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Lipids in Health and Disease

Can essential fatty acids (EFAs) prevent 
and ameliorate post-COVID-19 long haul 
manifestations?
Undurti N. Das1,2,3* 

Abstract 

It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifesta-
tions including “long haul syndrome” are due to deficiency of essential fatty acids (EFAs) and dysregulation of their 
metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift 
immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, 
possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit 
NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate mac-
rophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. 
This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its 
associated complications.
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Introduction
So called “long-haul syndrome” following acute SARS-
CoV-2 infection and/or post-COVID-19 vaccination is 
not uncommon. It is estimated to occur in about 10–20% 
of subjects who have had SARS-CoV-2 infection and/or 
COVID vaccination. The long-haul syndrome manifes-
tations include fatigue, post-exertional malaise, memory 
loss, and other neurocognitive impairments that may last 
from months to years [1, 2]. It is also known that some 
of these patients may have several cardiac manifesta-
tions in the form of cardiac arrhythmias, heart failure, 

unexplained hypotension, and sometimes sudden cardiac 
death. Neurological manifestations may include memory 
impairment, inability to concentrate, and sometimes 
stroke. Some of the hypotheses put forward to explain 
the long-haul syndrome include: (i) continued presence 
of the virus or viral particles such that they are able to 
stimulate the immune system leading to tissue damage; 
(ii) there could occur auto-antibody production and pro-
inflammatory cytokine(s) secretion resulting in chronic 
inflammation [2] and (iii) both features of i and ii [2, 3]. 
Post-COVID long-haul syndrome has been found to be 
associated with the presence of platelet dysfunction and 
hypercoagulability state and endothelial dysfunction [4]. 
Autonomic nervous system dysfunction may also occur 
[5–9] that could explain some, if not all, the features 
of long-haul syndrome [10–12]. It is likely that all the 
mechanisms proposed may occur in different subsets of 
patients. But what is not clear is how and why the fea-
tures of long-haul syndrome occur.
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Features of long‑ COVID
In a study performed in 275 individuals, it was 
found that those with long COVID had signifi-
cantly higher levels of non-conventional monocytes 
 (CD14lowCD16high), elevated expression of MHC class 
II (HLA-DR), lower circulating populations of con-
ventional type 1 dendritic cells (cCD1), increase in 
the absolute count of double negative B cells, abso-
lute count of  CD4+ cells with a lower number of 
circulating  CD4+ central memory cells  (CD45RA− 
 CD127+CCD7−) with an absolute increase in the num-
ber of exhausted  CD4+ T cells [12]. Stimulated  CD4+ 
cells produced significantly higher levels of intracellu-
lar IL-2, IL-4 and IL-6 in those with long COVID. Sur-
prisingly, no significant increase in the production of 
IFN-γ, IL-17 and TNF was noted in long COVID. Those 
with long COVID showed higher levels of SARS-CoV-2 
antibody titers especially anti N IgG levels compared 
to the control. They also had significantly lower plasma 
cortisol levels in association with increased comple-
ment C4b, CCL19, CCL20, galactin-1, CCL4, APRIL 
and LH and decreased IL-5 with no significant change 
in the plasma adrenocorticotropic hormone (ACTH) 
levels compared to control. This suggests that the hypo-
thalamic–pituitary–adrenal axis response is abnormal. 
Several reports implicated a role for G-protein coupled 
receptor (GPCR) antibodies in the pathogenesis of long 
COVID [13, 14] that particularly targeted β-adrenergic 
receptors and angiotensin-II receptor. The presence of 
GPCR antibodies may explain autonomic dysfunction 
seen in those with long COVID. These patients may also 
have higher IgG antibody levels against total anti-S and 
anti-receptor binding domain (RBD), distinct regions 
of specific spike protein and SARS-CoV-2 (especially 
against linear peptides) compared to control [12]. In 
addition, these patients showed elevated antibody titers 
against several herpes antigens, Epstein-Barr virus 
(EBV) and the varicella zoster virus (VZV) glycopro-
tein implying that they have hyperimmune responses 
not only to SARS-CoV-2 but also to some latent viral 
infections. Such specific abnormal antibody responses 
in long COVID subjects may explain as to why G-pro-
tein coupled receptor (GPCR) antibodies particularly 
targeting β-adrenergic receptors and angiotensin-II 
receptor occur in them. The presence of persistent 
SARS-CoV-2 viral antigens, reactivation of latent viral 
infections, autoimmunity, dysbiosis, tissue damage and 
resultant chronic inflammation seen in long COVID 
implies skewed T-helper-2-cell  CD4+ T cell activation 
[12]. But it is not clear whether the diverse biological 
features seen in long COVID are solely based on the 
peripheral immune factors or secondary to organ-sys-
tem-specific dysfunctions.

Serotonin deficiency in “long‑haul syndrome”
A recent study [5] reported that SARS-CoV-2 induced 
COVID-19 is associated not only with type I interferon 
(IFN)-driven inflammation but also reduced plasma sero-
tonin levels. This has been attributed to diminish in  the 
intestinal absorption of tryptophan (the serotonin pre-
cursor); reduced serotonin storage due to platelet hyper-
activation and reduced platelet count; and/or enhanced 
activity of MAO (monoamine oxidase). The decreased 
serotonin levels reduce the activity of the vagus nerve 
that, in turn, results in impairment of hippocampal 
responses and memory (see Fig.  1) that led to the sug-
gestion that reduced serotonin may underlie the cause 
of long COVID manifestations. If this is true, it implies 
that enhancing serotonin levels could be of benefit in the 
management of long COVID. But it is not clear whether 
decreased serotonin levels are the cause or effect of long 
COVID.

I propose that the serotonin abnormalities [5], reacti-
vation of latent viral infections, autoimmunity, dysbiosis 
and impaired tissue repair resulting in chronic inflam-
mation and associated skewed T-helper-2-cell  CD4+ T 
cell activation [12] in long COVID-19 are secondary to 
altered or defective metabolism of essential fatty acids 
(EFAs).

Metabolism of EFAs
Dietary linoleic acid (LA, 18:2 n-6) and alpha-linolenic 
acid (ALA, 18:3 n-3) are considered as essential fatty 
acids (EFAs) and they are crucial for our survival. EFAs 
are metabolized by enzymes desaturases and elongases to 
form their respective metabolites that have many biologi-
cal actions (see Figs. 1 and 2). EFAs and their metabolites 
have a regulatory role in producing immune response, 
serve as endogenous antibiotics, and have cytoprotective 
and genoprotective actions and  are needed for wound 
healing [15–20]. They also serve as local hormones in 
general to modulate the actions of several physiological 
factors. EFAs behave as neurotransmitters and maintain 
the gut microbiota and its metabolism. The diversified 
actions and interactions of EFAs during different physi-
ological & metabolic activities is critical for retaining the 
functional homeostasis. EFAs also modulate the concen-
trations of cAMP, cGMP, activate several cell surface G 
protein-coupled receptors (GPCRs), influence biological 
processes by regulating peroxisome proliferator–acti-
vated receptors, sterol regulatory element binding pro-
tein 1, Toll-like receptor 4, G protein–coupled receptors, 
and other putative mediators and serve as signaling 
molecules and stimulate or inhibit DNA transcription 
[21–25]. In addition, AA and other fatty acids function 
as mechanotransducers to convey messages from the 
extracellular environment through the cell membrane to 
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Fig. 1 Scheme showing potential interaction between EFAs and their metabolites and serotonin. Legend to Figure 1. Indoles are synthesized 
from tryptophan by gut microbiota that express tryptophanase (TP). Indoles are cytoprotective molecules. Indolepropionic acid (IPA) synthesized 
by gut microbiota is a neuroprotective substance and binds to the pregnane X receptor (PXR) in intestinal cells, to facilitate mucosal homeostasis. 
IPA absorbed from the gut is transferred to the brain to prevent β-amyloid fibril formation. Tryptophan is metabolized to indole-3-aldehyde (I3A) 
by gut microbiota that acts on the aryl hydrocarbon receptor (AhR) in intestinal immune cells. Gut microbiota have the ability to alter the expression 
of serotonin-related genes and thus, alters its (serotonin) biosynthesis. Gut microbiota (i) directly act on enterochromaffin (EC) cells to increase 
colonic tryptophan hydroxylase 1 (Tph1) expression and promote serotonin synthesis; (ii) alter host by direct action or through their metabolites, 
short chain fatty acids (SCFAs), tryptophan, tryptamine, and secondary bile acids; (iii) SCFAs stimulate serotonin synthesis and release by their action 
on enterochromaffin cells; (iv) influence serotonin metabolism; and (v) promote Tph1 expression and stimulate serotonin synthesis (90, see Fig. 3) 
(tryptamine is a ligand for the 5-HT4 receptor (5-HT4R) and secondary bile acids, formed by the gut microbiota). Gut microbiota survival, proliferation 
and metabolism are influenced by EFAs. Dietary EFAs are converted to their long-chain metabolites by desaturases and elongases. EFAs and their 
metabolites are necessary for the integrity and function of enterochromaffin cells and gut function. By their action on enterochromaffin cells, 
EFAs can influence serotonin metabolism. EFAs and their metabolites can minimize TLR3 expression. Similarly, EFAs and their metabolites suppress 
cGAS-STING pathway and inhibit the production of pro-inflammatory cytokines and thus, inhibit their production. The coagulation by aggressive 
platelets aggregation can also be suppressed by EFAs and their anti-inflammatory metabolites and thus, prevent thrombotic episodes. EFAs 
and their metabolites stimulate vagus nerve and thus enhance the production of acetylcholine that has anti-inflammatory actions. EFAs 
and acetylcholine enhance the production of LXA4, a potent anti-inflammatory bioactive lipid (derived from AA). Thus, EFAs and their metabolites 
have a plethora of actions that explain their role in post-COVID long haul syndrome. The red arrows indicate pro-inflammatory pathways. The blue 
arrows indicate the pathways stimulated by cytokines that are pro-inflammatory in naure. The green arrows indicate the metabolism of dietary EFAs 
to their long-chain metabolites and action on enterocytes and their beneficial actions
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the nucleus to regulate gene expression and PI3K/Akt/
mTOR pathway that is involved in many physiological 
and pathological processes, and thus, regulate the normal 
cellular events. It is noteworthy that AA and other fatty 
acids are potent regulators of the expression and levels 
of NF-κB and IκB, TNF-α, IL-6 and cGAS-STING path-
way [15, 19, 26–40]. In addition, AA and PUFAs regulate 
the gene expression [40], but peroxide products of the 
same could lead to cause the oxidative stress, inflam-
mation, atherosclerosis, cancer, and other disorders. 
The EFAs play an integral role in regulating the cellular 

activities and its effectiveness is influenced with factors 
such as, Magnesium, folic acid, vitamins B1, B12, B6, and 
C; calorie restriction, adequate protein intake, and insu-
lin for optimum metabolism. They serve as a co-factors 
for the activity of desaturases that are needed for the 
conversion of dietary EFAs, LA and ALA to their respec-
tive long chain metabolites. GLA, DGLA, AA, EPA and 
DHA, which are precursors of several beneficial metab-
olites such as PGE1 (from DGLA), PGI2 (from AA), 
lipoxin A4, resolvins, protectins amd maresins (from AA, 
EPA and DHA) that have potent anti-inflammatory and 

Fig. 2 Metabolism of essential fatty acids (EFAs), their role in inflammation and factors that influence desaturases. SARS-CoV-2 activates PLA2 
(phospholipase A2) and induces the release of GLA, DGLA, AA, EPA, and DHA from the cell membrane lipid pool. SARS-CoV-2 inhibits the activities 
of desaturases and thus, decreases the formation of GLA, DGLA and AA from LA and EPA and DHA from ALA. SARS-CoV-2 activates both COX 
and LOX enzymes resulting in increased formation of PGs (prostaglandins), LTs (leukotrienes) that have pro-inflammatory action and. enhanced 
formation of LXA4, resolvins, protectins and maresins that may induce hypotension
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immunoregulatory actions [15]. In contrast, high glu-
cose, saturated and trans fatty acids, cholesterol, and high 
fat diet inhibit the activities of desaturases and enhance 
the formation of pro-inflammatory eicosanoids [15, 20]. 
It is noteworthy that, supplementation of EFAs do not 
have any significant side effects. In view of their immu-
nomodulatory and pro-/anti-inflammatory actions, there 
is a theoretical possibility that excess consumption of 
EFAs may result in immunosuppression especially in the 
elderly and immunocompromised individuals.

EFAs and serotonin
EFAs and their metabolites regulate the synthesis and 
actions of serotonin. Supplementation of EFAs modulate 
central nervous system (CNS) serotonin and dopamine 
metabolism and impulsive behaviors related to them [41]. 
An inverted U-shaped curve relationship exists between 
serotonin binding, AA and depression severity [42], sug-
gesting that AA status has an impact on the pathophysi-
ology of depression. AA modulates serotonin transport 
implying that EFAs are of therapeutic benefit in the treat-
ment of major depression.

EPA increases serotonin release from presynaptic neu-
rons by reducing PGE2 levels whereas DHA influences 
serotonin receptor action by increasing cell membrane 
fluidity [43]. These results suggest that EPA/DHA (and 
possibly, AA) deficiency results in dysfunctional serotonin 
activation and function that contributes to neuropsychi-
atric disorders and depression. This proposal is interest-
ing in the light of the observation that AA and DHA have 
a role in exocytosis of neurotransmitters [44–50]. This 
implies that AA/EPA/DHA have a critical role in the exo-
cytosis of various neurotransmitters and their deficiency 
can lead to the development of various neuropsychiat-
ric disorders including those related to post-COVID and 
post-COVID-vaccine long haul syndrome.

Impulsive violence, suicide, and depression are strongly 
associated with low concentrations of cerebrospinal fluid 
5-hydroxyindoleacetic acid (CSF 5-HIAA). Low plasma 
polyunsaturated fatty acids predicted both CSF 5-HIAA 
and CSF HVA concentrations implying that EFAs influ-
ence CNS serotonin and dopamine metabolism and thus, 
play a role in neuropsychiatric conditions [41]. These 
results are in support of the contention that low concen-
trations of serotonin reported in those with long-haul 
or long haul or long COVID could be attributed to defi-
ciency of EFAs (such as AA/EPA/DHA).

In view of the close interaction(s) between EFAs and 
their metabolites and serotonin metabolism, it is likely 
that SARS-COV-2 may affect tryptophan metabolism 
and 5-HT release and related dysbiosis. This implies 
that 5-HT associated prothrombotic events due to 
platelet activation/aggregation seen in those with acute 

SARS-CoV-2 infection and long haul COVID syndrome 
may also be secondary to alterations in EFAs metabolism. 
This is so since GLA/DGLA/AA/EPA/DHA and their 
metabolites can alter platelet function and thrombosis by 
virtue of their actions on platelets and serotonin metabo-
lism. It is suggested that SARS-COV-2 associated hyper-
coagulant events that may be dependent or independent 
on 5-HT are secondary to deficiency of EFAs and their 
anti-platelet metabolites. The observation that elevated 
PF4 autoantibody in relation to heparin-induced throm-
bosis reported in SARS-CoV-2 infection and long haul 
COVID may also be due to a deficiency of EFAs and their 
immunomodulatory metabolites.

EFAs in COVID‑19
Previously, I proposed that EFAs deficiency, especially 
that of AA/EPA/DHA, could lead to increased suscepti-
bility and/or progression of COVID-19. This hypothesis 
is based on the observations that EFAs and their long 
chain metabolites AA/EPA/DHA have the ability to inac-
tivate several enveloped viruses including SARS-CoV-2. 
EFAs metabolites prostaglandin E1 (PGE1), lipoxin A4 
(LXA4), resolvins, protectins and maresins enhance 
phagocytic capacity of macrophages and leukocytes 
at the site of inflammation and clearing the cell debris 
near injury rapidly to enhance wound healing. Further-
more, EFAs and their metabolites regulate vasomotor 
tone, inflammation, thrombosis, immune response, T 
cell proliferation and secretion of cytokines, stem cell 
survival, proliferation and differentiation, and leuko-
cyte and macrophage functions, JAK kinase activity and 
neutrophil extracellular traps- actions that may explain 
their (EFAs-AA/EPA/DHA) potential critical role in the 
pathobiology of COVID-19 [51–54]. This concept is sup-
ported by the fact that LA, AA, and EPA stabilize the 
locked confirmation and inhibit the replication of SARS-
CoV, MERS-CoV, SARS-CoV-2, and their variants [55, 
56]. SARS-CoV-2 virus induces marked perturbation in 
the metabolism of LA and AA; and supplementation of 
LA or AA to SARS-CoV-2 and similar viruses infected 
cells led to marked suppression of the virus replication. 
These results suggest that host EFAs metabolism plays 
a significant role in the pathogenesis of COVID-19 and 
other viral diseases suggesting that these fatty acids are 
likely to be of significant benefit in their prevention and 
management.

EFAs influence gut microbiota and vice versa
The human gut is teaming with millions of bacteria. These 
bacteria are passed on to the fetus at the time of birth, 
some are obtained through breast feeding and some are 
consumed along with food. These microorganisms that 
form the gut microbiota can have both beneficial and 
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harmful actions [57]. The ‘gut microbiota’ not only co-
evolved with the host (humans) over thousands of years 
but also has an intricate and mutually beneficial relation-
ship [58–60].

Short-term dietary changes produce rapid but revers-
ible shifts in the gut microbiota composition, while 
longer-term changes induce changes in the genomic 
composition and metabolic activities of microbiota. 
Diet is one major factor that influences the gut micro-
biota composition, metabolism, and genetic architec-
ture. On the other hand, changes in the gut microbiota 
have both direct and indirect effects on gastrointestinal 
architecture, function, and metabolism. The ability of gut 
microbiota to produce acetate, butyrate, and propion-
ate (SCFAs-short chain fatty acids) depends on the diet 
that is consumed by the host, whereas gut microbiota 
SCFAs and other metabolites affect several physiological 
processes and pathological conditions [61–66]. Human 
lifestyle and geographical differences including diet or 
cooking practices beget gut microbiota differences. This 
may explain differences in gut microbiota of individuals 
consuming plant-based diets compared with those who 
consume high-meat and high-fat Western diets [67] that, 
in turn, may reflect the differences in the susceptibility to 
various diseases, their response to treatment and prog-
nosis. This is particularly true of individual differences in 
gut microbiota depending on their lifestyle, diet, geogra-
phy, method(s) of dietary preparation, cooking and vari-
ous components used in cooking. Thus, gut microbiota is 
highly plastic in its composition, function, and properties 
[68]. One such factor that is less well appreciated is the 
effect of unsaturated fatty acids on the composition and 
functions of gut microbiota.

Both n-6 and n-3 fatty acids alter the diversity and 
abundance of the gut microbiota that, in turn, affect the 
metabolism and absorption of these fatty acids. Both 
EFAs and gut microbiota interact with each other and 
produce their effect(s) on inflammation, obesity, and 
metabolic diseases by altering the intestinal wall integ-
rity and host immune cells [69–73]. Furthermore, human 
gut microbiota converts host diet into numerous bioac-
tive metabolites [74–78]. It is noteworthy that gut micro-
biota has the unique ability to convert EFAs such as LA 
into various intestinal fatty acid isomers that regulate the 
mucosal immune system of the host and enhance the for-
mation of  CD4+ intraepithelial lymphocytes. In a similar 
fashion, gut microbial derived lipid mediators {such as 
9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) 
and all-trans retinoic acid (atRA)} and SFAs can enhance 
the development of regulatory T (Treg)-cell activity and 
thus prevent the occurrence of inflammatory bowel dis-
ease (IBD). and other inflammatory conditions [75–78]. 
These results suggest that gut microbiota can convert 

dietary EFAs to other biologically active metabolites and 
EFAs influence gut microbiota and their metabolism 
that are ultimately responsible for their beneficial actions 
[74–80].

EFAs are involved in maintaining the various physi-
ological and immunological mechanisms of the body, 
alongside their greater ability to act as antimicrobials 
and growth regulatory molecules. Hence, EFAs suppress 
the growth of pathogenic microbes of gut and promote 
the survival, proliferation, and metabolism of benefi-
cial microbiota that produce SCFA metabolites (acetate, 
butyrate, and propionate) for essential physiological 
functions to build the protective immune response.

Gut microbiota and serotonin
The human gut produces approximately 95% of total 
body serotonin that has actions relevant to the func-
tions of the gut and acts locally to activate afferent nerve 
endings that can influence the central nerve system. The 
gut-brain axis works to influence each other linking the 
enteric and central nervous systems that is not only ana-
tomical, but it includes endocrine, humoral, metabolic, 
and immune effector cells and influence mood, cogni-
tion, and mental health. The gut-brain link is established 
by the autonomic nervous system, hypothalamic–pitui-
tary–adrenal (HPA) axis, and enteric nervous system that 
allows the brain to influence intestinal activities. This 
gut-brain axis is influenced by the gut microbiota [81–
83]. This gut-brain interaction explains as to why mood 
disorders, such as anxiety, depression, and autism spec-
trum disorders have links to functional gastrointestinal 
disruptions [84]. Gut bacteria influence fetal and neona-
tal neurologic development [85]. Diet also influences the 
gut microbiota and its impact on cognitive function [86]. 
Gut dysbiosis affects adult hippocampal (HPC) neuro-
genesis and can cause depression-like behavior, imply-
ing that communication between the gut and the brain 
may have a role in its (depression) development. It was 
reported that gut dysbiosis induces changes in both sero-
tonin and dopamine neurotransmission pathways in the 
brainstem and hippocampus that could be abrogated by 
vagotomy suggesting that vagal afferent pathways have a 
role in gut microbiota-mediated effects on the brain [87], 
see Figs. 1 and 3).

It is noteworthy that the gut microbiota alters the 
expression of key serotonin-related genes and thus, 
alters its (serotonin) biosynthesis. Gut microbiota can 
act (i) directly on enterochromaffin (EC) cells to increase 
colonic tryptophan hydroxylase 1 (Tph1) expression and 
promote serotonin synthesis; (ii) alter host by virtue of 
their metabolites, including short chain fatty acids, tryp-
tophan, tryptamine, and secondary bile acids; (iii) short 
chain fatty acids (SCFAs) stimulate serotonin synthesis 
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and release by acting on enterochromaffin cells; (iv) tryp-
tophan metabolism is regulated by the gut microbiota 
and thus, the gut microbiota influences serotonin metab-
olism; and (v) tryptamine is a ligand for the 5-HT4 recep-
tor (5-HT4R) and secondary bile acids, formed by the gut 
microbiota promote Tph1 expression and stimulate sero-
tonin synthesis (90, see Fig.  3). Gut microbiota induces 
maturation of enteric nervous system through the release 
of serotonin and activation of serotonin-receptors 
(5-HT4) suggesting the strong interaction between the 
gut microbiota and the enteric nervous system and the 
potential role of both gut microbiota and serotonin in 
various gut diseases [89]. Gut microbiota influences the 

production of central BDNF levels that, in turn, regu-
lates the maintenance of NMDAR production (receptors 
for N-methyl-D-aspartate), which are involved in synap-
tic plasticity and cognitive function. Dysbiosis of the gut 
microbiota results in a reduction of NMDAR input onto 
GABA inhibitory interneurons resulting in disinhibi-
tion of glutamatergic output because of which aberrant 
synaptic behaviour and cognitive deficits occur. These 
results imply that gut microbiota modulates BDNF func-
tion in the CNS, via changes in neurotransmitter func-
tion by altering the kynurenine pathway at least, in part, 
due to alterations in the availability and actions of SCFAs 
in the brain [90–97]. Since BDNF has anti-obesity and 

Fig. 3 Scheme showing tryptophan metabolism and its interaction with gut microbiota and EFAs. Legend to Figure 3. Indoles are synthesized 
from tryptophan by gut microbiota that express tryptophanase. Indolepropionic acid (IPA) synthesized by gut microbiota is a neuroprotective 
substance that binds to several receptors, including the pregnane X receptor (PXR) in intestinal cells, to facilitate mucosal homeostasis. IPA 
is absorbed from the gut and transferred to the brain, where it prevents β-amyloid fibril formation. Tryptophan is metabolized to indole-3-aldehyde 
(I3A) by gut microbiota acts on the aryl hydrocarbon receptor (AhR) in intestinal immune cells. Gut microbiota act (i) directly on enterochromaffin 
(EC) cells to increase colonic tryptophan hydroxylase 1 (Tph1) expression and promote serotonin synthesis; (ii) alter host by virtue of their 
metabolites, including short chain fatty acids, tryptophan, tryptamine, and secondary bile acids; (iii) short chain fatty acids (SCFAs) stimulate 
serotonin synthesis and release by acting on enterochromaffin cells; (iv) tryptophan metabolism is regulated by the gut microbiota and thus, 
the gut microbiota influences serotonin metabolism; and (v) tryptamine is a ligand for the 5-HT4 receptor (5-HT4R) and secondary bile acids, formed 
by the gut microbiota promote Tph1 expression and stimulate serotonin synthesis [88].
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anti-diabetic actions, this explains the role of gut micro-
biota in the pathobiology of obesity, diabetes mellitus, 
and metabolic syndrome [97–103].

As already discussed above [69–73], EFAs influence 
both the gut microbiota proliferation and metabolism 
and serotonin formation and function [41–43, 104–106]. 
Thus, the gut microbiota, serotonin and EFAs function as 
one closely interlinked feedback regulatory system. These 
results imply that alterations in the dietary intake of EFAs 
alter gut microbiota and that, in turn, modulates matu-
ration of enteric nervous system through serotonin syn-
thesis and action. Gut microbiota can use EFAs to form 
SCFAs that mediate many of their beneficial actions.

Conclusions and therapeutic implications
It is evident from the preceding discussion and evidence 
presented elsewhere [51–54, 107–110] that dietary EFAs 
have a significant role in the pathobiology of COVID-
19 both directly and indirectly and the development 
of long-COVID or long-haul syndrome. It is proposed 
that insufficient intake of EFAs (LA and ALA) or for-
mation of their long-chain metabolites (especially GLA, 
DGLA, AA, EPA, and DHA) due to a deficiency/genetic 
polymorphism of desaturases and elongases may ren-
der an individual susceptible to SARS-CoV-2 and other 
related viruses. This results in alteration of gut microbi-
ota to induce deficiency in the maturation of gut entero-
chromaffin cells that leads to the excessive production 
of pro-inflammatory eicosanoids/cytokines resulting 
in decreased formation of serotonin and affecting its 
activity and subsequently develop the long haul or long 
COVID disorders. Less consumption of EFAs tends to 
exacerbate the pro-inflammatory cytokine production, 
as a consequence it activates the negative feedback con-
trol pathways for its metabolites. It is known that vari-
ous viruses (especially SARS-CoV-2) interfere with the 
activity of desaturases that are essential for the conver-
sion of dietary LA and ALA to their respective long-
chain metabolites GLA, DGLA, AA and EPA and DHA 
(see Figs. 2 and 3) and the subsequent formation of their 
respective bioactive eicosanoids. SARS-CoV-2 activates 
phospholipase A2 (PLA2) that results in the release of 
GLA, DGLA, AA, EPA and DHA from the cell mem-
brane lipid pool, and COX (cyclo-oxygenase) and LOX 
(lipoxygenase) enzymes that convert DGLA, AA, EPA 
and DHA to their respective PGs, LTs, TXS (thrombox-
anes) that have pro-inflammatory actions and LXA4 
(from AA), resolvins (from EPA and DHA) and protectins 
and maresins (from DHA) that have vasodilator, platelet 
anti-aggregator, and anti-inflammatory actions. Activa-
tion of PLA2 and suppression of desaturases and elon-
gases by SARS-CoV-2 results in the formation of excess 
of pro-inflammatory products from DGLA, AA, and EPA 

that promote profound pro-inflammatory events and 
hypotension, and ARDS (adult respiratory syndrome) 
in severe COVID-19. LXA4, resolvins, protectins and 
maresins are not only anti-inflammatory compounds but 
also suppress inappropriate immune activation. Thus, 
the balance between pro- and anti-inflammatory eicosa-
noid formed from DGLA, AA, EPA and DHA determine 
the severity of inflammation and immunosuppression. 
In the initial stages of SARS-CoV-2 infection, release of 
adequate amounts of LA, GLA, DGLA, AA, EPA and 
DHA are essential to inactivate the virus and produce the 
much-needed inflammation. But, once the inflammatory 
process has reached its peak, it is critical that adequate 
amounts of LXA4, resolvins, protectins and maresins 
are generated to suppress inappropriate inflammation 
and immune response so that anti-inflammatory events 
(especially resolution of inflammation), removal of debris 
from the site(s) of infection and wound healing occurs 
in a timely fashion to retore homeostasis. [111–113]. In 
the absence of such timely inflammation vs anti-inflam-
mation and immune activation vs immunosuppression 
events as a result of excess activation of PLA2 and defi-
ciency of desaturases and elongases enzymes would lead 
to an imbalance in the pro- vs anti-inflammatory eicos-
anoids and cytokines that is expected to result not only 
in the development of severe COVID-19 events, but can 
also flare the occurrence of long-COVID/long-haul syn-
drome later on because of continued inflammatory pro-
cess and failure to eliminate virus/virus particles. This 
concept is supported by the recent report that during 
acute COVID-19 the complement and coagulation sys-
tems are activated and may remain activated in various 
tissues in long COVID (long haul) patients. Endothe-
lial damage occurs because of insertion of complement 
C5b-C7 complex that induces the release of vWF (von 
Willebrand factor) and TSP1 (thrombospondin 1) that 
results in thrombotic events due to recruitment of plate-
lets and monocytes. These and other related events such 
as reduced ADAMTS13 (the ADAMTS13 enzyme  cuts 
vWF) to regulate the interaction with platelets. By regu-
lating and proteolysis of vWF glycoprotein, the enzyme 
ADAMTS13 prevents triggering the formation of blood 
clots due to the formation and accumulation of ultra 
large vWF multimers that induces their binding to C3b 
resulting in complement activation via alternate path-
way [114, 115]. These series of events occur because of 
damage to the vascular endothelial cells. EFAs and their 
metabolites (such as PGE1, PGI2, LXA4, resolvins, pro-
tectins and maresins) are needed for the integrity and 
normal function of vascular endothelial cells and pre-
vent inappropriate activation of coagulation system. 
This argument is supported by the report that a reduc-
tion in the levels of sTM (thrombomodulin) and vWF 
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occurs with n-3 fatty acids supplementation indicating 
an improvement in the hemostatic markers of endothe-
lial dysfunction [116–120], and see Fig.  4), Thus, the 
concentrations of EFAs in the endothelial cell membrane 
is critical to endothelial cell health and integrity and 

prevention of thromboembolic events [120]. Based on 
the evidence(s) presented here, it is suggested that sub-
clinical cell/tissue deficiency or inadequate intake of die-
tary LA and ALA (EFAs) and their inefficient conversion 
to AA, EPA and DHA and formation of their respective 

Fig. 4 A Mechanisms by which EFAs and their beneficial metabolites prevent complement = coagulation and endothelial cell damage 
and useful in the prevention of long-haul syndrome due to COVID-19. Figure 4 B EFAs and their metabolites prevent complement activation, 
platelet-monocyte aggregation formation and tissue injury by virtue of their ability to maintain endothelial integrity, preventing platelet 
and monocyte activation, cytoprotective actions and virus inactivation. Figure 4A and B are modified from references [114, 115]
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pro- and anti-inflammatory metabolites in a timely fash-
ion can result in increased susceptibility to SARS-CoV-2, 
decreased formation of serotonin, defective immune 
response and ineffective wound healing resulting in the 
occurrence of post-COVID long haul syndrome. Hence, 
it is proposed that administration of adequate amounts 
of LA, GLA, DGLA, AA, EPA and DHA could be of ben-
efit in the management of SARS-CoV-2 infection, and 
in the prevention and management of long haul or long 
CVOID.
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