveolar epithelial 
type II (AT2) cell susceptibility to injury [5]. The sporadic 
mutations cause cells to suffer telomere DNA damage, 
while the MUC5B mutation induces distal airway epithe-
lial distension [6–8]. Through decades of efforts inves-
tigating the etiology of the development of PF, complex 
underlying mechanisms of pathophysiological PF have 
been revealed, including cell senescence, alveolar epi-
thelial injury, endothelial barrier disturbance, chronic 
inflammation, and activation of macrophages and fibro-
blasts [8–11]. Currently, the pharmacologic treatment 
options for PF are limited, with only the FDA-approved 
pirfenidone and nintedanib available [12]. However, both 
two drugs are highly toxic to the liver and kidneys. It 
requires a systemic-level approach to uncover detailed 
molecular and cellular alterations in PF toward under-
standing its pathology. Fortunately, recent advance-
ments in scRNA-seq technology have enabled a more 
precise cell type-specific transcriptional analysis, offering 
promising opportunities for integrating and interpreting 
changes across cell types and genes, thereby aiding in the 
discovery of novel therapeutic targets.

Currently, increasing evidence suggests that lipid metabo-
lism disorders are involved in PF, including abnormali-
ties in low-density lipoprotein (LDL) metabolism [13], 
sphingosine-1-phosphate (S1P), and so on [14–18]. Epide-
miological studies have indicated that patients with pneu-
moconiosis, often a result of environmental pollution, 
exhibit a distinctive serum metabolite profile. Metabolites 
such as phosphatidylethanolamine (22:6/18:1) and N-tet-
radecanoylsphingosine have been proposed as potential 
biomarkers, while 1,2-dioctanoylthiophosphatidylcholine, 
phosphatidylcholine (18:1/20:1) and indole-3-acetamide 
have been identified as potential indicators for the staging 
of pneumoconiosis [19]. Additionally, diseases with signif-
icant lipid metabolism abnormalities, like cardiovascular  
disease and obesity, have been notably linked with PF 
[20, 21]. For instance, lipid risk factors common in car-
diovascular disease are also prevalent in IPF. Saturated 
fatty acid diets have been associated with an elevated 
prevalence of PF, and obesity doubles the risk of devel-
oping this condition. However, the specific roles and 
molecular mechanisms of lipid metabolic reprogram-
ming in PF remain inadequately understood. Therefore, 
the investigation in PF lipidomics of detail PF-related 
cells is beneficial for understanding the underlying 
mechanisms of PF in-depth and providing clues for new 
therapeutic strategies.

Here, we first integratively summarized recent findings 
on dysregulated lipid metabolites in PF and then focused 
on the molecular regulation of these lipid metabolites by 
re-analysing two single-cell RNA-sequencing datasets 
of PF. We also investigate the importance of lipid and 
related metabolic mechanisms in PF pathophysiology. 
Our study reveals that lipid metabolism dysregulation 
is present in various PF-related cell types and mediates 
abnormal cellular functions. Furthermore, impaired lipid 
metabolism is closely correlated with clinical manifesta-
tions such as disease severity and survival. In addition, 
different cell types have an apparent predilection for lipid 
dysregulation, for example, phospholipid dysregulation 
is more likely to occur in AT2 cells. These insights sug-
gest that understanding lipid metabolism dysregulation 
patterns at various disease stages and across different cell 
types could be beneficial for PF interventions.

Physiopathologic mechanisms underlying PF
Fibroblasts, known for their role in excessive extracellu-
lar matrix (ECM) deposition during wound healing, are 
pivotal effector cells in fibrosis [22]. In response to inter-
nal and external signals, the morphological stretches of 
fibroblasts are increased [3]. These cells secrete ECM 
components, primarily collagen, exacerbating fibrosis  
[23]. Indeed, the process of PF is far more than that  
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simple, and merely controlling fibroblast collagen metab-
olism cannot effectively inhibit PF.

The damage of endothelium, alveolar epithelium, and 
alveolar macrophage activation are essential for the ini-
tiation of PF [3]. During the early stage of PF, the injury of 
pulmonary capillary endothelial cells (ECs) initiates the 
apoptosis process and thus destroys the endothelial bar-
rier. Meanwhile, the living apoptosis-resistant endothe-
lial cells are activated and express many inflammatory 
cytokines and chemokines, contributing to inflamma-
tory cell recruitment and infiltration. The activated ECs 
can also secrete profibrotic factors, especially transform-
ing growth factor beta 1 (TGF-β1) to induce fibroblast-
like changes and activate perivascular fibroblasts. In the 
late stage of EC injury, the fibroblast repair processes are 
dominant. The abnormal repair processes collectively 
result in aberrant angiogenesis, vasculogenesis, tissue 
hypoxia, and fibrosis [24].

The alveoli, composed mainly of alveolar epithelial type 
I (AT1) and AT2 cells, characterized by their delicate and 
thin structure. Like ECs, some epithelial cells undergo 
apoptosis in response to injurious stimuli, while others 
become activated. The apoptotic loss of AT1 and AT2 
cells results in the reduction of alveoli, thereby impair-
ing pulmonary function. Though AT1 differentiates from 
AT2 to remedy the alveoli regeneration, this process is 
broken by persistent and chronic inflammation in the 
condition of PF. Instead, the physiological repair of AT2-
AT1 differentiation is superseded by fibroblast repair. 
Finally, the injury loci are full of ECM accompanied by 
the alveoli disappearance. Besides apoptosis, the AT1 and 
AT2 also undergo the activation program by responding 
to the interleukins such as monocyte chemoattractant 
protein-1 (encoded by CCL-2), interleukin-8 (encoded 
by CXCL8), interleukin-6 (IL6), and TGF-β1, leading to 
inflammation, accumulation of fibroblast -like AT1 and 
AT2 cells and fibroblast activation [8].

Pulmonary macrophages include alveolar macrophages 
(AMs) and interstitial macrophages (IMs) [25]. When 
the alveolar epithelium is injured, macrophages are acti-
vated to become activated macrophages and alterna-
tively activated macrophages (AAMs), which consist of 
four subtypes, including AAM2a, AAM2b, AAM2c, and 
AAM2d [26, 27]. Macrophages are highly heterogene-
ous and complex to classify. The traditional categories 
are M1, M2, or AM, AAM. Recently scRNA-seq analy-
ses have divided lung macrophages into inflammatory 
macrophages, airspace macrophages, and profibrotic 
macrophages or other specific gene high-expressing mac-
rophages, including secreted CCL2, inhibin subunit beta 
A (INHBA), fatty acid binding protein 4 (FABP4), phos-
phoprotein 1 (SPP1), serpin family G member 1 (SERP-
ING1), interleukin 1 receptor type 2 (IL1R2), interleukin 

1 beta (IL1B), and ficolin 1 (FCN1) macrophages [25, 28–
32]. Both activated macrophages and AAMs have been 
reported to mediate PF by releasing pro-inflammatory 
and profibrotic factors to activate continuous fibroblasts 
and promote myofibroblast proliferation [33].

Senescent cells undergo cell cycle arrest and pheno-
typic changes. However, they are metabolically active 
and contribute to many diseases. The contribution of cel-
lular senescence to PF, and in particular its acceleration 
in this condition, is being increasingly recognized. The 
hallmarks of senescence, including telomere shortening, 
genomic instability, mitochondrial dysfunction, impaired 
autophagy, defective nutrient sensing, and epigenetic 
alterations, are significantly enriched in PF. Cell senes-
cence is an important phenomenon affecting endothelial 
cells, AT2 cells, fibroblasts, and macrophages. Senescent 
cells drive the senescence-associated secretory pheno-
type (SASP) to affect surrounding cells. This secretion 
leads to the activation of proinflammatory and profi-
brotic pathways, ultimately contributing to PF.

Taken together, PF involves abnormalities in the 
endothelium, alveolar epithelium, fibroblasts, and mac-
rophages (Fig. 1).

Impacts of lipid metabolism during PF
Phospholipids
Phospholipids are a predominant component of pul-
monary surfactants, comprising about 10% specific sur-
factant proteins and 90% lipids. Pulmonary surfactants 
primarily function to reduce surface tension within the 
alveoli. Phosphatidylcholine (PC), with dipalmitoylphos-
phatidylcholine (DPPC) comprising half of it, makes up 
70–75% of surfactant phospholipids and provides sur-
face-active properties. These surfactant phospholipid 
components are critical to the functionality and stability 
of the alveoli and are reprogrammed in PF [34]. A recent 
plasma lipidomics study has shown that almost all the 
surfactant phospholipid species are reduced in IPF in 
comparison to controls, including PC, phosphatidylser-
ine (PS), phosphatidylethanolamines (PE), phosphati-
dylinositol (PI), and phosphatidylglycerol (PG) [34, 35]. 
The decline of surfactant phospholipids has also been val-
idated in lung biopsy samples from irradiation-induced 
PF patients [36]. Interestingly, Shabarinath Nambiar et al. 
observed higher plasma PC levels in progressive IPF than 
in stable cases, potentially linked to severe epithelial cell 
damage in advanced IPF [37]. These divergent PC pat-
terns may be intimately associated with disease progres-
sion and could provide essential insights for diagnosis 
and treatment.

Phospholipids play an important role in fibrogen-
esis. Luis G. Vazquez-de-Lara et  al. recently reported 
that PE could inhibit collagen deposition by promoting 
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apoptosis, inducing a dose-dependent  Ca2+ signaling and 
mitigating bleomycin (BLM)-induced PF in mice [38]. 
In this study, PE treatment was started 1 day after BLM 
injection in mice and continued 6 times, and the degree 
of fibrosis was assessed on day 21. It was found that PE 
mainly decreased collagen expression in fibroblasts. 
Since fibroblast activation is a late effect of PF, we sug-
gest that the remission effect of PE on PF may be thera-
peutic rather than preventive. Another study reported 
by Stefanie Preuß et  al showed that PG could prevent 
fibrosis by inhibiting alveolar epithelial injury and fibrosis 

responses by reducing secretory phospholipase A2 [39]. 
PG was administered ex vivo to the lungs of 2–6 days old 
domestic piglets. The results showed that PG could not 
only inhibit alveolar damage but also inhibit the TGF-β1 
secretion and other fibrotic factors, suggesting a poten-
tial role in PF prevention and treatment.

Conversely, lysophospholipids have a profibrotic effect 
by inducing apoptosis of alveolar cells, vascular perme-
ability, migration and activation of fibroblasts [40]. Sur-
factant phospholipids are beneficial for lung hemostasis. 
However, the modified phospholipids are pathogenetic 

Fig. 1 The mechanism of PF. ① Excessive apoptosis of endothelial and epithelial cells leads to lung injury and releases various pro-inflammatory 
and profibrotic factors. Injured EC and alveolar epithelial cells also undergo senescence, inducing an SASP phenotype, which further enhances 
the pro-inflammatory and profibrotic effects. ② The apoptosis-resistant endothelial and epithelial cells undergo an activated process to obtain 
fibroblast-like properties. ③ The polarisation of macrophages confers AM and IM cells to differentiate into activated macrophages, which produce 
abundant pro-inflammatory and profibrotic factors and further promote PF. ④ Over-proliferation and hyperactivation of fibroblast lead to ECM 
deposition and fibrosis formation
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and mainly removed by alveolar macrophages (AMs) 
in PF, especially the oxidized phospholipids (ox-PLs). 
Increasing evidence indicates that ox-PLs actively con-
tribute to the commencement and advancement of PF. 
Freddy Romero et  al. showed that ox-PLs accumulate 
in AMs of human patients and mouse models of PF and 
induce an M2 phenotype transition of AMs, secreting 
high levels of TGF-β1, ultimately exacerbating BLM-
induced PF [41]. Moreover, recent studies further showed 
that ox-PLs could induce ferroptosis and thus promote 
PF [42–44]. The uptake of ox-PLs is mediated by CD36 
molecule (CD36). Amounts of studies demonstrated that 
CD36 promoted ER stress, cell death in AT2 cells, and  
PF [45, 46].

By reanalyzing scRNA-seq datasets (GSE136831 and 
GSE135893) of endothelial, AT2, fibroblast and mac-
rophage cells, we found that the reduced surfactant 
lipids are partly attributed to the downregulated sur-
factant lipid metabolism-related genes in PF. Among 
those downregulated genes, CHK (choline kinase, α/β), 
choline phosphotransferase 1 (CHPT1), phosphate 
cytidylyltransferase 1A, choline (PCYT1A), and phos-
phatidylethanolamine N-methyltransferase (PEMT) 
are involved in the PC biosynthetic process through the 
Kennedy pathway (Fig. 2). Besides, the generation of PE 
is also mediated by the Kennedy pathway, and the criti-
cal genes are ethanolamine kinase (ETNK1/2), PCYT2 
(phosphate cytidylyltransferase 2), and choline/etha-
nolamine phosphotransferase 1 (CEPT1). In contrast, 
lecithin-cholesterol acyltransferase (LCAT) and phos-
pholipase are responsible for the decomposition of PC 

and PE. The scRNA-seq datasets show that a series of 
surfactant genes are dysregulated in AT2 cells and mac-
rophages of PF (Table 1). In addition, the expressions of  
CDP-diacylglycerol synthase (CDS1/2), phosphatidyl-
glycerol phosphate synthase 1 (PGS1), phosphatidylser-
ine synthase 1 (PTDSS1/2), CDP-diacylglycerol-inositol  
3-phosphatidyl transferase (CDIPT), which are respon-
sible for the synthesis of PS, PI, and PG by CDP-DAG 
pathway (Fig.  2), are altered as well (Table  2). Besides 
the de no synthesis, phospholipids can also be converted 
from their corresponding lysophospholipids, which are 
mediated by the lysophosphatidylcholine acyltransferases 
family (LPCATs). In turn, phospholipids can be con-
verted to lysophospholipids in the presence of phospholi-
pase A2s (PLA2s).

Although lung fibroblasts, macrophages, and ECs are 
not primary sources of surfactant phospholipids, altera-
tions in phospholipid gene expression in these cells merit 
attention. For instance, it was found that AT2 cells can 
uptake cholesterol from extracellular LDL via the LDL 
receptor (LDLR) [13]. Pulmonary lipofibroblasts are 
characterized by their lipid droplets and are located in 
the alveolar interstitium. They contain cortical contrac-
tile filaments and are related to contractile interstitial 
cells and are beneficial for alveolar development [47]. 
These lipofibroblasts can transport lipids to AT2 cells 
via the parathyroid hormone-related protein (PTHRP) 
signaling pathway, which is activated by stretch-sensi-
tive AT2 cells and directs the differentiation of mesen-
chymal and alveolar epithelial cells [48, 49]. In addition 
to these signaling pathways, other cells can also deliver 

Fig. 2 The metabolites and genes involved in the Kennedy pathway and CDP-DAG pathway. The synthesis of PC and PE via the Kennedy pathway, 
and the synthesis of PS, PG and PI through the CDP-DAG pathway
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phosphatidylcholine to epithelial cells in the form of 
exosomes [50]. These lipids likely contribute to the syn-
thesis of AT2 surfactant lipids, underscoring the impor-
tance of considering the phospholipid synthesis capacity 
of other cells. Taken together, all of these results sug-
gested that surfactant phospholipids were reduced in 
PF and thus exacerbated the PF course. Targeting the 
surfactant phospholipids metabolism by mediating the 
activity of Kennedy and cytidine diphosphate-diacylglyc-
erol (CDP-DAG) pathways is a promising strategy for PF.

FB Fibroblasts, MyoF Myofibroblasts, IM interstitial 
macrophages, AM alveolar macrophages.

FB Fibroblasts, MyoF Myofibroblasts, IM interstitial 
macrophages, AM alveolar macrophages.

Sphingomyelin (SM) is synthesized via SM synthases 
(SMSs, SGMS1). In the presence of sphingomyelinases 
(SMases), which are encoded by sphingomyelin phos-
phodiesterases (SMPD1–4) genes, SM is hydrolyzed to 
ceramide (Cer). Previous studies have demonstrated 

Cer-mediated cell infection, inflammation, and death 
susceptibility in cystic fibrosis [51]. N-acyl sphingosine 
amidohydrolases (ASAH1/2) facilitate the degradation 
of ceramide into sphingosine, which could be phospho-
rylated by sphingosine kinase 1 (SPHK1) to generate 
S1P. The actions of S1P are predominantly mediated by 
S1P receptors (S1PRs), including S1PR1, S1PR2, and 
S1PR3 [52]. SM is the most abundant sphingolipid and 
has particularly high levels in the brain [53]. Indeed, 
moderate levels of SM were also found in the lung 
[54], and the metabolic pathway was disrupted in PF. 
Decreased sphingolipid metabolites in IPF have been 
reported by Yidan D Zhao [55]. In addition, a series of 
sphingolipid metabolism-related genes are reduced in 
IPF lungs, including SMPD1, SMPD4, SPHK1, S1PR1, 
S1PR4, and S1P lyase (SGPL1) [55]. A report by Long 
Shuang Huang et  al. showed that S1P lyase (S1PL, 
encoded by SGPL1), an enzyme that catalyzes S1P to 

Table 1 DEGs of Kennedy pathway in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

CHKA / / 0.57
(FB)

2.67
E-02

0.06
(IM)

3.97
E-05

/ /

−0.15 (AM) 9.64
E-10

CHKB / / / / −0.79
(AM)

2.73
E-09

/ /

PCYT1A / / / / −0.20 (AM) 5.84
E-18

/ /

CHPT1 −0.95 4.80 E-84 −0.41
(FB)

1.15
E-02

0.17 (IM) 2.52
E-08

−1.58 1.09
E-58

−1.90
(MyoF)

8.82
E-55

−0.27 (AM) 8.89
E-13

ETNK2 / / / / −0.90
(AM)

1.71
E-02

/ /

PCYT2 −0.78 1.04
E-45

−1.13
(FB)

1.45
E-02

/ / −0.58 6.21
E-04

CEPT1 0.47 1.51
E-03

/ / −0.16 (IM) 6.90
E-09

−0.55 1.92
E-05

−0.77 (AM) 2.55
E-140

PEMT −0.24 2.68
E-03

/ / 0.17 (IM) 5.00
E-05

0.29 4.97
E-03

0.24 (AM) 2.34
E-04

LCAT 1.36 5.96
E-19

/ / −0.39 (AM) 4.38
E-02

−0.69 6.71
E-03

PLA2G4C / / / / −0.67 (AM) 3.36
E-22

/ /

PLA2G16 −0.44 4.91
E-54

/ / − 0.27 (IM) 3.26
E-35

− 0.28 1.42
E-09

−0.18
(AM)

3.29
E-51



Page 7 of 19Shi et al. Lipids in Health and Disease           (2024) 23:98  

phosphoethanolamine, is negatively correlated with 
PF severity but positively correlated with survival rate. 
Moreover, overexpression of S1PL reduces S1P levels, 
enhances fibroblast autophagy, attenuates lung fibro-
blast activation, and effectively inhibits BLM-induced 
PF [16]. Researches have also shown that inactivation 
of the SPHK1/S1P/S1PR signaling attenuates mouse PF 
by reducing ECM deposition in fibroblasts [14, 17, 56–
58]. However, Rachel S. Knipe et al. recently found that 
endothelial-specific S1pr1 deletion suppresses sphin-
gosine-1-phosphate metabolism and shows increased 
peripheral lymphocyte numbers by increasing vascular 
permeability and exacerbating BLM-induced PF [59]. 
The distinct roles of S1P in different PF-related cell 
types may explain this discrepancy. We then analyzed 
the scRNA-seq datasets and found that the changing 
trends of these SM metabolism-related genes in differ-
ent cell types were inconsistent (Table 3). Nevertheless, 
it gives us a hint and suggests that the function of S1P 
metabolism could be considered in a manner that is 
dependent on the cell type, and results obtained from 
whole lung tissues should be carefully interpreted. In 
summary, these results underscore the important role 
of SM metabolism in PF, with the processes involved 
depicted in Fig. 3.

Glycolipids
Miguel Arias-Guillen et al. discovered that glycosphin-
golipids mediate profibrotic TGF-β/SMAD signaling 
in human lung fibroblasts. Suppression of glycosphin-
golipid synthesis was found to decrease ECM deposi-
tion and myofibroblast transformation. Similarly, Toru 
Kimura et  al. demonstrated that a glycolipid derived 
from marine sponges, α-galactosylceramide, attenu-
ates BLM-induced PF. This attenuation occurs through 
the regulating of several cytokines, including TGF-β, 
interferon-gamma (IFN-γ), connective tissue growth 
factor (CTGF), and macrophage inflammatory pro-
tein-2 released by natural killer T cells [60]. The metab-
olism and the roles of glycolipids in PF remain largely 
unknown.

Steroids
Steroids include sterols (e.g., cholesterol), bile acids, 
steroid hormones (e.g. adrenal corticosteroids, andro-
gens, estrogens), etc.

Cholesterol metabolism

(1) Alterations of cholesterol and its derivatives in PF

Table 2 DEGs of CDP-DAG pathway in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

SELENOI / / / / 0.09 (IM) 4.28
E-02

/ /

CDS1 −0.22 6.50
E-05

/ / − 0.28
(AM)

2.08
E-03

/ /

CDS2 / / / / −0.24 (AM) 6.78
E-26

/ /

PTDSS1 −0.34 1.54
E-03

/ / −0.21 (AM) 4.76
E-15

/ /

PTDSS2 / / / / −0.34 (IM) 1.59
E-12

/ /

−0.39 (AM) 5.77
E-07

PISD 0.43 2.36
E-03

−0.84
(MyoF)

2.80
E-02

−0.14
(IM)

7.56
E-06

/ /

−0.45
(AM)

1.35
E-37

PGS1 −0.28 3.27
E-05

/ / −0.33 (IM) 1.16
E-121

−0.31 4.47
E-04

−0.43
(AM)

1.62
E-48

CDIPT / / / / 0.19
(IM)

2.35
E-10

/ /

0.18
(AM)

1.93
E-04
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Table 3 DEGs of SM metabolism pathway in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

SGMS1 / / / / −0.18 (IM) 8.54
E-46

/ /

0.06 (AM) 1.66
E-03

SGMS2 0.49 1.06
E-24

/ / 0.40
(IM)

2.25
E-176

/ /

0.29
(AM)

7.56
E-117

SMPD1 / / / / −0.29 (AM) 2.54
E-09

−0.49 7.33
E-08

SMPD4 / / / / −0.24 (IM) 1.87
E-13

−0.59 3.98
E-06

−0.37 (AM) 1.23
E-17

ASAH1 −0.37 6.67
E-121

/ / −0.05
(IM)

4.47
E-13

−0.36 1.86
E-13

−0.02
(AM)

1.62
E-02

ASAH2 / / / / −0.81 (AM) 1.82
E-04

/ /

SPHK1 / / / / −0.94
(IM)

2.30
E-301

0.23 2.84
E-02

−0.89 (AM) 7.96
E-12

SPHK2 0.54 1.18
E-04

/ / / / / /

S1PR1 / / / / 0.82
(AM)

3.93
E-02

−0.31 1.32
E-30

S1PR3 / / / / −0.72
(IM)

4.05
E-08

/ /

S1PR4 1.00 3.73
E-04

/ / / / −0.66 3.74
E-05

SGPL1 0.74 6.80
E-08

/ / −0.50
(IM)

3.67
E-291

/ /

−0.11
(AM)

2.75
E-03

Fig. 3 The metabolites and genes involved in SM metabolism. ASAHs catalyze ceramide to sphingosine, which is phosphorylated by SPHK 
to produce S1P. S1P can bind to S1PRs on the cell surface to regulate cell function or be degraded by SGPL1
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As early as 1996, E Fireman et al. reported that cho-
lesterol was deposited in the bronchoalveolar lavage 
fluid (BALF) of IPF patients [61]. Besides, increased 
cholesterol is observed in BLM-induced PF [41]. In 
addition to cholesterol levels, Tomohiro Ichikawa et al. 
reported that one cholesterols’ derivative, 25-hydroxy-
cholesterol, could promote myofibroblast differentia-
tion and ECM deposition via a TGF-β/nuclear factor 
kappa B (NF-κB) dependent manner [62]. Feng Yan 
et  al. observed lower plasma levels of the sterol lipid 
20:1-Glc-Sitosterol in IPF patients than in healthy 
donors. Moreover, three sterol lipids (16:1 stigmasterol 
ester, 3-hydroxyvitamin D3, and 20:1-glc-sitosterol) 
have been identified as correlating with IPF [35]. These 
results demonstrate that abnormal cholesterol metabo-
lism is a risk factor in the pathogenesis of PF.

(2) Abnormal regulation of cholesterol metabolism

The sterol regulatory element-binding protein 2 
(SREBP2) tightly regulates de novo cholesterol synthe-
sis. In sterol-deficient cells, SREBP2 increases cholesterol 
synthesis by generating oxysterol ligands for LXRα/β 
(encoded by NR1H3 and NR1H2, respectively) [63]. 
Interestingly, although excessive cholesterol has been 
observed to be deposited in the BALF of PF, the expres-
sions of cholesterol-synthesis-related genes decrease in 
PF lungs, including hydroxymethyl-glutaryl coenzyme A 
reductase (HMGCR) and SREBPs [41]. Moreover, over-
expression of SREBP2 could suppress lung fibroblast pro-
liferation, ER stress, and attenuates PF [64, 65]. Among 
the target genes of SREBP2, many of them can regulate 
non-steroid lipid metabolism, and are antifibrotic in PF, 
such as LDLR, fatty acid synthase (FASN), SCD, etc. 
[66]. In contrast, another study reported that SREBP2 is 
markedly increased in IPF lung specimens. Endothelial-
specific transgenic of SREBP2 activated the TGF-β and 
Wnt signaling and fibrotic genes such as smooth muscle 
(α-SMA), vimentin, snail family transcriptional repressor 
1 (Snai1), neural cadherin, and actin alpha 2. This led to 
EC overgrowth, ECM deposition, stress fiber formation, 
and exacerbated BLM-induced PF [24].

The uptake of extracellular cholesterol is mediated by 
LDLR. LDLR governs the uptake of cholesterol packaged 
with apolipoprotein B (ApoB), especially LDL-C parti-
cles, from the blood [67–69]. In lung tissue, specifically 
on AT2 cells, LDLR takes up peripheral LDL particles for 
surfactant synthesis, a process that is impaired in acute 
and chronic lung injury [67, 68, 70]. Mice lacking LDLR 
(Ldlr−/−) exhibit impaired lung development compared 
to wild-type (WT) mice [71]. Consistent with our and 
other previous studies, a disrupted LDL-LDLR metabolic 
axis was found in PF patients [13, 72]. Further in vivo and 

in vitro studies of these aberrations revealed their contri-
butions and mechanisms in PF. We develop a combined 
treatment with a statin and an anti-proprotein convertase 
subtilisin/kexin type 9 (PCSK9) antibody that signifi-
cantly reduces the severity of PF, more effectively than 
either treatment alone, by increasing LDLR and lowering 
LDL in mice.

For cholesterol homeostasis, lung cells either expel 
excess cholesterol or store it as cholesteryl esters in lipid 
droplets. ATP-binding cassette subfamily A member 1 
(ABCA1) is expressed widely throughout the body, with 
the lung having the second highest expression after the 
liver [73]. ABCA1 in macrophages facilitates the removal 
of cholesterol and prevents excessive cholesterol deposi-
tion in the lungs [74]. Lipid-free circular apolipoprotein 
A-I (apoA-I) receives cholesterol effluxed via ABCA1 
and forms the nascent high-density lipoprotein (HDL) 
particles on the cell membrane. Nascent HDL matures 
after acquiring cellular cholesterol effluxed through ATP-
binding cassette subfamily G member 1 (ABCG1) and 
ABCA1 [75]. In the liver, circular HDL binds to hepatic 
scavenger receptor class B type I (SR-BI) and is cleared, 
whereas cholesteryl ester transfer protein (CETP)-medi-
ated cholesterol transfer from HDL to LDL is cleared by 
hepatic LDLR. This process of cellular cholesterol dis-
posal is termed reverse cholesterol transport (RCT) [67]. 
To prevent intracellular free cholesterol accumulation, 
acetyl-CoA acetyltransferase 1 (ACAT)-mediated cho-
lesterol esterification directs cholesterol toward storage 
[76]. Esterification is also necessary to balance free cho-
lesterol and cholesteryl esters.

Alessandro Venosa et  al. found that reduced ABCA1 
and ABCG1 in macrophages from nitrogen mustard-
induced PF mice [77]. Disabled cholesterol efflux and 
esterification were found in the BLM-induced PF model. 
Moreover, deleting the lipid efflux transporter ABCG1 
could reduce pulmonary lipid clearance and worsen lung 
fibrosis [41]. Besides, our previous study revealed that 
plasma HDL levels are both decreased in PF patients and 
mice, further indicating dysfunctional cholesterol efflux 
in PF. In addition, HDL particles are negatively corre-
lated with the death of IPF [78]. scRNA-seq dataset of PF 
further shows these cholesterol effluxes and esterifica-
tion genes are decreased in macrophages and AT2 cells 
compared to healthy individuals (Table  4). The exact 
role of ACATs in PF remains to be determined, although 
increased ACATs have been associated with atheroscle-
rosis [79].

The current discourse on cholesterol homeostasis 
has received considerable attention owing to its crucial 
role in an expanding spectrum of diseases, extending 
beyond traditional cardiovascular disorders to include 
pulmonary diseases [13], various cancers [80], and 
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Alzheimer’s disease [81]. Intriguingly, our research has 
shown that in addition to cardiovascular disease, cho-
lesterol reduction may be a viable therapeutic approach 
for PF. Nevertheless, numerous critical inquiries 
regarding cholesterol metabolism in PF persist, par-
ticularly concerning the underlying mechanisms. The 
question of whether cholesterol levels are regulated in 
a manner akin to that in the lungs remains unresolved. 
Unraveling this uncertainty is imperative for a full 
understanding of the relationship between cholesterol 
and PF.

Bile acid metabolism in PF
Bile acids (BAs) are synthesized by cytochrome P450 
family 7 subfamily A member 1 (CYP7A1) and subfam-
ily B member 1 (CYP8B1). BAs serve as crucial mediators 
of inflammation and fibrosis, exerting their effects via 
the activation of both nuclear and membrane G protein-
coupled receptors [82]. Activation of farnesoid X recep-
tor (FXR, encoded by the NR1H4 gene) occurs upon its 
interaction with BAs or their derivatives. Notably, Obet-
icholic acid (OCA), a BA-derived agonist of FXR, is clini-
cally advanced in its ability to suppress BA production in 

Table 4 DEGs of cholesterol metabolism in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

SREBF1 / / − 0.57
(FB)

4.15
E-03

− 0.20 (AM) 1.66
E-03

− 0.58 1.91
E-06

SREBF2 −0.14 1.27E-02 / / 0.23 (IM) 3.51
E-42

/ /

0.07 (AM) 4.19
E-02

NR1H2 −0.38 5.61
E-24

/ / −0.13
(IM)

7.63
E-10

−0.24 5.95
E-04

−0.30 (AM) 8.00
E-37

NR1H3 / / / / 0.55 (IM) 2.55
E-144

/ /

−0.20
(AM)

1.08
E-14

LDLR −0.43 3.18
E-44

/ / 0.21 (IM) 1.14
E-18

/ /

0.56 (AM) 9.63
E-59

FASN −0.59 5.43
E-130

/ / / / / /

SCD / / −1.04
(FB)

7.92
E-03

0.32 (IM) 3.42
E-61

/ /

−0.14
(AM)

2.80
E-21

PCSK9 −1.03 5.02
E-44

/ / / / / /

ABCA1 / / −1.11
(FB)

3.04
E-33

−0.63
(IM)

0.00
E+ 00

/ /

−0.54
(MyoFB)

5.29
E-03

−0.66
(AM)

5.32
E-233

ABCG1 / / / / −0.04 (IM) 3.56
E-03

−0.25 6.74
E-03

0.11 (AM) 5.00
E-28

ACAT1 −0.52 7.51
E-55

/ / 0.07 (IM) 1.66
E-02

−0.17 1.44
E-02

−0.17 (AM) 7.01
E-17

ACAT2 −1.15 1.79
E-130

/ / / / / /



Page 11 of 19Shi et al. Lipids in Health and Disease           (2024) 23:98  

hepatocytes and enhance bile acid transport from hepat-
ocytes, thus reducing hepatic exposure to BAs [83].

BAs have been detected in cystic fibrosis lungs [84], 
with their levels being closely associated with lung func-
tion parameters [85]. Yidan D. Zhao et al. found elevated 
bile acid metabolites in pulmonary arterial hyperten-
sion (PAH) patients, suggesting that pulmonary vascular 
endothelial cells of CYP7B1 protein may partly drive the 
de novo bile acid synthesis process [86]. Importantly, BAs 
could increase intracellular reactive oxygen species (ROS) 
production and subsequently induce EMT of AT2 and 
lung fibroblast activation in vitro through TGF-β/Smad3 
signaling-dependent manners [87]. Consistently, micro-
aspiration of BAs induces lung fibrosis through activat-
ing VEGF, CTGF, bFGF, and TGF-β pathways in rats [88]. 
Though BAs are profibrotic, FXR mediates inhibitory 
effects of inflammation and fibrosis in FXR-expressing 
organs [89, 90]. Indeed, FXR is confirmed to be expressed 
in AT2 cells [91]. In vivo treatment with OCA has been 
shown to effectively ameliorate BLM-induced pulmo-
nary function loss and reverse lung fibrosis by attenuat-
ing EMT, reducing IL-6 and IL-1β, and downregulating 
profibrotic SNAI1 and TGF-β1 expression [92], even 
superior to those obtained with pirfenidone [93], high-
lighting FXR as a novel PF therapeutic target. The mech-
anisms of the opposite effect of BAs and FXR on PF need 
to be further investigated. In addition to FXR, the roles of 
other receptors of BA, like pregnane X receptor (PXR), 
Takeda G protein-coupled receptor (TGR5), and sphin-
gosine-1-phosphate receptor 2 (S1PR2) in the lungs, 
remain unexplored. Collectively, these findings suggest 
that BA receptor agonists may be promising for alleviat-
ing inflammation- and fibrosis-related diseases.

Steroid hormones
Steroid hormones are broadly divided into two catego-
ries: corticosteroids and sex steroids, which are generally 
synthesised in the adrenal glands and gonads or placenta, 
respectively. These categories include glucocorticoids, 
mineralocorticoids, estrogens, androgens, and proges-
tins-five types based on the receptors they bind.

The lungs can respond to hormones through steroid 
hormone receptors expressed in the lungs. The classical 
estrogen receptors include estrogen receptor alpha (ERα) 
and estrogen receptor beta (ERβ). Studies have indicated 
a high expression of ERβ in both alveolar and bronchiolar 
epithelial cells. Interestingly, both female and male ERβ 
knockout (ERβ−/−) mice exhibited decreased caveolin-1, 
while increased metalloproteinases, and TIMP metallo-
peptidase inhibitor 2 (TIMP2), and manifested defective 
alveogenesis, reduced lung volume, unexpanded alveoli, 
systemic hypoxia, and spontaneous fibrosis [94]. More 

recent work by Sharon Elliot has shown elevated pulmo-
nary ERα levels in PF patients and mice. Mice harboring 
inactivated estrogen receptors develop BLM-induced 
lung fibrosis [95]. Additionally, progesterone receptor 
(PR) is positively stained in myofibroblasts in the scarred 
areas of IPF, implying PR could be a potential target 
in PF [96]. Steroid hormones can transfer to the lung 
through a circular system and thus act on lung fibrosis. 
For instance, plasma dehydroepiandrosterone (DHEA) 
is reduced in IPF patients and has been shown to signifi-
cantly inhibit PF characteristics. DHEA decreases fibro-
blast proliferation and increases apoptosis, likely through 
the intrinsic pathway involving caspase-9 activation. It 
also significantly inhibits fibroblast-to-myofibroblast dif-
ferentiation, collagen production and fibroblast migra-
tion [97].. Conversely, male sex hormones, or androgens, 
appear to exacerbate lung fibrosis following BLM admin-
istration [98]. Testosterone and 5α-dihydrotestosterone 
(DHT) are decreased significantly in the IPF group [99], 
but their roles in PF remain unclear.

Vitamin D (VitD) functions as a steroid hormone 
with inhibitory effects on inflammation and fibrosis, 
largely by modulating TGF-β, MAPK, and NF-κB path-
ways [100, 101]. IPF and other types of interstitial lung 
disease (ILD) patients display decreased serum VitD 
concentrations and lung Vitamin D receptor (VDR). 
VitD was also positively correlated with the diffusion 
capacity of the lungs for carbon monoxide (DLCO)% 
and predicted forced vital capacity (FVC)%, and nega-
tively correlated with mortality of IPF [102].

In 2011, international guidelines for IPF recommended 
glucocorticoids in acute exacerbation IPF patients [103]. 
In  vivo and in  vitro experiments consistently demon-
strate glucocorticoids enter lung cells through glucocor-
ticoid receptors (GRα and GRβ, two isoforms encoded by 
nuclear receptor subfamily 3 group C member 1, NR3C1), 
and then suppress PF by blocking fibroblast TGF-β pro-
duction [104, 105]. However, the contents of glucocor-
ticoid receptors in IPF patients are lower than those 
in normal volunteers. What’s worse is that IPF patients 
with lower glucocorticoid receptor levels are resistant to 
glucocorticoid treatment [106, 107]. In the realm of vas-
cular diseases, such as cardiovascular disease and PAH, 
the mineralocorticoid receptor (MR) has been identified 
as a contributory factor. As a result, MR antagonism is 
considered a promising therapeutic approach [108, 109]. 
However, it has been observed that MR antagonism does 
not significantly alter the outcomes of COVID-19-related 
PF treatment [110]. Presently, there is a dearth of data 
regarding the potential involvement of mineralocorticoid 
hormones and their receptors in IPF and other forms of 
PF. DEGs of bile acid and steroid hormones metabolism-
related genes were listed in Table 5.
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In summary, steroid hormones and their receptors are 
involved in PF and may prove to be effective therapeutic 
targets in PF.

Triglyceride (TG)
Lipofibroblasts (LFs) received more and more atten-
tion as they widely participate in various lung disorders, 
including PF [111]. Cell fate tracing experiments revealed 
that LFs originate from fibroblasts, and will transdifferen-
tiate to myofibroblasts when exposed to a stimulus [112]. 
TG may act as a pivotal modulator of lung fibroblast 
homeostasis by contributing to the assembly of lipofi-
broblasts, which are characterised by lipid droplets (LDs) 
that undergo continuous cycles of synthesis and degra-
dation. We found that diacylglycerol O-acyltransferase 
1 (DGAT1), an essential enzyme responsible for the last 
step of TG synthesis, is specifically enriched in perilipin 
2 (PLIN2)-positive LFs, rather than fibroblast, myofibro-
blast, or any other types of lung cells [112]. This suggests 
that TG is crucial for LF maintenance by regulating LD 
synthesis and degradation. The schematic diagram of 
lipid droplet metabolism lipid droplet metabolism was 
shown in Fig. 4, and the DEGs in PF responsible for LD 
metabolism are listed in Table 6. Furthermore, LDs func-
tion as a multifaceted organelle involved in various physi-
ological and pathological processes, including ER stress, 
insulin resistance, autophagy, mitochondrial and nuclear 
function regulation, inflammatory response, and viral 
infection [113].

Studies have shown that lipid droplets can maintain 
the high activation of the lipogenic pathway of lipofibro-
blasts and convert myofibroblasts into fibroblasts with 
weak collagen-producing ability [114].. Moreover, lipid 

droplets store large amounts of lipids, and lipid droplet-
rich lipofibroblasts are physically adjacent to the alveoli 
and play a crucial role in alveolarisation [115]. Therefore, 
LDs may be significant in the resolution of PF and poten-
tially in alveolar regeneration.

Taken together, the investigation focuses on the regula-
tory network and the roles of TG and LD metabolism in 
the lung may provide a new therapeutic approach for PF.

Fatty acids (FAs)
Recent studies have highlighted distinctive alterations in 
FA metabolism in PF, encompassing de novo synthesis, 
uptake, oxidation, and derivatization processes [116]. The 
initial step of de novo FA synthesis involves ATP citrate 
lyase (ACLY), which converts cytoplasmic citric acid into 
oxaloacetic acid and acetyl-CoA. Subsequently, acetyl-
CoA carboxylase (ACC), a rate-limiting enzyme, allows 
acetyl-CoA to be carboxylated to malonyl-CoA. Finally, 
malonyl-CoA and acetyl-CoA are catalyzed by fatty acid 
synthase (FASN) to palmitic acid (PA). FAs can also be 
internalized via cell surface receptors, such as the CD36 
receptor. Intracellular FAs bind to coenzyme A and are 
then shuttled to the mitochondria to start the FA oxida-
tion (FAO) process, producing carbon dioxide and water 
in the presence of sufficient oxygen.

Yidan D Zhao et  al. found increased free FAs but 
reduced carnitine shuttle, suggesting reduced mitochon-
drial β-oxidation in IPF. Hiroaki Sunaga et al. reported a 
significant downregulation of elongation of long-chain 
fatty acids family member 6 (Elovl6) in PF. Elovl6 knock-
down altered the composition of oleic acid (OA), PA, and 
linoleic acid (LOA), resulting in heightened apoptosis, 
reactive oxygen species (ROS) production, and TGF-β1 

Table 5 DEGs of bile acid and steroid hormones metabolism in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

NR1H4 / / / / −0.72
(IM)

7.53
E-10

/ /

−0.77
(AM)

9.47
E-04

ESR2 / / / / −0.52
(IM)

3.54
E-10

3.32 3.83
E-07

−0.44
(AM)

6.70
E-03

ESR1 / / / / 0.14
(IM)

2.67
E-04

/ /

−0.58
(AM)

6.78
E-86

VDR / / / / −0.23
(IM)

5.89
E-32

/ /

−0.50
(AM)

9.39
E-38



Page 13 of 19Shi et al. Lipids in Health and Disease           (2024) 23:98  

secretion in AT2 cells, thereby exacerbating PF [117]. 
The pathogenic effect of PA on PF is also revealed by the 
Sarah G. Chu group [45]. In contrast, stearic acid mark-
edly decreased p-Smad2/3 phosphorylation, ROS gen-
eration, and fibrosis [118]. The altered FA levels in IPF 
lung tissues have also been explored in this article and it 
found that PA, oleic acid, and LOA were elevated, while 
the level of stearic acid was significantly reduced com-
pared to controls. PA, OA, or LOA significantly enhance 
the TGF-β1 induced fibrosis, whereas stearic acid sig-
nificantly reduces it. Studies have demonstrated that 
the FA synthetic activator nuclear receptor subfamily 
(LXR)/SREBP-1c axis is linked to fibrosis [64, 65, 119]. 
A role for altered FA metabolism through the activation 
of FASN via the rapamycin-sensitive TGFβ1/mTORC1 
pathway [120]. As a downstream of the LXR/SREBP-
1c axis, FASN is downregulated in AT2 cells. AT2 cell-
specific loss of FASN impaired mitochondria biogenesis 
and promoted PF [23]. However, FASN is required for 

TGF-β-induced profibrotic responses, and its inhibition 
not only mitigates fibrosis but also improves lung func-
tion. Stearoyl-CoA desaturase (SCD) desaturates satu-
rated FA to prevent lipotoxicity, ER stress and apoptosis 
caused by saturated FA [121]. Therefore, it is a theoretical 
benefit for PF via SCD manipulation. The schematic dia-
gram of the metabolism of fatty acid is shown in Fig. 5.

Lipoproteins
Lipids can be stored in lipoproteins and transported 
to peripheral tissues. Altered lipoprotein levels have 
been reported to be associated with PF. Our and 
other groups consistently revealed that plasma HDL 
is decreased in SSc-PF and IPF. Moreover, total serum 
HDL particles have been negatively correlated with 
mortality or the necessity for lung transplantation in 
IPF patients [78]. In contrast to HDL, LDL levels are 
elevated in PF. We have clarified the role of LDL in PF 
by acting on apoptosis in endothelial and AT2 cells, 

Fig. 4 Regulation of Lipid Droplet Formation by TG. The left panel of this figure depicts the multi-step synthesis of triglycerides (TAGs). Initially, 
glycerol-3-phosphate acyltransferase (GPAT) catalyzes the biosynthesis of lysophosphatidic acid (LPA) with a preference for saturated fatty acids 
and glycerol-3-phosphate (G3P) as substrates. GPATs exist in two forms, the mitochondrial isoform (GPAT1/2) and the endoplasmic isoform 
(GPAT3/4). Next, 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs) convert LPA to phosphatidic acid (PA). Following this, the enzyme 
lipin, a magnesium-ion-dependent phosphatidic acid phosphohydrolase, dephosphorylates PA to yield diacylglycerol (DAG). Diacylglycerol 
O-acyltransferases (DGAT1/2) catalyze DAG and fatty acyl-CoA to TAG. The biogenesis of lipid droplets commences with TG synthesis, 
which accumulates between the ER membrane’s two leaflets. Proteins bound to the lipid droplet surface, such as perilipins (PLINs), localize 
to the phospholipid monolayer, while the neutral lipid core comprises triacylglycerols and sterol esters. The right panel illustrates the hydrolysis 
of TG. Adipose triglyceride lipase (ATGL), encoded by the PNPLA2 gene, initiates TAG degradation to produce DAG, which is subsequently 
hydrolyzed to monoacylglycerol (MAG) by hormone-sensitive lipase (LIPE). LIPE also participates in steroid hormone synthesis by converting 
cholesteryl esters to free cholesterol. Finally, monoglyceride lipase (MGLL) hydrolyzes MAG to free fatty acids and glycerol
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and activation of fibroblasts. Chylomicrons (CMs) and 
other lipoproteins have not been studied in PF, nei-
ther the changes nor the roles. The uptake and utili-
zation of these lipoproteins are involved in multiple 
receptors and enzymes; thereby, the whole metabolic 
processes in fibrotic lungs are demanded. Considering 
that lipoproteins are primarily produced by extrapul-
monary tissues, such as the liver and the intestine, the 
contribution of these organs to PF, and the regulatory 
network between lung and extrapulmonary tissues are 
needed to investigate further.

Strengths and limitations
The reconstructed lipid metabolite profiles in ECs, AT2 
cells, macrophages, and fibroblasts contribute to col-
lagen deposition and the lung architecture remodeling 
observed in PF through various mechanisms. Single-
cell RNA-sequencing reanalysis helps to further clarify 
cell type-specific metabolism changes in PF. Moreover, 
uncovering the function of the metabolite-metabolic 
gene axis in specific cell types is useful for explaining the 
dysfunction of these cells and, eventually fibrosis. We 
suggest that abnormal lipid metabolism may be a strong 

Table 6 DEGs of lipid droplet metabolism in PF cells

Cell Type AT2 Fibroblast Macrophage Endothelium

Significance Fold Change P value Fold Change P value Fold Change P value Fold Change P value

GPAT3 −0.72 3.40
E-04

/ / −0.57
(IM)

1.01
E-06

−0.40 5.89
E-21

−1.15 (AM) 3.20
E-03

AGPAT4 0.79 2.46
E-02

/ / 0.31
(IM)

2.47
E-10

/ /

AGPAT5 / / / / / / 0.80 5.41
E-09

AGPAT3 0.47 3.33
E-09

/ / −0.35
(AM)

1.50
E-06

/ /

AGPAT1 0.73 2.91
E-12

/ / / / / /

AGPAT2 −0.35 8.81
E-49

/ / / / / /

PNPLA2 −0.25 9.30
E-09

/ / −0.40 (IM) 1.92
E-03

/ /

− 0.35
(AM)

4.01
E-07

LPIN2 / / / / −0.50
(AM)

3.34
E-31

/ /

LPIN3 1.29 8.21
E-16

/ / / / / /

MGLL / / / / −0.46
(AM)

3.33
E-15

1.07 5.22
E-40

PLIN2 / / −0.37
(FB)

2.43
E-03

−0.40
(IM)

0.00
E+ 00

/ /

−0.36
(AM)

0.00
E+ 00

PLIN5 / / / / −0.49
(IM)

1.13
E-05

/ /

−1.65
(AM)

3.63
E-02

DGAT1 0.84 5.96
E-20

/ / −0.34
(IM)

1.01
E-19

/ /

DGAT2 −1.10 2.05E-10 / / −1.32
(IM)

4.56
E-80

/ /

−1.75
(AM)

4.05
E-73
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risk factor for PF. When individuals are exposed to any 
external or internal stimulus, these lipid metabolism dis-
orders may exacerbate the process of PF.

Single-cell metabolomics can more accurately reflect 
the level of single-cell metabolism in PF than transcrip-
tomics or proteomics. However, at present, only single-
cell transcriptomics is being studied in PF research, and 
there is no single-cell proteome or single-cell metabo-
lome. In addition, many metabolic gene changes at the 
cellular transcriptional level align well with the metabo-
lomic results of PF tissues or blood, suggesting that the 
single-cell transcriptome is powerful in revealing metab-
olism. In many other areas of disease research, single-
cell transcription is also used to summarise single-cell 
metabolism [122–124]. In conclusion, single-cell tran-
scription can reflect, at least in part, the level of single-
cell metabolism. Changes in lipid metabolism in other 
cell types also need to be investigated, in particular, bron-
chioalveolar stem cells (BASCs) located at the junction 
of bronchioalveolar [125]. Depending on the location of 
the injury, BASCs can differentiate unidirectionally into 
airway epithelial cells or alveolar epithelial cells, play-
ing a role in lung regeneration and the management of 
PF [126, 127]. Moreover, lipid metabolism has an impact 

on stem cell function through the induction of fatty acid 
oxidation [128, 129]. Therefore, understanding the regu-
latory network of metabolic programs in BASCs is nec-
essary to clinically restore tissue homeostasis post-injury 
by manipulating the regenerative machinery.

Conclusion
This review summarizes the various lipid species’ metab-
olite changes and reanalyzes their corresponding lipid 
metabolomic genes at the single-cell level found in PF. It 
sheds light on the pathogenesis of PF from the perspec-
tive of abnormal lipid metabolism and identifies potential 
targets. Consistently, recent articles have also demon-
strated that the important role of metabolism in pulmo-
nary fibrosis from the genomic data, pathogenesis data 
and reports of pulmonary fibrosi s[130–138]. Abnor-
mal lipid metabolism is strongly associated with FVC%, 
DLCO%, disease severity, progression and survival in PF 
[16, 34, 56, 139]. It seems that PF can also be viewed as 
a disease due to abnormal lipid metabolism induced by 
risk exposures. In patient care, it is imperative to assess 
both undernutrition and overnutrition in PF patients 
[140]. The wide spectrum of disrupted lipid metabo-
lism in PF necessitates a precise approach that considers 

Fig. 5 Regulation of FA Metabolism Pathways. ACLY utilizes cytoplasmic citrate to produce cytosolic acetyl-CoA, which is then used as a substrate 
by ACC to produce malonyl-CoA. FASN could convert acetyl-CoA and malonyl-CoA into long-chain saturated fatty acids for palmitate synthesis. 
SCD plays a critical role in the synthesis of unsaturated FAs, particularly oleic acid. The ELOVLs are involved in fatty acid elongation. In FA 
catabolism, acyl-CoA synthetases (ACSLs) first degrade long-chain FAs (LCFAs) to fatty acyl-CoA esters. Subsequently, mitochondrial carnitine 
palmitoyltransferases (CPT1/II), in conjunction with a carnitine-acylcarnitine translocase, induce the oxidation of LCFAs, which are ultimately broken 
down to acetyl-CoA via the β-oxidation pathway in the mitochondria
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interventions specific to cell types, disease stages, and 
nutrient cycling. Collectively, these results highlight the 
clinical relevance of metabolic expression and provide an 
informative metric for the care of patients.

Datasets reanalysis and statistical analysis
Public scRNA-seq datasets reanalyzed in this study can 
be found on GEO using accession numbers GSE135893 
and GSE136831. According to the cell numbers, data 
in endothelial and AT2 cells were derived from dataset 
GSE135893, and data in fibroblasts and macrophages 
were derived from GSE136831. For normally distributed 
parameters, the independent sample t-test was employed 
in cases of homogenous variance; if not, the non-para-
metric Mann-Whitney test was utilized. A P value of less 
than 0.05 was considered statistically significant. Except 
for the DEGs related to lipid metabolism, other DEGs 
were listed in Supplemental Table 1.
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