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Abstract 

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease 
that affects over 30% of the world’s population. For decades, the heterogeneity of non-alcoholic fatty liver disease 
(NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. 
However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic meta-
bolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical 
treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabo-
lism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target 
metabolic disorders.

Keywords  Metabolic dysfunction-associated fatty liver disease, Hepatic lipid metabolism, Multisystem disease, 
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Introduction
According to an international expert proposal in 2020, 
non-alcoholic fatty liver disease (NAFLD) should be 
updated to metabolic dysfunction associated with fatty 
liver disease (MAFLD) [1]. Two of the seven criteria for 
metabolic dysfunction must be met for the patient to be 
diagnosed with MAFLD [2]. Recent multi-society Delphi 
consensus statements have replaced the nomenclature 

of NAFLD with metabolic dysfunction-associated stea-
totic fatty liver disease (MASLD) [3]. The diagnosis of 
MASLD includes evidence of hepatic steatosis along with 
at least one of the following five cardiometabolic criteria: 
the presence of overweight or obesity, impaired glucose 
regulation or type 2 diabetes, hypertension, increased 
plasma triglycerides, or decreased high-density lipopro-
tein cholesterol (HDL-c) [3]. The new nomenclature of 
MASLD not only emphasizes the critical role of systemic 
metabolic dysfunction in the pathogenic process leading 
to MASLD, but also enhances the clinicians’ awareness to 
the concomitant metabolic dysfunction in patients with 
MASLD.

The global prevalence of NAFLD is approximately 25% 
according to previous studies [4]. Since the use of the 
new nomenclature of MASLD, the nationwide preva-
lence of MASLD in the United States has been found to 
be 32.45% [5]. More recently, a community-based study 
among East Asians in Hong Kong showed that the preva-
lence of MASLD was 26.7%, and the difference between 
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the prevalence of NAFLD and MASLD in the same popu-
lation was minimal [6]. Other recent statistical data show 
that MASLD affects more than 30% of adults globally 
and causes a heavy economic burden of over $100 billion 
in the USA [7]. Therefore, the prevalence of MASLD is 
estimated to be 25–30%, similar to that of NAFLD. The 
estimated pooled all-cause mortality rate for patients 
with NAFLD was 12.60 per 1000 person years (PYs). This 
rate included 4.20 per 1000 PYs for mortality specific to 
cardiac disease, 2.83 per 1000 PYs for mortality specific 
to extrahepatic cancer, and 0.92 per 1000 PYs for mortal-
ity specific to liver disease [8]. In the latest third National 
Health and Nutrition Examination Surveys 1988–1994 
(NHANES III) study including 13,856 individuals, 
patients with MASLD was proved to be associated with 
significantly higher all-cause mortality (adjusted HR 
1.127, 95% CI 1.056–1.201) and diabetes-related mortal-
ity (adjusted HR 1.911, 95% CI 1.418–2.574) than those 
without during follow-up [6]. Therefore, patients with 
MAFLD/MASLD even have worse clinical outcomes 
than those with NAFLD but not metabolic dysfunction 
[9]. However, the concomitant metabolic disorders are 
often overlooked in patients with NAFLD, thus leading 
to many adverse cardiovascular and liver-related out-
comes. In comparison, the diagnosis of MASLD requires 
the presence of metabolic dysfunction, and the excessive 
liver fat accumulation in MASLD specifically originates 
from the state of systemic metabolic dysfunction. It ena-
bles better risk stratification and personalized treatment 
of fatty liver disease [10]. In this review, we discussed the 
critical role of metabolic dysfunction in the development 
and progression of MASLD, and summarized the latest 
progress in the drug treatment of MASLD from the per-
spective of systemic metabolic dysfunction.

Role of metabolic dysfunction 
in the pathophysiology of MASLD
Metabolic dysfunction refers to the presence of obe-
sity, hyperglycemia, hypertension or dyslipidemia clini-
cally. The primary histological characteristic of MASLD 
is hepatocellular steatosis, which is thought to be the 
hepatic manifestation of metabolic syndrome [11]. 
According to the classic "two-hit theory" of fatty liver, 
the first hit involves excessive hepatic lipid deposition, 
and the second hit activates inflammatory cascades and 
fibrogenesis in hepatocytes after that [12], which results 
in non-alcoholic steatohepatitis (NASH) assessed by 
NAS scores and liver fibrosis classified as F1 to F4 by 
Metavir scores. However, subsequent studies over the 
last two decades have demonstrated that the pathogen-
esis of MASLD is much more complex than the two hits, 
and the "multiple-hit theory” has been widely accepted 
that multiple risk factors, including insulin resistance, 

nutritional factors, and lipid metabolism disorders, act 
together with genetic (e.g., patatin-like phospholipase 
domain containing 3 (PNPLA3), transmembrane 6 super-
family 2 (TM6SF2), and membrane bound O-acyltrans-
ferase domain containing 7 (MBOAT7) gene variants) 
and epigenetic (e.g., DNA methylation, histone modifica-
tion, and m6A RNA methylation) factors to induce liver 
steatosis and progress to NASH and liver fibrosis [13]. 
Multiple risk factors jointly contribute to the progression 
of MASLD with dynamic changes from hepatic steato-
sis and inflammation, nonlinear progression of fibrosis 
to the recompensation of NAFLD-related cirrhosis, and 
novel pathophysiological mechanisms, such as impaired 
partial collagen degradation and hepatocyte regenera-
tion, vascular remodeling and systemic inflammation 
enhancement, which are involved in the updated natu-
ral course of MASLD [14]. However, the latest theories 
on the pathogenesis of MASLD have not changed the 
important role of hepatic lipid accumulation as the initial 
and critical stage of this disease.

Hepatic fat accumulation arises when liver triglyc-
erides acquisition exceeds removal. The mechanism of 
hepatic fat accumulation caused by metabolic dysfunc-
tion is shown in Fig. 1. Hepatic fat is derived from hepatic 
de novo lipogenesis (DNL), fatty acids released from the 
adipose tissue and dietary fat taken up in the intestine, 
and is metabolized through mitochondrial fatty acid 
β-oxidation (FAO) or exported out of the liver via very 
low density lipoprotein (VLDL) [15]. Metabolic dysfunc-
tion in any of the above hepatic lipid metabolism path-
ways could lead to MASLD.

Insulin resistance (IR)
IR plays a pivotal role in the pathophysiology of meta-
bolic syndrome, which might be crucial for the devel-
opment of MAFLD [16] or MASLD [17]. Carbohydrate 
intake increases circulating insulin and glucose levels. In 
individuals with insulin resistance, postprandial glucose 
and insulin are usually higher than those in metabolically 
healthy individuals. In the liver, glucose and insulin act as 
important regulators of DNL and are discussed in the fol-
lowing section. Meanwhile, the impaired ability of insulin 
to suppress lipolysis in peripheral adipose tissue leads to 
excess release of free fatty acids (FFAs) and hyperlipidae-
mia, which promotes the uptake of FFAs and the accu-
mulation of intrahepatic lipids [18, 19].

Increased DNL
Insulin promotes the expression of sterol regulatory 
element–binding protein–1c (SREBP1c) [20], and glu-
cose and fructose promote the translocation of carbo-
hydrate response element binding protein (ChREBP) to 
the nucleus [21]. Both SREBP1c and ChREBP increase 



Page 3 of 13Jiang et al. Lipids in Health and Disease           (2024) 23:95 	

the expression of multiple enzymes that catalyze lipo-
genesis, including acetyl-CoA carboxylase (ACC), ATP 
citrate lyase (ACLY), fatty acid synthase (FAS), and 
stearoyl-CoA desaturase-1 (SCD1), as demonstrated in 
gene knockout mice [20, 21]. The states of cellular energy 
excess inhibit AMP-activated protein kinase (AMPK), a 
Ser/Thr protein kinase and an essential cellular energy 
sensor [22]. It has been recognized that AMPK activa-
tion inhibits DNL by down-regulating the level of ACC 
phosphorylation and SREBP1c expression [23]. There-
fore, AMPK might be an important mediator that regu-
lates hepatic lipogenesis under the metabolic dysfunction 
status. On the other hand, the excessive liver fat will in 
turn exacerbate IR through the production of excess cer-
amides and diacylglycerols (DAGs) [24]. Hepatic insulin 
resistance is caused by the activation of protein kinase Cε 
(PKCε) in high-fat diet mice due to an increase in hepatic 
plasma membrane sn-1,2-DAG content [25]. This inhibi-
tion of insulin receptor kinase (IRK) is the result of the 
interaction between hepatic DNL and IR, which creates 
a vicious cycle that aids in the development and progres-
sion of MASLD.

Increased FFAs uptake
Chronic overnutrition is the fundamental reason of 
peripheral IR [24]. Circulating insulin functions to 
increase the uptake of fatty acids and enhance the syn-
thesis of triglycerides in peripheral adipose tissue. On 
the other hand, in overfed individuals, high triglyceride 
accumulation triggers increased release of inflammatory 

factors such as tumor necrosis factor-α (TNF-α) and 
interleukin 6 (IL-6) as well as macrophage M1 activa-
tion in the adipose tissue [26]. Adipocytes in the periph-
ery release FFAs more readily when low level of chronic 
inflammation and persistent stress in the adipose tissue 
activate stress-related signal transduction pathways such 
as inhibitor of kappa-B kinase beta (IKKB) and c-Jun 
N-terminal kinase (JNK) [27]. This results in the aberrant 
phosphorylation of insulin receptor substrate (IRS) and 
peripheral IR. Transporters like cluster of differentiation 
36 (CD36) and fatty acid transport proteins (FATP) allow 
FFAs to enter hepatocytes [28]. In patients with meta-
bolic dysfunction, the localization of CD36 as well as its 
palmitoylation level are significantly increased to facili-
tate the transport of FFAs into hepatocytes [29]. While 
inhibition of CD36 palmitoylation reduces its hydro-
phobicity, thus decreasing its localization on the plasma 
membrane and lipid rafts, and inhibiting hepatic FFAs 
uptake [30].

Increased dietary fat and gut‑liver axis
Dietary fat is absorbed in the intestine, packaged into 
chylomicrons and delivered into the systemic circula-
tion. About 20% of the triglycerides in chylomicrons are 
delivered to the liver [31]. It is estimated that the com-
mon daily diet will furnish the liver with about 10  g of 
fat each day, while in individuals with high fat diet (such 
as typical American diet), the amount of fat entering the 
liver from daily diet doubles. Moreover, dietary fat, espe-
cially cholesterol, can modulate gut microbiota and bile 

Fig. 1  Overview of hepatic triglycerides metabolism. TG, triglycerides; SREBP, sterol regulatory element–binding protein; ChREBP, carbohydrate 
response element binding protein; FFA, free fatty acid; IR, insulin resistance; CD36, cluster of differentiation 36; FATP, fatty acid transport proteins; 
VLDL, very-low density lipoprotein; MTTP, Microsomal TG transfer protein; FAO, fatty acid β-oxidation; CPT, carnitine palmitoyl transferase; DNL, de 
novo lipogenesis
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acid profiles, thus driving the progression of MASLD 
[32]. The human gut is colonized by a large number of 
microorganisms. Alterations in the type and amount 
of gut microbiota are known as dysbiosis. Dysbiosis 
leads to the development and progression of MASLD 
through gut-liver axis that is regulated by bile acids (BA) 
receptors [33], such as farnesoid X receptor (FXR) and 
Takeda G-coupled protein receptor 5 (TGR5). Deactiva-
tion of FXR promotes DNL, and inhibits fatty acid oxi-
dation (FAO) and VLDL triglycerides clearance [33], 
while TGR5 in small intestinal cells leads to the release 
of glucagon-like peptide 1 (GLP-1), which regulates food 
intake and glucose metabolism [34].

Reduced mitochondrial FAO
Hepatic FAO and mitochondrial turnover are compro-
mised in patients with MASLD [35]. It is necessary for 
carnitine palmitoyl transferase (CPT) to allow fatty acids 
to enter mitochondria. CPT1 and CPT2 are found in the 
two layers of the mitochondrial membrane respectively. 
CPT is reportedly upregulated [36] and CPT2 is inhib-
ited [37] in patients with MASLD. Overexpression of 
CPT1A enhances hepatic FAO and lipid autophagy, thus 
reducing hepatic steatosis in high-fat-diet mice [38]. The 
expression of CPT1 is regulated by peroxisome prolifer-
ator-activated receptor (PPAR)-α [39], while the CPT2 
expression is decreased in FXR deficiency, thus leading 
to the increase of SREBP1c-mediated FAS expression 
[40]. A typical example on the close correlation between 
mitochondrial dysfunction and MASLD is the MASLD 
patients carrying homozygous PNPLA3 I148M vari-
ant. The most potent genetic risk factor for MASLD is 
the PNPLA3 I148M variant [41]. Protein accumulation 
on lipid droplets inhibits the activity of adipose triglyc-
eride lipase (ATGL), which leads to the accumulation of 
triglycerides in hepatic lipid droplets and a subsequent 
decrease in hepatic FAO [42]. Under fasting or ketogenic 
conditions, there is a decrease in I148M protein lev-
els, which can cause excess hepatic triglyceride lipolysis 
and increase mitochondrial redox state; this can inhibit 
hepatic citrate synthase flux and ultimately result in liver 
injury [43].

Abnormal VLDL secretion
Hepatocytes export excess triglycerides into the circula-
tion by secreting apolipoprotein B-100 (ApoB100) con-
taining very low density lipoprotein (VLDL) [44]. It has 
been suggested that the VLDL secretion is increased in 
patients with MASLD, but does not counteract the accu-
mulation of excess triglycerides (TGs) [45]. Impairment 
in the VLDL secretion can lead to the development of 
MASLD in individuals with relatively good metabolic 
status. In TM6SF2 knockout mice, TG and cholesterol 

contents in VLDLs secreted into the blood were signifi-
cantly reduced, which contributed to the accumulation of 
lipids in the liver [46, 47]. Similarly, in individuals with 
the TM6SF2 E167K variant, the VLDL assembly is inhib-
ited, thus leading to the accumulation of hepatic fat and 
reduction in plasma TG concentrations [48]. As a result, 
MASLD patients with the TM6SF2 E167K mutation have 
a more reduced risk of cardiovascular disease (CVD) and 
more severe hepatic fat accumulation [49]. Microsomal 
TG transfer protein (MTTP) catalyzes the lipidation of 
ApoB100 and is necessary for the assembly and secretion 
of VLDL. In MASLD mice, MTTP overexpression effec-
tively reduces triglyceride levels in hepatocytes [50].

Treatment of MASLD from the perspective 
of metabolic dysfunction
Given the close causal relationship between metabolic 
disorders and MASLD, therapies targeting systemic glu-
cose and lipid metabolism have shown promising effects. 
Lifestyle interventions (calorie restriction and physi-
cal exercise) have been proven to be effective in treating 
MASLD [51], but many patients struggle to adhere to the 
lifestyle intervention programs due to poor long-term 
compliance. Bariatric surgery has been proven to be pow-
erful tool for sustainable weight loss and great improve-
ment in liver steatosis in patients with MASLD and 
morbid obesity [52]. However, the majority of patients 
with MASLD neither accept invasive surgery nor meet 
the minimum body mass index (BMI) requirements for 
bariatric surgery. Therefore, an effective medication for 
the treatment of MASLD is of great clinical significance. 
Currently, novel medications targeting metabolic disor-
ders have shown promising results for the treatment of 
MASLD, as illustrated in Fig. 2.

Insulin sensitizers
Thiazolidinediones (TZD)
Thiazolidinediones is a kind of insulin sensitizers with 
thiazolidinedione ring, which act as potent activators of 
the nuclear receptor PPARγ. Thiazolidinediones cause 
decreased liver lipid accumulation and FFA plasma levels 
by inducing the release of adipokines, encouraging TG 
storage in adipose tissue, and strengthening the suppres-
sive effect of insulin on lipolysis [53]. As summarized in 
Table 1, clinical trials of pioglitazone showed significant 
improvement in IR, liver steatosis and inflammation com-
pared with placebo [54, 55]. Rosiglitazone showed similar 
a beneficial effect on liver steatosis, but its adverse effects 
of detrimental weight gain and edema are severe [56]. The 
mitochondrial pyruvate carrier (MPC) is another target 
of thiazolidinediones. MPC is responsible for transport-
ing pyruvate from the cytosol across the inner membrane 
of mitochondrion [57]. MSDC-0602 K, a PPARγ-sparing 
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thiazolidinedione targeting to MPC, ameliorates hepatic 
steatosis, circulating liver enzymes and insulin sensitivity 
in phase IIb trials as well as in mouse models [58]. More 
importantly, MSDC-0602  K tended to have fewer side 
effects on bone density and mesenchymal stem cell prop-
erties in obese mice compared to pioglitazone [59].

Metformin
Metformin inhibits hepatic gluconeogenesis and improves 
IR in patients with type 2 diabetes. Previous studies indi-
cated that metformin effectively improves systemic inflam-
mation and insulin sensitivity, and reduces body weight 
[60]. However, it also increases hepatocyte DNL that 
contributes to hepatic TG accumulation [61]. Although 

it is clear that metformin could not improve liver histo-
logical steatosis [62], it’s more often used in combination 
with other medications at present, such as GLP-1 receptor 
(GLP-1R) agonists, thiazolidinediones or sodium-depend-
ent glucose transporter 2 (SGLT2) inhibitors [63].

Lipogenesis inhibitors
ACLY inhibitor
When excess citrate is available in cells, ACLY catalyzes 
the conversion of citrate to acetyl-CoA for lipogenesis. 
Bempedoic acid (BemA, ETC-1002) is a liver-specific 
ACLY competitive inhibitor that reduces hepatic stea-
tosis through various pathways [64]. In mouse models 
that recapitulate different stages of the disease, BemA is 

Fig. 2  Medications targeting at metabolic dysfunction of MASLD. DNL, de novo lipogenesis; FAO, fatty acid β-oxidation; IR, insulin resistance; GLP, 
glucagon-like peptide; GIP, glucose-dependent insulinotropic peptide; FXR, farnesoid X receptor; FGF, fibroblast growth factor; TG, triglycerides; FFA, 
free fatty acid; THR, thyroid hormone receptor; PPAR, proliferator-activated receptor

Table 1  Major clinical trials assessing thiazolidinediones in patients with MASLD

Drug target Drug name Study participants Main Results References

PPARγ activators Pioglitazone 247 adults with NASH but without T2DM Improve liver histology in 34% participants 
after 96 weeks. Reduce hepatic steatosis and lobu-
lar inflammation but not fibrosis

 [54]

55 patients with NASH comfirmed by liver biopsy 
and impaired glucose tolerance or T2DM

Decrease aspartate aminotransferase (AST) 
by 40%, alanine aminotransferase (ALT) by 58%, 
liver fat content (LFC) by 54%, increase hepatic 
insulin sensitivity by 48%. Improve histologi-
cal steatosis, ballooning necrosis, inflammation 
but not fibrosis after 6 months

 [55]

Rosiglitazone 32 patients with histologically proven NASH Improve liver steatosis in 47% and serum transami-
nase levels in 38% of participants after 1 year

 [56]

MSDC-0602 K 392 patients with NASH and fibrosis (F1-F3) con-
firmed by liver biopsy

Improve the result of liver biopsy in 29.8–39.5%. 
Significantly reduce liver enzymes and NAS scores 
after 52 weeks

 [58]
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proved significant reduction of hepatic TG accumula-
tion, as well as genetically modulation of inflammation 
and fibrosis [65]. Clinical trials have showed positive 
outcomes on reduction of low-density lipoprotein (LDL) 
levels and cardiovascular risk [66, 67], while the efficacy 
among patients with MASLD remains to be studied.

ACC inhibitor
The first and committed step in DNL is catalyzed by 
ACCs, which convert acetyl-CoA to malonyl-CoA. Addi-
tionally, malonyl-CoA is a signaling molecule that inhib-
its FAO. ACC inhibitors have been proved efficacious to 
improve liver steatosis in animal models [68]. While in 
clinical trials, firsocostat (GS-0976) showed benefit in the 
improvement of liver lipid accumulation, stiffness and 
serum liver enzymes, but also led to an increase in serum 
triglycerides [69, 70]. Another three-part randomized 
phase 1 study showed similar efficacy on PF-05221304 
[71]. The safety and tolerance of ACC inhibitors might 
limit their use in clinical practice and still need to be 
assessed further.

FAS inhibitor
FASs catalyze malonyl-CoA, synthesized by ACC, to 
saturated long-chain fatty acids. In obese mice, it’s dem-
onstrated that the inhibition of FAS improves hepatic 
steatosis and IR [72]. Denifanstat (TVB-2640), a FAS 
targeted inhibitor, remarkably reduces hepatic lipid 
accumulation and serum alanine transaminase (ALT) 
without significantly increasing circulating triglycerides 
[73]. Consistently, a phase 2a trial also found that the FAS 
inhibitor significantly suppressed the lipid accumulation 
in the liver assessed by magnetic resonance imaging-pro-
ton density fat fraction (MRI-PDFF) and serum biomark-
ers compared to placebo group [74].

SCD1 inhibitor
SCD1 functions to convert saturated fatty acids to mono-
unsaturated fatty acids. The activity of SCD1 is increased 
in patients with MASLD [75]. In mouse models, aram-
chol (arachidyl-amido cholanoic acid) prevented stea-
tohepatitis and fibrosis by blocking SCD1 and boosting 
the flow via the transsulfuration pathway, which kept the 
cellular redox balance stable [76]. Clinical trials among 
MASLD patients also indicated that hepatic SCD1 inhib-
itors dose-dependently improved liver steatosis, steato-
hepatitis and fibrosis, as measured by MRI-PDFF, serum 
liver enzymes and liver histology [77]. However, other 
studies found that 12-week aramchol treatment did not 
reduce LFC measured by MRI-PDFF or stiffness meas-
ured by magnetic resonance elastography (MRE) and 
vibration-controlled transient elastography (VCTE)[78].

DGAT2 inhibitor
The last step in DNL is that diacylglycerol acyltrans-
ferase (DGAT) catalyzes fatty acyl-CoA to diacylg-
lycerol. Previous studies showed that lower level of 
DGAT2 expression leads to reduced steatosis in dia-
betic mice, but hepatocyte damage is exacerbated by 
lipotoxicity from FFAs [79]. Phase 1 studies indicated 
that selective DGAT2 inhibitor (PF-06427878) is well 
tolerated and significantly improves markers of liver 
function [80]. IONIS-DGAT2Rx is an antisense oli-
gonucleotide inhibitor of DGAT2 expression which 
prevents LFC in a phase 2 trial [81]. Another DGAT2 
inhibitor named ervogastat (PF-06865571) presented 
similar efficacy on liver steatosis, without serious gas-
trointestinal adverse events [82]. It’s noting worth that 
co-administration of ACC inhibitor PF-05221304 and 
DGAT2 inhibitor PF-06865571 has a stacked efficacy 
and successfully overcomes the obstacle of ACC [83], 
although ACC inhibitors alone have obvious adverse 
effects of elevating serum TG and activating SREBP1c. 
Apart from a decreased likelihood of dose-dependent 
elevation in serum lipids, the total incidence of adverse 
events did not rise as PF-05221304 dose increased [83].

Currently, several novel hepatic lipogenesis inhibitors 
have shown promising effects in treating MASLD. We 
summarized the major results of these clinical trials in 
Table 2.

Fatty acid oxidation activators
Thyroid hormone receptor (THR) β agonists
Mitochondrial dysfunction is involved in the patho-
physiology of MASLD, and in patients with steato-
hepatitis exhibit decreased activity of respiratory chain 
complexes and fatty acid oxidation [84]. It is an appeal-
ing therapeutic target for MASLD to stimulate mito-
chondria function according to recent studies [85]. 
The thyroid hormone receptor consists of 2 isoforms, 
namely THRα and THRβ. The THR mediates important 
functions for growth and metabolism at the transcrip-
tional and post-translational levels and via autophagy 
[86]. THRβ increases hepatic FAO and reduces liver 
steatosis in rodent models of liver steatosis [87]. Res-
metirom (MGL-3196) is a liver-targeted selective THRβ 
agonist. It resulted in significant reduction in hepatic 
steatosis and serum lipid metabolic products such as 
LDL, TG and ApoB and improvement in MRI-PDFF 
among patients with MASLD, with adverse events of 
transient mild diarrhoea and nausea [88]. Recently, the 
published phase 3 trials showed that resmetirom sig-
nificantly improved liver fibrosis and inflammation, and 
reduced LFC as well as serum LDL-c, ApoB, and TG 
concentrations [89, 90].
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PPAR α/γ/δ agonists
The PPAR transcription factors (PPARα, PPARδ and 
PPARγ) regulate lipid metabolism through gene tran-
scription. PPARα and PPARδ involve in mitochon-
drial biogenesis and FAO, as well as fatty acid uptake 
and TG turnover [91]. PPAR agonists, such as lanifi-
branor (IVA337), elafibranor (GFT505) and saroglitazar, 
improved hepatic steatosis, inflammation and fibrosis 
in MASLD animal models [92]. The pan-PPAR agonist 
lanifibranor, which acts on three different PPAR isotypes, 
significantly improves hepatic steatosis, ballooning and 
inflammation with a relatively low coincidence of adverse 
events in phase 2b trials [93]. Elafibranor, a co-agonist of 
PPARα and PPARδ, improved liver enzymes, lipid and 
glucose metabolism, and systemic inflammation markers 
in adults and reduced of ALT in children with MASLD, 
while the efficacy on histological endpoints of liver ste-
atosis remains to be studied [94]. While saroglitazar, 
another dual PPARα/γ agonist, could also effectively 
improve LFC assessed by MRI-PDFF and several meta-
bolic parameters [95].

Incretins and intestinal FXR agonists
GLP‑1 modulators
GLP-1 is an endogenous intestinal hormone that can 
lower food intake and peripheral fat mobilization by 
promoting the synthesis and release of insulin and pre-
venting the secretion of glucagon. It does this by acting 
through the G protein-coupled GLP-1R. In studies on 
obese diabetic mice, rats, and rhesus monkeys, GLP-1R 
agonists enhanced indicators of hepatic steatosis and 
liver damage [96]. In patients with MASLD, GLP-1R 
agonists, including dulaglutide [97], exenatide [98], lira-
glutide [99] or semaglutide [100], have shown benefi-
cial effects on hepatic fat content and liver histological 

inflammation and fibrosis, as listed in Table 3. Compared 
with liraglutide and dulaglutide, semaglutide has more 
pronounced effects on reducing body weight and blood 
glucose, while dulaglutide has less gastrointestinal 
symptoms [101, 102]. The benefit of GLP-1R agonists 
is strongly associated with weight loss. Combination of 
glucose-dependent insulinotropic peptide (GIP) or gluca-
gon (GCG) with GLP-1R enhances the anti-obesity effect 
[103, 104]. In high-fat diet-fed mice, GIP increases the 
activity of feeding centers in hypothalamic, which leads 
to weight loss and less food intake [105]. Meanwhile, 
GIP reduces GLP-1R-mediated adverse gastrointestinal 
events [106]. While GCG increases energy consumption 
and ameliorates overnutrition and excessive fat accumu-
lation [107]. In patients with obesity and diabetes mel-
litus type 2 (T2DM), GLP-1/GIP co-agonist tirzepatide 
showed a significant reduction in body weight, as well as 
LFC [108] and liver inflammation and fibrosis biomarkers 
[109]. More recently, a triple agonist retatrutide showed 
clinically meaningful improvements in patients with 
obesity or T2DM [110], but its effect on MASLD still 
requires further investigation.

FXR agonist
FXR is a bile acid receptor that mediates lipid signaling 
and reduces blood levels of glucose and lipids in mice 
[111]. Multi-center clinical trial showed obeticholic 
acid (OCA), an FXR agonist, can improve the fibrosis 
and inflammatory activity of liver [112]. However, OCA 
therapy has a negative impact on serum lipoprotein pro-
file, that increases VLDL and LDL and reduces HDL 
[113]. Secondary analysis of FLINT trials demonstrated 
the correlation between 30% relative reduction in MRI-
PDFF and histologic improvements such as steatosis and 
ballooning [114, 115]. Currently, several new-type FXR 

Table 3  Major clinical trials assessing incretins in patients with MASLD

Drug target Drug name Study participants Main Results References

GLP-1R agonists dulaglutide 64 adults with T2DM and more than 6.0% LFC 
by MRI-PDFF

Reduce absolute LFC by 3.5% and liver enzyme 
after 24 weeks

 [97]

Exenatide 76 overweight/obese patients with T2DM 
and LFC by MRS ≥ 10.0%

Reduce LFC by 17.55U/L and fibrosis 4 score 
by 0.10 after 24-week treatment

 [98]

Liraglutide 52 overweight patients with NASH proved 
by biopsy

Achieve resolution in 39% participants 
and reduce progression of fibrosis (9% vs 36% 
in the control group) after 48 weeks

 [99]

Semaglutide 320 patients with NASH and liver fibrosis (F1-
F3) proved by biopsy

Achieve NASH resolution without worsening 
fibrosis in 36–59% participants after 72-week 
intervention. Improve liver fibrosis in 43% 
participants in the 0.4-mg group

 [100]

GLP-1R/GIP co-agonist Tirzepatide 296 overweight/obese participants with T2DM 
and fatty liver index of at least 60

Reduce absolute MRI-PDFF LFC by 8.09% 
after 52-week intervention

 [108]

316 patients with type 2 diabetes with or with-
out stable metformin therapy

Reduce ALT, AST, keratin-18 and procollagen III 
after 26 weeks

 [109]
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agonists are also undergoing clinical trials for MASLD. 
Tropifexor (LJN452) and nonsteroidal cilofexor (GS-
9674) led to reduction of liver biochemistry and hepatic 
steatosis in patients with MASLD compared to placebo 
[116, 117]. Vonafexor and structurally optimized FXR 
agonist, MET409 showed similar reduction [118, 119].

Fibroblast growth factor (FGF) analogues
FGF19
At the intersection of the gut, liver, brain, and white adi-
pose tissue, FGF19 is a gastrointestinal hormone that 
controls the synthesis of bile acid and acts as a transversal 
metabolic coordinator. Dysregulation of FGF19 may be 
linked to illnesses that impact lipid metabolism and the 
gut-liver axis. [120]. FGF19 analogue aldafermin (NGM 
282) reduced liver fat and produced a trend toward fibro-
sis improvement in phase 2 trials with a generally good 
tolerance [121–123]. Furthermore, elevation of choles-
terol associated with aldafermin can be effectively over-
come through the co-administration with rosuvastatin, 
which is considered a reasonable strategy to optimize the 
cardiovascular risk [124].

FGF21
FGF21 acts as a hormone to enhance energy expenditure, 
diminish the DNL associated enzymes and regulate food 
preference, though patients with MASLD tend to have 
elevated FGF21 inversely correlated with IR [125]. High 
doses of recombinant FGF21 effectively decreased liver 
lipid content in obese mice and rhesus macaques [126]. A 
long-acting Fc-FGF21 fusion protein efruxifermin [127, 
128] and recombinant FGF21 analog pegozafermin [129, 
130] and pegbelfermin (BMS-986036) [131] have shown 
benefits in reducing hepatic steatosis and inflammation 
grades in clinical trials, all of which are well tolerated, 
with acceptable coincidence of diarrhoea and nausea.

Others targeting at whole‑body energy balance
Modular of Leptin/Adiponectin axis
Leptin and adiponectin are secreted by white adi-
pose tissue. When overnourished, serum levels of the 
two adipokine are elevated, which inhibit food intake 
and accelerate lipid metabolism. Adiponectin combats 
hepatic steatosis by activating the AMPK pathway to 
inhibit DNL and activating the PPAR-α pathway to pro-
mote FAO, while improves IR in the liver by activating 
glucose transporter proteins and inhibiting key enzymes 
of gluconeogenesis [132]. Recombinant leptin, met-
releptin showed efficacy among patients with MASLD 
associated with relative leptin deficiency and partial lipo-
dystrophy, which was considered by stimulating hepatic 
VLDL-TG secretion through brain-vagus-liver axis 
according to a recent study [133].

SGLT2 inhibitor
SGLT2 is responsible for more than 90% of filtered glu-
cose reabsorption [134]. In a mouse model of T2DM, 
SGLT2 inhibitor significantly improved liver steatosis 
and fibrosis [135]. Clinical trials with canagliflozin [136], 
dapagliflozin [137], and ipragliflozin [138] showed con-
sistent effect in reducing LFC and liver histological stea-
tosis. Because SLGT2 is not expressed in the liver, weight 
loss brought on by treatment and improvements in IR 
may cause a decrease in liver steatosis [134].

Conclusion
MASLD is a global health problem with no medications 
licensed for its treatment currently. Due to the close 
association between metabolic dysfunction and MASLD, 
many medications targeting at hepatic lipid and glucose 
metabolism have shown promising results in patients 
with liver steatosis and metabolic disorders. The sum-
mary of the pathogenesis and latest medications of 
MASLD in this review will help physicians and research-
ers update the latest achievements in the field. The new 
nomenclature of MASLD strictly divides the patients 
with liver steatosis into groups according to the presence 
of metabolic dysfunction, and can remarkably reduce the 
heterogeneity of NAFLD. Further well-designed clini-
cal trials are still required to evaluate the possibility and 
efficacy to treat patients with MASLD by targeting their 
common metabolic dysfunction. Additionally, MASLD 
is still a heterogeneous disease with complex and mul-
tiple causes [1]. Therefore, with understanding of the 
heterogeneity of MASLD, a proper clinical classifica-
tion of MASLD may facilitate the choice of medications 
for every patient with MASLD. More importantly, since 
MASLD is a complex phenotype shaped by the dynamic 
interaction of multiple risk factors, including genetic pre-
disposition, environmental factors and metabolic disor-
ders, a combination of medications targeting at different 
steps of the pathogenesis of MASLD may achieve optimal 
therapeutic effect in the future.
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