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Abstract
Background Observational studies have suggested an association between birth weight and type 2 diabetes 
mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship 
between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors.

Methods Two-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic 
instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth 
weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) 
method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian 
randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to 
assess the robustness.

Results The IVW method showed that lower birth weight raised the risk of T2DM (β: −1.113, 95% CI: −1.573 ∼ 
−0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on 
T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), 
ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and 
ratio of linoleic acid to total fatty acids ratio (6.0%).

Conclusions Our findings supported a potentially causal effect of birth weight against T2DM with considerable 
mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden 
of T2DM attributable to low birth weight.
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Introduction
Type 2 diabetes mellitus (T2DM) is a clinical syndrome 
primarily characterized by a disturbance in glucose 
metabolism, which comprises a significant burden for 
public health. According to a recent systematic analysis, 
the global age-standardised prevalence of T2DM was 
5.9% (95% uncertainty interval [UI] 5.5–6.3) in 2021. By 
2050, the rate is estimated to reach 9.5% (9.0-9.9), affect-
ing more than 1.27 billion (1.19–1.35) people [1]. T2DM 
is the result of a complex interaction between genetic and 
environmental factors, including dietary intake. Identi-
fication of potential pathogenic risk factors would help 
guide the prevention of the disease.

The fetal development in utero contributes to suscepti-
bility to T2DM, as suggested by the Developmental Ori-
gin of Health and Disease (DOHaD) theory. This theory 
proposes that major risk factors for many adult diseases 
are established during fertilization, embryonic, fetal, 
and neonatal stages [2]. Previous studies have indicated 
that low birth weight is associated with an increased 
risk of T2DM compared to normal birth weight [3–5]. 
However, the mechanisms underlying the relationship 
between birth weight and T2DM remain unclear. Xiao-
qiong Zhu et al. [6] demonstrated that fatty acids are risk 
factors for T2DM. Researchers have reported that fatty 
acids can regulate gene expression by altering epigenetic 

mechanisms, leading to either positive or negative out-
comes [7, 8]. Based on these facts, we hypothesize that 
birth weight has a causal relationship with T2DM and 
glycemic quantitative traits (such as fasting glucose, 
fasting insulin, HbA1c, and two-hour glucose) through 
mediating factors (fatty acids traits) (Fig. 1).

Mendelian randomization (MR) is an epidemiological 
method that uses genetic variants as instrumental vari-
ables (IVs) to investigate the causal effects of exposures 
on disease outcomes [9, 10]. MR is less susceptible to 
confounding, measurement errors, and reverse causation 
compared to observational epidemiologic studies because 
genetic variants are randomly assigned at conception. 
These strengths also apply to mediation analysis. Previ-
ous MR studies suggested a potential causal relationship 
between birth weight and T2DM. However, these stud-
ies did not assess the potential mediators [11–13]. There-
fore, we conducted an MR analysis to assess the impact of 
birth weight on T2DM and quantify the role of fatty acids 
traits as mediators.

Methods
Study design
We reported the MR study in adherence to the Strength-
ening the Reporting of Observational Studies in Epidemi-
ology using Mendelian Randomization (STROBE-MR). 

Fig. 1 Classification of fatty acids. Abbreviations: AA, arachidonic acid; DHA, docosahexaenoic acid; DTA, docosatetraenoic acid; EDA, eicosadienoic acid; 
GLA, gamma-linolenic acid; LA, linoleic acid; MUFA, monounsaturated fatty acid; Omega-3 FA, omega-3 fatty acid; Omega-6 FA, omega-6 fatty acid; PUFA, 
polyunsaturated fatty acid; SFA, saturated fatty acid; TFA, total fatty acid; UFA, unsaturated fatty acid
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In MR analysis, we extracted single nucleotide polymor-
phisms (SNPs) from the GWAS database as genetic IVs 
to clarify the causal association between risk factors and 
outcomes. MR analysis can yield valid causal estimates if 
the following assumptions are met: [1] the IVs must be 
significantly closely related to exposures; [2] the IVs must 
be free of confounders; and [3] the IVs must be unrelated 
to the outcomes and only affect the outcomes through 
the exposure (Fig. S1). Two-sample MR analyses were 
first performed to assess the associations between birth 
weight and T2DM, and two-step MR analysis was then 
performed to investigate the mediating effects of fatty 
acids traits on these associations (Fig. 2).

Ethics committee approval and participant informed 
consent were obtained in the original studies.

Data sources
SNPs associated with birth weight were obtained from 
UK Biobank, which contained 261,932 participants. 
For each birth weight instrument, the genetic effect of 
the corresponding SNP on T2DM was obtained from a 
GWAS study with a total of 298,957 Europeans (48,286 
diabetes cases and 250,671 controls) [14]. Glycemic quan-
titative traits (fasting glucose, fasting insulin, HbA1c, and 
two-hour glucose) were also collected as secondary out-
comes. Finally, the summary statistics for intermediate 
phenotypes (fatty acids) were selected.

Fig. 2 Overview of the MR study design. Abbreviations A-FABP, fatty acid-binding protein, adipocyte levels; bisallylic groups/TFA ratio, ratio of bisallylic 
groups to total fatty acids; DHA, docosahexaenoic acid levels; DHA/TFA ratio, ratio of docosahexaenoic acid to total fatty acid levels; LA, linoleic acid levels; 
LA/TFA ratio, ratio of linoleic acid to total fatty acids; MUFA, monounsaturated fatty acid levels; MUFA/TFA ratio, ratio of monounsaturated fatty acids to 
total fatty acids; Omega-3 FA, omega-3 fatty acid levels; Omega-3/TFA ratio, ratio of omega-3 fatty acids to total fatty acids; Omega-6 FA, omega-6 fatty 
acid levels; Omega-6/Omega-3 FA ratio, ratio of omega-6 fatty acids to omega-3 fatty acids; Omega-6/TFA ratio, ratio of omega-6 fatty acids to total fatty 
acids; PUFA, polyunsaturated fatty acid levels; PUFA/MUFA ratio, ratio of polyunsaturated fatty acids to monounsaturated fatty acids; PUFA/TFA ratio, ratio 
of polyunsaturated fatty acids to total fatty acids; SFA, saturated fatty acid levels; SFA/TFA ratio, ratio of saturated fatty acids to total fatty acids; TFA, total 
fatty acid levels
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All the GWAS summary data applied in the present 
analysis can be obtained from the IEU open GWAS proj-
ect (https://gwas.mrcieu.ac.uk/). The above GWAS data 
are from the European origin population, and their infor-
mation is shown in Table 1.

Instrumental variable selection and data harmonization
For all analyses, genetic instruments with 
p-value < 5 × 10− 8 were defined as SNPs. In addition, we 
selected independent SNPs according to the removal 
of linkage disequilibrium (LD, R2 > 0.001 and within 
10,000 kb). We calculated the F-statistic to quantify the 
strength of associations between genetic IVs and expo-
sure, and discarded those with an F statistic < 10. The 
F statistic was calculated using the following formula: 
F = R2 (N − K − 1)/(K (1 − R2). R2 was calculated using the 
formula R2 = (2 × EAF × (1 − EAF) × β2)/[(2 × EAF × 
(1 − EAF) × β2) + (2 × EAF × (1 − EAF) × N × SE2)], where 
R2, N, EAF, β, SE, and K refer to the cumulative explained 
variance of selected SNPs in the exposure, the sample 
size, the effect allele frequency, the estimated effect on 

the exposure, the standard error of the estimated effect, 
and the number of IVs, respectively.

MR analyses and mediation analysis
We used the inverse variance weighted (IVW) method as 
the principal MR analytical approach; due to its high sta-
tistical power when the selected IVs were valid [15]. The 
MR-Egger [16], weighted median method, simple mode, 
weighted mode, and robust adjusted profile score (RAPS) 
were used in the two-sample MR analyses as complemen-
tary approaches to obtain MR estimates.

Two-sample MR was conducted to estimate the overall 
effect of birth weight on diabetes (β0) and the effect of 
birth weight on each mediator (β1) using publicly avail-
able GWAS. We further carried out multivariable MR 
(MVMR) to assess the effect of each mediator on diabetes 
(β2), adjusting for birth weight.

The total effect of birth weight was decomposed into 
direct (not acting through the mediators) and indirect 
(acting through the mediators) effects. The indirect 
effect of each mediator was calculated by the product of 

Table 1 Summary of the GWAS data used in the MR analyses
GWAS ID Trait Year Population Sample Size Number of SNPs Author

Exposure ukb-b-13,378 Birth weight 2018 European 261,932 9,851,867 Ben Elsworth
Mediator ebi-a-GCST90092987 TFA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092980 SFA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092928 MUFA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092939 PUFA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092931 Omega-3 FA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092933 Omega-6 FA 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092816 DHA 2020 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092880 LA 2021 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90012075 A-FABP 2020 European 21,758 13,138,563 Lasse Folkersen
Mediator ebi-a-GCST90092981 SFA/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092929 MUFA/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092940 PUFA/MUFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092941 PUFA/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092932 Omega-3/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092934 Omega-6/Omega-3 FA Ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092935 Omega-6/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092817 DHA/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator ebi-a-GCST90092881 LA/TFA ratio 2022 European 115,006 11,590,399 Tom G Richardson
Mediator met-c-845 bisallylic groups/TFA ratio 2016 European 13,171 11,274,684 Johannes Kettunen
Outcome ebi-a-GCST007516 Type 2 diabetes (adjusted for BMI) 2018 European 298,957 190,208 Anubha Mahajan
Outcome ebi-a-GCST90002232 Fasting glucose 2021 European 200,622 31,008,728 Ji Chen
Outcome ebi-a-GCST90002238 Fasting insulin 2021 European 151,013 29,664,438 Ji Chen
Outcome ieu-b-4842 HbA1c 2022 European 45,734 9,696,819 Howe LJ
Outcome ebi-a-GCST90002227 Two-hour glucose 2021 European 63,396 27,330,879 Ji Chen
Abbreviations A-FABP, fatty acid-binding protein, adipocyte levels; bisallylic groups/TFA ratio, ratio of bisallylic groups to total fatty acids; DHA, docosahexaenoic 
acid levels; DHA/TFA ratio, ratio of docosahexaenoic acid to total fatty acid levels; GWAS, genome-wide association study; LA, linoleic acid levels; LA/TFA ratio, ratio 
of linoleic acid to total fatty acids; MUFA, monounsaturated fatty acid levels; MUFA/TFA ratio, ratio of monounsaturated fatty acids to total fatty acids; Omega-3 FA, 
omega-3 fatty acid levels; Omega-3/TFA ratio, ratio of omega-3 fatty acids to total fatty acids; Omega-6 FA, omega-6 fatty acid levels; Omega-6/Omega-3 FA ratio, 
ratio of omega-6 fatty acids to omega-3 fatty acids; Omega-6/TFA ratio, ratio of omega-6 fatty acids to total fatty acids; PUFA, polyunsaturated fatty acid levels; 
PUFA/MUFA ratio, ratio of polyunsaturated fatty acids to monounsaturated fatty acids; PUFA/TFA ratio, ratio of polyunsaturated fatty acids to total fatty acids; SFA, 
saturated fatty acid levels; SFA/TFA ratio, ratio of saturated fatty acids to total fatty acids; TFA, total fatty acid levels

https://gwas.mrcieu.ac.uk/
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coefficients method (β1*β2) [17]. And the direct effects 
were estimated by subtracting the indirect effect of birth 
weight from the total effect. Then we calculated the pro-
portion of the mediated as indirect effect divided by total 
effect. The 95% confidence intervals were calculated 
using the delta method.

Sensitivity analyses
To evaluate the robustness of the findings, several sen-
sitivity analyses were conducted. Firstly, the presence of 
heterogeneity was evaluated using Cochran’s Q statistic 
(MR-IVW) and Rucker’s Q statistic (MR Egger). Sec-
ondly, we used MR-Egger regression intercept test to 
assess the horizontal pleiotropy of valid IVs. Thirdly, the 
MR-PRESSO method detected and excluded for outliers, 
thereby eliminating detected pleiotropy. Finally, a leave-
one-out (LOO) sensitivity analysis was conducted by 
sequentially omitting one SNP at a time to evaluate the 
possibility of results being driven by a single SNP [18].

The adjusted p-value threshold was set to 0.05 using 
the Benjamini-Hochberg (BH) method [19]. All statistical 
analyses were conducted using the TwoSampleMR (ver-
sion 0.5.8, https://mrcieu.github.io/TwoSampleMR) and 
MRPRESSO (version 1.0) packages in R (version 4.2.2).

Results
Total effect of birth weight on T2DM and glycemic 
quantitative traits
We found strong evidence of a causal relationship 
between birth weight and T2DM. Figure 3a illustrates the 
overall effect of birth weight on T2DM, fasting glucose, 
fasting insulin, HbA1c, and two-hour glucose. The IVW 
method showed that lower birth weight was associated 
with a higher risk of T2DM (β: −1.113, 95% CI: −1.573 
∼ −0.652), higher fasting insulin (β: −0.080, −0.108 ∼ 
−0.052) and higher two-hour glucose (β: −0.250, −0.360 
∼ −0.140).

Horizontal pleiotropy was detected for fasting glu-
cose (ER intercept = 0.003; P = 0.028) and HbA1c (ER 
intercept = 0.008; P = 0.038). Potentially pleiotropic SNPs 
were excluded using MR-PRESSO. After removing 13 
outliers (rs7854962, rs76895963, rs74932341, rs351776, 
rs329121, rs2934844, rs28378473, rs2747503, rs2159778, 
rs1522811, rs13266210, rs11708067 and rs10769199), 
we found that a lower birth weight indicated higher fast-
ing glucose (β: −0.061, −0.091 ∼ −0.032), and no hori-
zontal pleiotropy was detected (ER intercept = 0.001; 
P = 0.384). However, ER still indicated significant plei-
otropy (ER intercept = 0.008; P = 0.048) for HbA1c after 
removing rs72790949, rs2551402, rs2395668, rs1776270, 
rs11222084(Table S14).

Effect of birth weight on fatty acids traits
Genetically predicted each 1-SD lower birth weight was 
associated with higher TFA (β: −0.101, −0.160 ∼ −0.042), 
SFA (β: −0.096, −0.151 ∼ −0.041) and MUFA (β: −0.117, 
−0.175 ∼ −0.058). Besides, IVW results also showed that 
genetically predicted each 1-SD decrease in birth weight 
was associated with lower PUFA/MUFA ratio (β: 0.107, 
0.056 ∼ 0.159), PUFA/TFA ratio (β: 0.095, 0.045 ∼ 0.145), 
Omega-6/TFA ratio (β: 0.106, 0.052 ∼ 0.160) and LA/TFA 
ratio (β: 0.082, 0.033 ∼ 0.132), but higher MUFA/TFA 
ratio (β: −0.109, −0.160 ∼ −0.057) (Fig. 4).

In addition, reverse MR suggested that there was no 
evidence for a causal effect of fatty acids traits on birth 
weight. (Table S12) The presence of heterogeneity and 
pleiotropic effect are shown in Table S14-16.

Effects of fatty acids traits on T2DM and glycemic 
quantitative traits
In MVMR, TFA (β: −0.839, 95% CI: −1.315 ∼ −0.364), 
SFA (β: −0.930, −1.404 ∼ −0.455), and MUFA (β: −0.864, 
−1.353 ∼ −0.375) were negatively associated with T2DM 
after adjusting for birth weight. Besides, lower MUFA/
TFA ratio (β: −0.852, −1.332 ∼ −0.372), PUFA/MUFA 
ratio (β: −0.819, −1.301 ∼ −0.336), PUFA/TFA ratio (β: 
−0.846, −1.344 ∼ −0.349), Omega-6/TFA ratio (β: −0.850, 
−1.349 ∼ −0.350), and LA/TFA ratio (β: −0.807, −1.319 
∼ −0.296) were in relation to an increased risk of T2DM 
after adjusting for birth weight (Fig. 5a).

Genetically determined each 1-SD higher fatty acids 
traits with adjustment for birth weight showed consis-
tently causal associations with fasting glucose, fasting 
insulin and two-hour glucose (Fig. 5b).

Mediation effects of fatty acids traits on T2DM and 
glycemic quantitative traits
For the causal effect of birth weight on T2DM, the 
percentage mediated by PUFA/MUFA ratio, PUFA/
TFA ratio, Omega-6/TFA ratio and LA/TFA ratio was 
7.9% (95%CI: 1.1%∼14.7%), 7.2% (0.8%∼13.7%), 8.1% 
(0.9%∼15.2%) and 6.0% (0.2%∼11.7%), respectively. The 
mediation effects of PUFA/MUFA ratio, PUFA/TFA 
ratio, Omega-6/TFA ratio and LA/TFA ratio on fast-
ing glucose, fasting insulin, and two-hour glucose were 
estimated to account for 7.6%∼13.9%. Table 2 shows the 
mediated effect of birth weight on T2DM, fasting glu-
cose, fasting insulin and two-hour glucose explained by 
each mediator separately.

Discussion
In this study, we conducted a series of two-sample MR 
and two-step MR analyses to assess the independent 
impact of birth weight on T2DM and glycemic quanti-
tative traits, identify potential metabolic mediators and 
quantify the mediation effects. Our findings provided 

https://mrcieu.github.io/TwoSampleMR
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Fig. 3 a Estimates of the causal effect of birth weight on T2DM using different MR methods. b Estimates of the causal effect of birth weight on fasting 
glucose, fasting insulin, HbA1c, and two-hour glucose using different MR methods. OR, odds ratio; CI, confidence interval
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robust evidence supporting the negative causal effect of 
birth weight on T2DM. Furthermore, the two-step MR 
analysis indicated that 4 of 17 candidate mediators were 
identified to partially mediate the causal effect of low 
birth weight on T2DM, including PUFA/MUFA ratio, 
PUFA/TFA ratio, Omega-6/TFA ratio, and LA/TFA ratio. 
These mediators also exhibited corresponding mediating 
effects on fasting glucose, fasting insulin, and two-hour 
glucose. Therefore, interventions targeted at these factors 
could potentially reduce the risk of T2DM among indi-
viduals with low birth weight.

T2DM is a significant societal burden [20, 21]. Our 
study indicated that a lower birth weight was associated 
with a higher risk of T2DM, fasting insulin, fasting glu-
cose, and two-hour glucose. A recent systematic review 
involving 152,084 individuals supported a negative cor-
relation between birth weight and T2DM [22]. How-
ever, Tamarra M. James-Todd’s study suggested that low 
birth weight did not significantly increase the risk of 
T2DM [23]. The increased incidence of impaired glucose 

tolerance and T2DM in adulthood with low birth weight 
can be explained from two perspectives. Firstly, from the 
genetic aspect, the fetal insulin hypothesis proposes that 
low birth weight and T2DM in adulthood are two phe-
notypes of the same gene. The loci that primarily affect 
pancreatic β-cell function, such as ADCY5 and CDKAL1, 
show the strongest associations between T2DM risk 
alleles and lower birth weight. Utilizing genome-wide 
data, common variants can explain 36% of the negative 
correlation between birth weight and T2DM. Secondly, 
we explained this result from the maternal impact. Dur-
ing pregnancy, the mother transmits relevant environ-
mental information (such as nutritional status) to the 
fetus through the placenta [24]. The Developmental 
Origins of Health and Disease (DOHaD) suggests that 
various adverse early-life conditions, including nutrition 
imbalance, maternal conditions or diseases, maternal 
chemical exposure, and medication use can lead to vul-
nerability to later metabolic disorders [25]. Lumey LH’s 
investigation found that individuals born in famine areas 

Fig. 4 MR estimates derived from the IVW method to assess the causal effect of birth weight on fatty acids traits. A-FABP, fatty acid-binding protein, 
adipocyte levels; bisallylic groups/TFA ratio, ratio of bisallylic groups to total fatty acids; CI, confidence interval; DHA, docosahexaenoic acid levels; DHA/
TFA ratio, ratio of docosahexaenoic acid to total fatty acid levels; LA, linoleic acid levels; LA/TFA ratio, ratio of linoleic acid to total fatty acids; MUFA, mono-
unsaturated fatty acid levels; MUFA/TFA ratio, ratio of monounsaturated fatty acids to total fatty acids; Omega-3 FA, omega-3 fatty acid levels; Omega-3/
TFA ratio, ratio of omega-3 fatty acids to total fatty acids; Omega-6 FA, omega-6 fatty acid levels; Omega-6/Omega-3 FA ratio, ratio of omega-6 fatty acids 
to omega-3 fatty acids; Omega-6/TFA ratio, ratio of omega-6 fatty acids to total fatty acids; PUFA, polyunsaturated fatty acid levels; PUFA/MUFA ratio, ratio 
of polyunsaturated fatty acids to monounsaturated fatty acids; PUFA/TFA ratio, ratio of polyunsaturated fatty acids to total fatty acids; SFA, saturated fatty 
acid levels; SFA/TFA ratio, ratio of saturated fatty acids to total fatty acids; TFA, total fatty acid levels
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Fig. 5 a MR estimates derived from the IVW method to assess the causal effect of fatty acids traits on T2DM after adjusting for birth weight. b MR esti-
mates derived from the IVW method to assess the causal effect of fatty acids traits on fasting glucose, fasting insulin and two-hour glucose after adjusting 
for birth weight. BW, birth weight; CI, confidence interval; LA/TFA ratio, ratio of linoleic acid to total fatty acids; MUFA, monounsaturated fatty acid levels; 
MUFA/TFA ratio, ratio of monounsaturated fatty acids to total fatty acids; Omega-6/TFA ratio, ratio of omega-6 fatty acids to total fatty acids; OR, odds ratio; 
PUFA/MUFA ratio, ratio of polyunsaturated fatty acids to monounsaturated fatty acids; PUFA/TFA ratio, ratio of polyunsaturated fatty acids to total fatty 
acids; SFA, saturated fatty acid levels; TFA, total fatty acid levels
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in Ukraine exhibited decreased glucose tolerance about 
50 years later [26]. Additionally, low birth weight reflects 
poor intrauterine nutritional status, which could lead to 
alterations in pancreatic β-cell structure and function 
[27], skeletal muscle abnormalities [28], and hypothal-
amus-pituitary-adrenal axis dysfunction [29], further 
influencing the occurrence of T2DM.

Infants with low birth weight often experience catch-
up growth under nutrient sufficient conditions [30]. Due 
to parental concerns, they tend to consume more fatty 
acids, including TFA, SFA, MUFA, PUFA, Omega-3 
FA, and Omega-6 FA. However, we observed a decrease 
in the ratios of PUFA/MUFA, PUFA/TFA, Omega-6/
TFA, and LA/TFA, which could be associated with fac-
tors such as the types of fatty acids consumed and meta-
bolic processes. When exposed to a metabolic challenge 
of high-fat overfeeding, low birth weight subjects could 
lead to peripheral insulin resistance and T2DM, possibly 
associated with decreased expression of OXPHOS genes 
and mitochondrial dysfunction [31, 32]. Furthermore, a 
mouse experiment suggested that catch-up growth in 
fetuses leads to severe impairment of insulin sensitivity 
[33].

TFA includes SFA and UFA. High SFA content in diets 
could adversely affect insulin sensitivity, potentially lead-
ing to the development of T2DM [34]. The potential 
mechanism involves the loss of β-cell fat storage-induc-
ing transmembrane protein 2 (FIT2) and lipid drop-
let (LD), leading to β cell dysfunction and subsequently 
causing T2DM [35]. The role of SFA in T2DM remains 
controversial, with some studies indicating no association 
[36–38]. The lack of correlation between SFA and T2DM 
is due to the varying effects of SFA from different food 

sources. Consuming red meat, which is a primary source 
of SFA in the European and American diet, is associated 
with a higher risk of T2DM [39]. In contrast, a negative 
correlation is observed between the consumption of 
SFA and T2DM when dairy products, low-fat dairy, and 
cheese are the primary SFA sources [40].

UFA encompasses MUFA and PUFA. The substitu-
tion of carbohydrates with MUFA correlates with an 
increased T2DM (HR 1.10, [95% CI 1.01, 1.19]) [41]. 
Oleic acid, the most abundant MUFA, is implicated in 
lipotoxicity of pancreatic β-cells, thereby promoting the 
progression of T2DM. Islets exposed to oleic acid elevate 
the expression of PPI, PDX-1, and GLUT2, potentially 
contributing to increased basal insulin secretion [42]. 
Additionally, excessive oleic acid intake induces DNA 
methylation, which most likely accounts for the decrease 
of glucose-stimulated insulin secretion (GSIS) [43].

Our study indicated a negative correlation between 
PUFA/SFA and PUFA/MUFA ratios with T2DM. A 
study exploring complete data on plasma fatty acids from 
95,854 participants in the UK Biobank between 2006 and 
2010 revealed a positive association of SFA (OR: 1.03) 
and MUFA (OR: 1.03) with T2DM, while PUFA (OR: 
0.62) showed a negative association with T2DM [44]. 
Substituting dietary SFA with PUFA improved insulin 
sensitivity within just 5 weeks, thereby decreasing the 
risk of developing T2DM [45]. Fumiaki et al. [46] sug-
gested that replacing SFA or MUFA with PUFA leads to 
significant reductions in blood glucose levels. The find-
ings of the previous studies mentioned above are consis-
tent with our results. In animal studies, PUFA primarily 

Table 2 Proportion of the effect of birth weight on T2DM, fasting glucose, fasting insulin and two-hour glucose mediated by 
cardiometabolic factors
Exposure β1(SE) Mediator β2(SE) Outcome β0(SE) Mediation proportion
Birth weight 0.107 (0.026) PUFA/MUFA ratio −0.819 (0.246) T2DM −1.113 (0.235) 7.9% (1.1%,14.7%)

0.095 (0.025) PUFA/TFA ratio −0.846 (0.254) 7.2% (0.8%,13.7%)
0.106 (0.028) Omega-6/TFA ratio −0.850 (0.255) 8.1% (0.9%,15.2%)
0.082 (0.025) LA/TFA ratio −0.807 (0.261) 6.0% (0.2%,11.7%)

Birth weight 0.107 (0.026) PUFA/MUFA ratio −0.079 (0.022) Fasting glucose −0.061 (0.015) 13.8% (1.8%,25.9%)
0.095 (0.025) PUFA/TFA ratio −0.083 (0.022) 12.8% (1.6%,24.1%)
0.106 (0.028) Omega-6/TFA ratio −0.081 (0.022) 13.9% (1.7%,26.2%)
0.082 (0.025) LA/TFA ratio −0.078 (0.022) 10.5% (0.5%,20.5%)

Birth weight 0.107 (0.026) PUFA/MUFA ratio −0.069 (0.021) Fasting insulin −0.080 (0.014) 9.3% (1.4%,17.2%)
0.095 (0.025) PUFA/TFA ratio −0.068 (0.021) 8.1% (1.0%,15.2%)
0.106 (0.028) Omega-6/TFA ratio −0.074 (0.021) 9.8% (1.7%,17.9%)
0.082 (0.025) LA/TFA ratio −0.074 (0.021) 7.6% (0.8%,14.4%)

Birth weight 0.107 (0.026) PUFA/MUFA ratio −0.304 (0.063) Two-hour glucose −0.250 (0.056) 13.0% (3.0%,23.0%)
0.095 (0.025) PUFA/TFA ratio −0.269 (0.064) 10.2% (1.8%,18.7%)
0.106 (0.028) Omega-6/TFA ratio −0.245 (0.063) 10.4% (1.6%,19.1%)
0.082 (0.025) LA/TFA ratio −0.239 (0.062) 7.9% (0.7%,15.0%)

Abbreviations LA/TFA ratio, ratio of linoleic acid to total fatty acids; Omega-6/TFA ratio, ratio of omega-6 fatty acids to total fatty acids; PUFA/MUFA ratio, ratio of 
polyunsaturated fatty acids to monounsaturated fatty acids; PUFA/TFA ratio, ratio of polyunsaturated fatty acids to total fatty acids
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enhanced insulin sensitivity in skeletal muscle and adi-
pose tissue, thereby improving glucose homeostasis [47, 
48].

In our study, Omega-6/SFA showed a negative cor-
relation with T2DM. Omega-6 fatty acids are a class of 
PUFA, and their impact on T2DM remains controver-
sial. Specifically, LA and eicosadienoic acid (EDA) exhibit 
a negative correlation with T2DM, while arachidonic 
acid (AA) shows no significant correlation. Addition-
ally, gamma-linolenic acid (GLA), dihomo-GLA, doco-
satetraenoic acid (DTA), and n6-docosapentaenoic acid 
(n6-DPA) are significantly positively correlated with 
T2DM [49].

LA, as an essential fatty acid, is the most abundant 
Omega-6 FA [50]. Studies suggested a negative correla-
tion between LA intake and T2DM [51, 52], although 
some studies found no significant association [53]. In a 
multivariable-adjusted pooled analysis, a higher LA/TFA 
ratio was associated with an overall lower risk of T2DM, 
which was in agreement with our study [54].

The primary component of vegetable oils is Omega-6 
FA, in particular LA. And nuts are nutrition-dense foods, 
abundant in PUFA and some bioactive compounds, pro-
viding benefits for glycemic regulation [55]. Therefore, 
increasing the proportion of vegetable oils and nuts con-
sumed may be beneficial in preventing T2DM, particu-
larly in individuals with low birth weight.

Our study possesses several strengths. Firstly, to our 
knowledge, it is the first MR analysis to assess the associ-
ation between low birth weight with T2DM risk and gly-
cemic traits, exploring fatty acids traits as intermediaries. 
Secondly, we investigated not only the content of fatty 
acids but also the ratio of a series of fatty acids in medi-
ating the impact of low birth weight on T2DM. Thirdly, 
leveraging large-sample GWAS data enables a more reli-
able assessment of the relationship between risk factors 
and disease outcomes compared to observational stud-
ies at the individual level. Finally, we employed a variety 
of MR methods, including weighted median regression, 
MR-Egger method, simple mode, weighted mode, and 
robust adjusted profile score, and the consistently esti-
mated associations support the robustness of our study 
findings.

However, our study has some limitations. Firstly, we 
assessed the linear effect association between birth 
weight and T2DM using two-sample MR analysis, lack-
ing exploration into non-linear associations [5, 56–58]. 
Secondly, we employed the MVMR method to estimate 
the individual mediating effects of each fatty acid factor. 
Nevertheless, interactions among these mediators could 
exist, complicating the precision of individual effects as 
one mediator could influence others. Thirdly, a random 
effect model was adopted, taking into consideration the 
high heterogeneity. Fourthly, considering the limitations 

in the GWAS summary data, the MR analyses with age, 
sex or education stratification are unavailable. Fifthly, it 
is important to note that MR findings only reflect lifetime 
exposure levels and cannot easily provide information 
on acute changes in exposure levels. Lastly, it should be 
noted that the participants in our study were of Euro-
pean descent, so caution should be exercised when gen-
eralizing our results to populations of Asian or African 
descent.

In conclusion, our results supported a potential causal 
role of low birth weight in T2DM. Additionally, individ-
ual fatty acid mediating effects were modest, while their 
ratios (PUFA/MUFA ratio, PUFA/TFA ratio, Omega-6/
TFA ratio, and LA/TFA ratio) demonstrated substan-
tial mediating effects. Therefore, interventions targeting 
these factors could significantly alleviate the burden of 
T2DM associated with low birth weight.

Conclusions
In conclusion, this two-step MR study presented genetic 
evidence of a causal relationship between low birth 
weight and T2DM, with PUFA/MUFA ratio, PUFA/TFA 
ratio, Omega-6/TFA ratio, and LA/TFA ratio serving as 
mediators. This finding provided novel insights into the 
underlying mechanisms of the occurrence and devel-
opment of T2DM and suggested potential avenues for 
developing preventive and therapeutic strategies.
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