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HYPOTHESIS

Is cholesterol both the lock and key 
to abnormal transmembrane signals in Autism 
Spectrum Disorder?
Clifford Lingwood1,2* 

Abstract 

Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmem-
brane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cho-
lesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) 
of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using 
a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.

A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide 
both the afferent and efferent ‘tumblers’ across the membrane to allow ‘lock and key’ receptor transmembrane signals.

Keywords ERAD cholesterol control, Raft lock and key signaling model

Introduction
Transmembrane signalling is key to cellular homeostasis 
but is, in particular, the central feature of neurotransmis-
sion. The concept of lipid rafts as more ordered, choles-
terol enriched microdomains within plasma membranes, 
first proposed by Simons [1, 2], has put lipid organiza-
tion at the forefront of membrane biology. While the 
heterogeneity and dynamics of cellular rafts remain con-
troversial in part, it is clear that cholesterol, which dis-
tinguishes eukaryotic membranes, impinges all aspects 
of membrane signalling. The brain makes its own cho-
lesterol and has the highest tissue content (-25% of the 
total), mostly in myelin. Cholesterol rafts play an impor-
tant role in neurotransmission and brain diseases. This is 

most clear in autism where the disparate risks, including 
mTOR signaling, may residue under this umbrella.

Lipid raft composition
Membrane proteins are either associated with or disso-
ciated from, lipid rafts [3]. Membrane proteins are less 
fluid in raft than non-raft membranes [4]. Lipid mem-
brane anchors [5, 6] hydrophobic matching [7] and pro-
tein/protein interactions [8] effect protein partitioning 
into lipid raft. It is expected that signaling pathways 
directly involving membrane raft lipids [9, 10] would be 
more prone to a raft dependent mechanism of transduc-
tion (as proposed in Fig. 1). Cholesterol, responsible for 
their increased order (Lo phase [11], or rigidity) is pref-
erentially found in the outer exoplasmic PM leaflet, but 
lipid rafts and (lower levels of ) cholesterol are also found 
in the cytosolic membrane leaflet [12–14], although 
the cytoplasmic species are more unsaturated and less 
ordered [15]. These opposing leaflet domains may inter-
act in a regulatory manner [16, 17].

The phospholipid species of the exoplasmic and cyto-
plasmic plasma membrane leaflets are distinct [15]. PC 
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and sphingomyelin are the primary exoplasmic species, 
while PS and PE are restricted to the cytoplasmic leaf-
let. Sub-species of PE can interact with cholesterol to 
form ordered domains [18]. This phospholipid asym-
metry, maintained by ABC transporters [19–21], which 
are in turn, regulated by lipid rafts [22], is one of the 
first casualties of apoptosis [23].

The planar hydrophobic surface of cholesterol pro-
motes an association with long chain hydrophobic spe-
cies, particularly GSLs with saturated acyl moieties 
[24]. The wide array of lipid moieties contained within 
GSLs regulates their membrane [25] and raft distribu-
tion [26, 27]. The interaction of cholesterol can affect 
the surface conformation of the carbohydrate of GSLs 
from a membrane perpendicular to membrane parallel 
format [28]. This can restrict the access to exogenous 
GSL binding ligands [29]. Depletion of cholesterol can 
greatly increase the membrane binding of such ligands 
[30]. In addition, the membrane parallel conformation 
of GSL carbohydrate can have an ‘umbrella’ effect and 
mask the hydrophilic(OH) surface of membrane cho-
lesterol [28]. Ligand binding to membrane perpendic-
ular GSL would alter the equilibrium between parallel 
and perpendicular GSL carbohydrate and could thus 
promote cholesterol access by reducing the umbrella 
effect. This in effect, represents a biological transistor. 
The regulation of membrane receptor clustering after 

ligand binding, via cholesterol enriched rafts is well 
studied [31, 32].

Membrane cholesterol enriched lipid rafts are required 
for neurological pathways with deficits associated 
with ASD
Liquid ordered lipid rafts are central to transmem-
brane signaling in cells [2, 33]. Cholesterol enrichment 
is the key membrane ordering component in lipid rafts 
[34, 35]—more rigid heterogeneous domains [36] in 
the plasma membrane [8] which can recruit, and are 
required by many transmembrane signaling molecules 
[37–40]. This includes the mTOR signaling pathway asso-
ciated with ASD [41, 42], a pathway dependent on both 
cholesterol [43, 44] and lipid rafts [45], the primary focus 
of this compendium.

Many studies have implicated low cholesterol (espe-
cially ‘good’ cholesterol [46]) as an important factor in 
ASD [47–52]. Dietary cholesterol supplementation can 
provide an ASD therapeutic approach [53, 54]. Many 
diverse genetic factors have been described as risk factors 
for ASD, [55–62] which has made defining a common 
mechanism difficult. A disturbance in the cholesterol 
composition of plasma membrane lipid rafts however, 
could have a pleiotropic effect on neurological signaling 
pathways, linking otherwise unrelated signal transduc-
tion pathways. Recently it has been proposed that that 

Fig. 1 Receptor-ligand: lock-key. Membrane receptor species within lipid rafts may effect transmembrane signaling following ligand binding, 
via lateral raft-mediated modulation of their membrane environment. Rotation for example, may impact adjacent exoplasmic domains to provide 
a code for transmembrane domain interactions and subsequent cytosolic signal propagation
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Clostridial metabolites, which primarily inhibit choles-
terol biosynthesis, are the primary cause of ASD [63]. 
Aberrant cholesterol metabolism may predict sensory 
ASD deficiencies [64]. Protein condensates/phase sepa-
ration have been implicated as an additional basis for 
autism [65, 66] and cholesterol can modulate such con-
densates [67]. Coupling such condensates to lipid ordered 
membrane domains can define their function [68].

Cholesterol is important in nerve signal transduction 
[69] and neuronal survival [70]. Cholesterol dependent 
lipid rafts and receptor protein clustering (densification) 
[32] are central regulatory components of transmem-
brane signalling [4], transmembrane signalling is key to 
nerve synapse function [71] /neurotrophic receptor traf-
fic [72] and synapse function can be defective in ASD 
[73]. This association has been the subject of excellent 
review [48, 51, 52].

The mechanism by which low cholesterol could 
impinge on ASD synaptic and neurotransmission defi-
ciency could be pleiotropic, since many of the ASD asso-
ciated genes involve cholesterol raft dependent signal 
transduction/trafficking pathways [49]. Recent studies 
have further emphasized this linkage. Lipid rafts play key 
roles in synapse plasticity [74, 75] and have been impli-
cated with an increasing number of signal pathways 
genetically associated with ASD: mTOR [76, 77], dopa-
mine transport [78, 79], contactin-associated protein-
like 2 synapse protein [80], acetyl choline receptor [81] 
gamma amino butyric acid receptor [82] and glutamate 
synapses [75, 83–85] and downstream cytosolic reor-
ganization [86]. Nerve membrane receptor clustering is 
required for synapse function [87]. PCSK9, a regulator of 
lipoprotein/cholesterol homeostasis and neuronal devel-
opment/apoptosis [88] has been identified as an ASD risk 
[89]. Modulation of the lipid raft cholesterol composition 
is central in Fragile X patients [90] and the rat [91] and 
mouse model of this ASD [92] and correcting cholesterol 
levels in part, corrects these differences [92].  Defective 
neural cholesterol homeostasis is associated with ASD 
[93].

In addition, cholesterol binding proteins -containing 
the binding CARC sequence motif [94] found largely 
in proteins within the exoplasmic membrane leaflet, 
can mediate interaction with inner membrane proteins 
containing the mirror CRAC sequence [95], to further 
amplify the role of cholesterol in transbilayer interactions 
[96, 97]. Such interactions could similarly be modified by 
aberrant cholesterol levels.

Statins and ASD
High cholesterol is associated with coronary problems 
and oral administration of statins (inhibitors of HMG-
CoA reductase) is the standard clinical therapeutic 

stratagem. (These drugs also inhibit protein prenylation 
since the isoprenoid structures added post-translationally 
are derived from the same mevalonate pathway [98, 99]). 
Although the goal, is not to reduce cholesterol below 
normal and therapeutic efficacy may be limited [100], it 
is of relevance to consider whether statins have any cho-
lesterol mediated effect on ASD (and other neurological 
disorders [101]). Moreover, aberrant cholesterol’s asso-
ciation with ASD could include higher levels (as in Rett 
syndrome [102]) which could also disturb raft dependent 
signaling. Statin inhibition of cholesterol synthesis can 
promote axon regeneration [103]. Significantly, statins 
affect mTOR signalling [43], strongly associated with 
ASD [42]. Lovastatin treatment of Fragile X rats [104] or 
Rett syndrome mice [105] prevented cognitive defects. 
In a double blind randomized, placebo controlled clini-
cal trial in ASD children, simvastatin was found to have 
a significant beneficial effect monitored by physiological 
behavioural parameters [106]. In children with neurofi-
bromatosis, a monogenic model for autism, simvastatin 
also effected brain areas associated with this pathology 
and showed improved behavioural response in 25% of 
patients [107]. Drug screening in a drosophila neurofi-
bromatosis model, identified simvastatin as a potential 
treatment [108], but lovastatin, and not the more apo-
lar simvastatin is effective in the mouse Fragile X model 
[109]. The mechanistic basis of these results is however, 
complicated by the dual action of statins on cholesterol 
and prenylation. Nevertheless prenylation can affect pro-
tein-lipid raft partitioning [5, 110] so the effects of reduc-
ing cholesterol and prenylation could be related.

Cholesterol homeostasis
The cellular control of cholesterol biosynthesis is com-
plex, largely defined by a cholesterol sensing mechanism 
in the endoplasmic reticulum(ER). When cholesterol 
is low, the ER located transcription factor SREBP(sterol 
regulatory element binding protein) [111], regulating 
the transcription of genes required for cholesterol bio-
synthesis, is transported to the Golgi by SCAP(SREBP 
cleavage activating protein) [112] for activation by pro-
teolytic cleavage and SREBP then transits to the nucleus 
to activate the cholesterol biosynthetic genes. Thus, low 
ER cholesterol stimulates cholesterol levels via gene 
transcription.

An additional ER cholesterol regulated pathway 
down regulates cholesterol levels by a post translational 
mechanism. In the cholesterol biosynthetic pathway, 
the enzyme, 3-hydroxy-3-methylglutaryl coenzyme 
A (HMG-CoA) reductase is rate limiting, and one of 
the additional ways this enzyme levels are regulated is 
by an unusual process, that of endoplasmic reticulum 
associated degradation (ERAD). ERAD is the normal 
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cellular quality control mechanism, eliminating nascent 
misfolded proteins during ER traffic via a chaperone 
mediated protein unfolding [113], and subsequent transit 
through the ER translocon (dislocon [114]) to the cytosol 
for proteosomal degradation, ensuring the dissemination 
of only correctly 3D folded protein. In a few cases how-
ever, the correctly folded protein is also subject to ERAD 
as a means of control, for example CFTR [115, 116] and 
HMG-CoA reductase [117]. In terms of HMG-CoA 
reductase, this pathway is activated via low ER sterol-
induced binding to Insig, [118, 119], ubiquitinylation by 
associated ligases [118–121], to initiate HMGCoA reduc-
tase unfolding and ER translocon transit to the cytosolic 
proteosome for degradation, reducing its cellular expres-
sion and thereby, cholesterol biosynthesis [117]. Many 
ER stress protein mutations are related to ASD [122] 
which might also impinge such ER regulated cholesterol 
metabolism.

Novel ERAD‑based means to address hypocholesterolemia
The ERAD pathway is hijacked by many microbial patho-
gens since it provides a means to access the cell cytosol 
from the lumen of the ER/Golgi endomembrane system 
[123]. These include several viruses [124, 125] and chol-
era and Shiga toxins [126–128]. These toxins enter the 
endomembrane system by means of their carbohydrate 
(glycolipid) pentameric B subunit cell surface receptor 
binding which initiates internalization and retrograde 
transport to the ER [129]. Here the B subunits separate 
from the catalytic A subunit. The A subunit contains an 
N-terminal peptide sequence that mimics an unfolded 
(misfolded) protein [130], which recruits the ERAD 
machinery to transmit the A subunit from the ER to the 
cytosol via the translocon [131], and by avoiding the pro-
teasome, to refold and access its cytosolic target protein 
(adenylate cyclase for cholera toxin and ribosomal RNA 
for Shiga toxin). Because of this, cholera toxin has been 
often used as a tool to probe the mechanisms of ERAD 
[132–134].

Since the dimensions of the ER translocon accommo-
date only one protein at a time, we have used this toxin/
ERAD hijack as a means to exogenously regulate ERAD 
[135]. Many genetic diseases are exacerbated by ERAD, 
in that gene mutations that do not completely inactivate 
protein function, nevertheless induce minor protein mis-
folding, and thence ERAD elimination to cause/exacer-
bate insufficiency disease symptoms [136]. Such genetic 
diseases include cystic fibrosis, Gauchers Disease, Tay 
Sachs Disease, Fabry Disease and many more [137]. By 
mutational inactivation of the toxin A subunit, we gen-
erated a benign tool (e.g. mutant cholera toxin- mCT 
in which the A subunit catalytic activity is removed and 
does not induce a stress response [138]). This can block 

(occupy/compete for) the ERAD translocon and thereby 
allow such partially misfolded but functional nascent 
mutant proteins (e.g. deltaF508CFTR chloride trans-
porter in cystic fibrosis, N370S glucocerebrosidase in 
Gaucher) to escape degradation and function to amelio-
rate deficiency disease symptoms. This system works in 
cell disease models [135] and mCT is highly effective in a 
mouse model of CF(delta F508CFTR) to normalize chlo-
ride-dependent saliva production [up to > 2 × normal] 
([139], a standard index of CFTR function. mCT (rather 
than other subunit toxins) is the preferred ERAD block-
ade since the cholera toxin receptor, GM1 ganglioside is 
expressed on virtually all mammalian cells.

Since normal cholesterol biosynthesis is regulated 
in part, by ERAD of HMGCoA-reductase, our mCT 
ERAD blockade approach [135] also offers a potential 
benign, titratable means to temporarily reduce HMG-
CoA reductase degradation to increase cholesterol bio-
synthesis during hypocholesterolemia. Indeed, blockade 
of HMGCoA-reductase ERAD has already been shown 
to increase cholesterol [121]. Furthermore, cholera 
toxin is able to transit the blood brain barrier [140, 141] 
and could therefore also modulate neural cholesterol 
metabolism.

Lock and Key receptor binding‑ only half the mechanism
The concept that protein ligands bind to their mem-
brane receptors by a lock and key molecular complemen-
tary mechanism, is well entrenched [142] and validated 
in molecular biochemistry [143] particularly enzyme 
mechanisms [144]. However, this is only (less than?) half 
the living picture. Lock and key essentially only provides 
insight into the control of ligand/ receptor binding. Such 
membrane receptors are often recruited to lipid rafts 
which is essential to their subsequent signal function 
[145, 146]. The question of how a signal is transmitted is 
not addressed. The concept of a conformational change 
is handwaving. Why do downstream transmembrane 
enzymes etc. become activated, cluster, change? The 
rest of the lock needs to be considered: the tumblers and 
escape mechanism.

The eukaryotic membrane is amazingly complex, par-
ticularly in its lipid content [15, 147]. Why are so many 
long chain isoforms made? Cholesterol distinguishes 
eukaryotes and lipid rafts have revolutionized the way 
we consider transmembrane signaling. Rafts are more 
rigid domains in the outer leaflet of the plasma mem-
brane, primarily as a result of their increased cholesterol 
content [148]. Glycosphingolipids (GSLs) are also key 
components and the binding of cholera toxin to its gly-
cosphingolipid receptor, GM1 ganglioside, has long been 
used as a cytochemical marker of lipid rafts [129, 149].
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Lipid rafts are heterogeneous [36] but generate a 
platform which could provide the ‘tumblers’ which 
determine on or off, cluster or separate, associate or 
disassociate. What if any, is the rotatory component? 
Although it took man to invent the wheel, molecu-
lar rotation is well described in the mitochondrial and 
other ATPases as the proton pump mechanism to gen-
erate ATP [150] and hence life. However, molecular 
rotation as a control mechanism in transmembrane sig-
nalling has not been considered. When the key opens 
the lock, are there tumblers? do the tumblers turn? 
Which way? How far? With whom? In what plane? Is 
it energy dependent? What are they? A plausible sce-
nario is shown in Fig. 1. Here we propose lipid rafts are 
the tumblers. The lipid raft ordered domains are con-
sidered cogs (delimited by line tension [151]) on either 
side of the plasma membrane [11] which can rotate 
around the ligand/receptor complex. In this model, 
ligand membrane receptor binding engages the afore-
mentioned tumblers for transmembrane coordination 
of these cogs. In the lock and key schematic (right), 
the proximal tumbler (red) is the exoplasmic PM raft 
in which the receptor is embedded, while the distal 
is a cytosolic leaflet lipid raft(blue). The ligand bind-
ing mediated coordination of these interplanar rafts 
induces/amplifies signaling. The species within lipid 
rafts have restricted translational(lateral) freedom [152, 
153] which would aid cohesive rotary lipid raft tumbler 
signal transmission. The interlocking of exoplasmic 
and cytoplasmic lipid rafts could be further regulated 
via additional lateral raft association in the upper or 
lower bilayer leaflet (Fig.  1). Such lateral raft interac-
tions can serve to recruit the additional downstream 
components of the signaling pathway. Transmembrane 
protein receptors could function as the lock to medi-
ate these interplanar raft interactions, while aligning 
lipid interdigitation [154] could prove a mechanism 
for peripheral membrane protein raft receptors, GPI 
anchored proteins [155], or indeed, the interdigitation 
of raft lipids themselves [10, 154, 156]. Very long chain 
fatty acid synthesis is considered to facilitate interleaf-
let lipid interdigitation [157, 158]. The synthesis of such 
fatty acids has recently been found to be essential in 
neuronal growth cone lipid rafts and cell polarity [159]. 
The raft cholesterol content is different between exo-
plasmic and cytoplasmic membrane lipid rafts [160] 
and will play a marked role in their “tumbler” function, 
affected by sterol deficiency (or excess).

To extend the lock and key simile, the cell could be con-
sidered as a “safe” with an extremely complex but interre-
lated membrane “combination”. Cholesterol provides the 
blueprint for the lipid raft tumblers to enable the various 
“keys” to access this safe.

Conclusions
Membrane order is an important player in transmem-
brane signalling and cholesterol plays a large part in 
determining membrane order via the dynamic forma-
tion of lipid rafts. These rafts can communicate from 
one membrane side to the other, and this linkage can 
mediate ligand-membrane receptor binding dependent 
signal transduction. The defects in cholesterol homeo-
stasis in ASD (and other neurological diseases) suggests 
this role is particularly important  in neural physiology 
and networks, and increasing cholesterol provides a 
target for intervention. We suggest a novel mechanism 
to achieve this increase and propose an addition to the 
‘lock and key ‘concept for membrane receptor binding 
in which cholesterol lipid rafts provide the tumblers to 
allow and discriminate signals across the membrane.
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