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Abstract
Background The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and triglyceride-glucose (TyG) 
index are novel indexes for insulin resistance (IR). We aimed to evaluate associations of TG/HDL-C and TyG with arterial 
stiffness risk.

Methods We enrolled 1979 participants from the Rural Chinese Cohort Study, examining arterial stiffness by brachial-
ankle pulse wave velocity (baPWV). Logistic and linear regression models were employed to calculate effect estimates. 
For meta-analysis, we searched relevant articles from PubMed, Embase and Web of Science up to August 26, 2023. 
The fixed-effects or random-effects models were used to calculate the pooled estimates. We evaluated dose-response 
associations using restricted cubic splines.

Results For cross-sectional studies, the adjusted ORs (95%CIs) for arterial stiffness were 1.12 (1.01–1.23) and 1.78 
(1.38–2.30) for per 1 unit increment in TG/HDL-C and TyG. In the meta-analysis, the pooled ORs (95% CIs) were 1.26 
(1.14–1.39) and 1.57 (1.36–1.82) for per 1 unit increment of TG/HDL-C and TyG. Additionally, both TG/HDL-C and TyG 
were positively related to PWV, with β of 0.09 (95% CI 0.04–0.14) and 0.57 (95% CI 0.35–0.78) m/s. We also found linear 
associations of TG/HDL-C and TyG with arterial stiffness risk.

Conclusions High TG/HDL-C and TyG were related to increased arterial stiffness risk, indicating TG/HDL-C and TyG 
may be convincing predictors of arterial stiffness.
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Introduction
Cardiovascular diseases (CVDs), particularly stroke and 
ischemic heart disease (IHD) [1], constitute the top-rank-
ing causes of premature death globally, and are the main 
contributors to the global burden of health [2]. Arterial 
stiffness, occurring with aging and a variety of patho-
logical conditions, not only has a profound impact on 
the cardiovascular system but contributes significantly to 
the worldwide burden of CVDs [3]. In particular, arterial 
stiffness has been widely acknowledged as a valuable bio-
marker for identifying populations at higher risk of CVDs 
and mortality [4–7]. Given the genesis of arterial stiffness 
as a long-term pathological process, early identification 
of subjects at increased arterial stiffness risk and inter-
vention with appropriate preventive strategies are both 
crucial to reducing the global health burden.

Insulin resistance (IR) is generally defined as reduced 
sensitivity to physiological insulin levels in insulin-tar-
geting tissues [8]. It is likely to result in arterial stiffness 
by promoting dyslipidemia, a pro-inflammatory state, 
and causing endothelial damage [9–11]. Classically, the 
hyper-insulinemic euglycemic clamp is widely accepted 
as the gold standard for determining IR, but it is labori-
ous, high-priced, and time-consuming [12], limiting its 
applicability in clinical settings. Interestingly, the triglyc-
eride to high-density lipoprotein cholesterol ratio (TG/
HDL-C) and triglyceride-glucose index (TyG), derived 
from fasting plasmsa glucose (FPG) and triglycerides [13, 
14], have been recognized as convincing indictors of IR. 
Unfortunately, the relationships of TG/HDL-C and TyG 
with arterial stiffness risk are still being debated. Despite 
previous studies having evaluated associations of TG/
HDL-C and TyG with arterial stiffness risk [15–17], con-
clusions were inconsistent across studies. Several studies 
reported positive relationships between TG/HDL-C and 
TyG and arterial stiffness risk [15, 17–19], but the associ-
ations disappeared in other studies [16, 20–22]. A review 
published in 2020 argued that TG/HDL-C and TyG may 
be accurate indicators of arterial stiffness [23], but it 
failed to quantitatively clarify the associations.

This study therefore aimed to explore the relation-
ships of TG/HDL-C and TyG with arterial stiffness risk 
among rural Chinese adults and to summarize the dose-
response associations of TG/HDL-C and TyG with arte-
rial stiffness.

Methods
Cross-sectional study
Study design and population
This study was based on the Rural Chinese Cohort Study 
(RCCS) which was conducted to assess disease patterns 
and risk factors for non-communicable diseases in the 
rural population [24]. In all, 17,641 participants were re-
examined in the second follow-up survey from July to 

August in 2018–2019. Among these, we enrolled a total of 
2092 subjects who underwent an examination for arterial 
stiffness. Participants with missing data on TG, HDL-C, 
or FPG were excluded (n = 103). We further excluded par-
ticipants with bilateral ankle-brachial indexes (ABIs) < 0.9 
(n = 10). Ultimately, 1979 individuals were included in the 
current analysis (Supplemental Fig. 1).

In addition, we calculated the minimum sample size 
based on the proportion of participants with arterial 
stiffness (p) of 16.51% and the standard normal vari-
able (Z1−α/2) of 1.96 [25]. Due to the 10% non-response 
response, the final sample size was 1471. This study 
therefore enrolled a sufficient number of participants.

Data collection and definition
Socio-demographic data (age, gender, education level, 
and marital status), lifestyle information (physical activ-
ity, smoking, and alcohol consumption), and medical 
records were obtained using structured questionnaires in 
in-person interviews. In physical examinations, we mea-
sured participants’ weight, height, waist circumference 
(WC), and blood pressure (BP) according to established 
and standardized procedures, as previously described 
[24]. Body mass index (BMI) was defined as weight 
divided by height squared (Kg/m2). Systolic and dia-
stolic blood pressure (SBP and DBP) were assessed using 
an electronic sphygmomanometer (HEM-770AFuzzy, 
Omron). Overnight fasting blood samples were collected 
to measure biochemical parameters, including the levels 
of FPG, total cholesterol (TC), TG, HDL-C, and low-den-
sity lipoprotein cholesterol (LDL-C) using an automatic 
biochemical analyzer (HITACHI, model 7060, Tokyo). 
TG/HDL-C and TyG were defined as TG (mmol/L) 
divided by HDL-C (mmol/L) and Ln [fasting TG (mg/dL) 
*FPG (mg/dL)/2], respectively [26].

Ascertainment of arterial stiffness
The baPWV and ABI were tested simultaneously by 
trained investigators using an arteriosclerosis device (BP-
203 RPE III, Omron). After participants had been rest-
ing for over 5  min in the supine position, the pressure 
waveform and transmission distance bilateral brachial 
and ankle arteries were automatically recorded by 4 cuffs 
with volume pulse and oscillating pressure sensors. We 
calculated baPWV values by the formula (La-Lb)/Tba. 
La and Lb are defined as the length from the heart to the 
ankle and brachium, and Tba is the transit time between 
the ankle and brachial waveforms. Accordingly, ABI was 
determined as ankle SBP divided by brachial SBP. As the 
reliability of baPWV values may be diminished in par-
ticipants with severe atherosclerosis [27], we excluded 
participants with bilateral ABIs < 0.9. The contralateral 
baPWV was taken if individuals had unilateral ABI < 0.9, 
and the higher baPWV values of the right and left sides 
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were considered if no ABI < 0.9. Additionally, we defined 
arterial stiffness as baPWV value ≥ 1800 cm/s [28].

Statistical analysis
The characteristics of study populations were described 
as frequency (percentage) for categorical variables and 
median (interquartile range) for continuous variables. 
The differences in participants without or with arterial 
stiffness were compared by the Kruskal-Wallis or χ2 test.

Logistic regression was used to assess relationships of 
TG/HDL-C and TyG with arterial stiffness, while lin-
ear trends were assessed by applying the median values 
of quartiles as continuous variables. Linear regression 
was used to assess associations of TG/HDL-C and TyG 
with baPWV levels, with beta coefficient (β) and 95% CI. 
Given possible confounders, we examined three mod-
els: model 1 included age and gender; model 2 included 
model 1 plus marital status, education level, smok-
ing, alcohol drinking, and physical activity; and model 
3 included model 2 plus BMI, WC, SBP, DBP. Subgroup 
analyses were conducted for age (< 65 and ≥ 65 years), 
sex (men and women), smoking (never and ever/cur-
rent), alcohol drinking (no and yes), and BMI (< 24 and 
≥ 24 Kg/m2). We further explored the interaction effects 
of blood pressure and fasting blood glucose levels with 
TG/HDL-C and TyG for arterial stiffness. Sensitiv-
ity analyses were conducted with the standard for arte-
rial stiffness of 1400 cm/s. Additionally, we explored the 
relationships between TG/HDL-C and TyG with healthy 
vascular aging (HVA), normal vascular aging (NVA), and 
early vascular aging (EVA), defined as < baPWV-percen-
tile < 10th, 10th ≤ baPWV-percentile ≤ 90th, and baPWV-
percentile > 90th of the population stratified by age and 
sex [29].

SAS v9.4 was taken for all analyses (SAS Institute Inc., 
Cary, NC, USA), with a two-sided P value < 0.05 consid-
ered statistically significant.

Dose-response meta-analysis
Search strategy
We comprehensively searched PubMed, EMBASE and 
Web of Science up to August 26, 2023 for all relevant 
records in the English-language, using combinations of 
MeSH and free-text terms. Detailed search strategies 
are shown in Supplemental Table 5. Extra eligible pub-
lications were manually screened for the bibliographical 
references.

This dose-response meta-analysis was performed 
according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [30]. The registra-
tion number on the International Prospective Register of 
Systematic Reviews (PROSPERO) is CRD42022325395.

Study selection
We included studies if: (1) they were cross-sectional, 
case-control, or cohort studies; (2) their populations were 
aged ≥ 18; (3) the exposure included TG/HDL-C or TyG 
index; (4) the outcome included arterial stiffness (defined 
as PWV) or PWV levels; and (4) they provided quanti-
tative estimates and 95% CIs or standard errors (or rel-
evant data to compute these). If multiple publications 
derived from the same study, the included data was taken 
from studies with the largest sample size or the most 
informative report. Reviews, editorials, and letters were 
excluded. In addition, two authors (W.Z. and Y.K.) sepa-
rately searched relevant literature, reviewed titles, and 
abstracts, and screened full texts using the same selection 
criteria.

Data extraction and quality assessment
Two authors (W.Z. and Y.K.) separately collected infor-
mation regarding first author, publication year, coun-
try, study design, sex, age, study size, number of cases, 
follow-up years if cohort studies, measurement of expo-
sure, assessment of outcome, confounding factors, and 
most adjusted estimates (ORs, risk ratios [RRs], hazard 
ratios [HRs], or β) with 95% CIs. If a study presented both 
central (carotid-femoral or aortic pulse wave velocity 
[cfPWV or aPWV]) and peripheral measures (baPWV), 
we extracted results of central measures, in accordance 
with the gold standard approach for evaluating arterial 
stiffness [31].

The Agency for Healthcare Research and Quality scale 
(AHRQ), including 11 aspects with three answers (0, no 
or unclear; 1, yes), was taken to evaluate the quality of 
cross-sectional studies [32]. Studies ware categorized as 
poor (0–3), general (4–7), or high quality (8–11), respec-
tively [33]. The Newcastle-Ottawa Scale (NOS) was 
applied to assess the quality of cohort studies with scores 
ranging from 0 to 9 across 8 items [34]. Any uncertainty 
was resolved in consultation with the third reviewer 
(D.H.).

Data synthesis and analysis
Our effect estimates incorporated both binary data (arte-
rial stiffness) and continuous data (PWV levels) in this 
meta-analysis. ORs and β values with corresponding 95% 
CIs were taken as general effect measurements for asso-
ciations of TG/HDL-C and TyG with arterial stiffness risk 
and PWV levels. We assumed that the RRs/HRs given in 
eligible records were about equal to ORs [35]. Any results 
in original articles that stratified by different gender or 
exposure types were regarded as independent studies. If 
the number of cases in each group was not published, we 
determined it via the provided RRs/HRs and the count of 
total cases [36]. When data on exposed subjects or per-
son-years in a category was missing, we assumed it to be 
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equal in size [36]. The midpoint was taken as the mean 
TG/HDL-C or TyG if the exposure category was reported 
as a range [36]. If the lowest or highest category was 
open-ended, the range was assumed to be the same width 
as the nearest group, and the midpoint was determined 
accordingly [37].

Heterogeneity was evaluated through Cochran’s Q and 
I2 statistics [38]. For the Q statistic, P < 0.1 was considered 
as statistical significance. Regarding I2 statistics, I2 values 
of 75%, 50%, and 25% were taken to be high, general, and 
poor heterogeneity, respectively [38]. Fixed-effects mod-
els were selected to pool ORs or β values with 95% CIs if 
I2 < 50%; otherwise, random-effects models were applied. 
Further, we conducted generalized least-squares regres-
sion to evaluate dose-response relationships [39]. We also 
explored potential linear or nonlinear trends through 
modelling TG/HDL-C and TyG with restricted cubic 
splines, with 3 knots located at the 75th, 50th, and 25th 
percentiles of distribution [40]. Only studies with at least 
3 categories of TG/HDL-C or TyG were included in the 
dose-response analysis.

Subgroup analyses were performed between sex (men, 
women, and both), average age (≤ 50 and > 50 years), 
region (Asia, and Europe/United States [US]), sample size 
(≤ 1000 and > 1000), study design (cross-sectional and 
cohort studies), study quality (high and medium quality), 
and PWV assessment site (baPWV, cfPWV, and aPWV), 
then adjusted for some major potential confounders 
(BMI, smoking, alcohol drinking, FPG, and SBP) in the 
study-specific dose-response analysis. Moreover, we con-
ducted meta-regression analyses among different sub-
groups [41], and performed sensitivity analyses through 
excluding one study at a time. If there were 8 or more 
available studies, publication bias (small-study effect) was 
examined with the Egger’s test and funnel plots [42]. The 
trim and fill method was employed for adjustment when 
publication bias was found.

Stata 14.0 was taken for all analyses (Stata Corp, Col-
lege Station, TX, USA). Statistical significance was 
defined as two-sided P < 0.05.

Results
Cross-sectional study
The characteristics of our study’s populations, without 
and with arterial stiffness, are shown in Table 1. Signifi-
cant differences were found in the distributions of age, 
marital status, alcohol consumption, physical activity, 
BMI, SBP, DBP, FPG, TG, TyG index, and baPWV (all 
P < 0.05).

We further observed positive and linear associations of 
TG/HDL-C and TyG with arterial stiffness in the pres-
ent study (Table 2). In the multivariable adjusted model 
3, the ORs (95% CIs) for arterial stiffness across TG/
HDL-C quartiles 1, 2, 3, 4 were 1.00 (reference), 1.43 

(0.95–2.15), 1.70 (1.13–2.55), and 1.81 (1.18–2.78) (Ptrend 
= 0.005), respectively, while the ORs (95% CIs) for arte-
rial stiffness were 1.00 (reference), 1.57 (1.04–2.37), 1.91 
(1.25–2.92), and 2.73 (1.75–4.26) across TyG quartiles 
(Ptrend < 0.001), respectively. Similarly, the ORs (95% CIs) 
for arterial stiffness with per 1 unit increment in TG/
HDL-C and TyG were 1.12 (1.01–1.23) and 1.78 (1.38–
2.30) in model 3, respectively. Additionally, multivariable 
linear regressions illustrated that per 1 unit increment in 
TG/HDL-C and TyG were related to 0.11 (0.03–0.19) and 
0.58 (0.39–0.79) m/s increase in baPWV. When subjects 
were stratified by potential risk factors, consistent results 
were observed (Fig. 1). As shown in Supplemental Table 
2, no significant interaction was discovered between TG/
HDL-C and arterial stiffness (all Pinteraction > 0.05), but we 
found a significant interaction between SBP and TyG for 
arterial stiffness (Pinteraction = 0.025).

In addition, with the standard for arterial stiffness of 
1400  cm/s, the results were consistent with the main 
results (Supplemental Table 1). The relationships of TG/
HDL-C and TyG with HVA, NVA and EVA were similar 
to those of arterial stiffness (Supplemental Tables 3 and 
4).

Dose-response meta-analysis
Literature search and study characteristics
Our initial search found 6343 relevant records. Of those, 
22 articles (comprising 40 studies) were selected for 
meta-analysis [14–22, 25, 29, 43–53]. Finally, this meta-
analysis included 41 eligible studies, including the current 
study. The selection and exclusion details are illustrated 
in a flow diagram (Supplemental Fig. 2).

Details of included articles are provided in Supplemen-
tal Table 5. Overall, we included 18 cross-sectional and 5 
cohort study articles, comprising 66,676 individuals. Of 
those, 38 studies assessed the associations between sur-
rogate estimates of IR (16 for TG/HDL-C and 22 for TyG) 
and arterial stiffness risk [15–22, 25, 29, 43–46, 48–52], 
while 15 examined the associations of surrogate esti-
mates of IR with PWV levels [14, 17, 22, 25, 29, 47, 49, 
51, 53], including 5 for TG/HDL-C and 10 for TyG. The 
mean AHRQ of cross-sectional studies was 7.8 (Supple-
mental Table 7), and the average NOS score of cohort 
studies was 8.4 (Supplemental Table 8).

TG/HDL-C and arterial stiffness risk
Our meta-analysis included 9 studies exploring the cor-
relation of arterial stiffness with the highest versus lowest 
TG/HDL-C levels [15, 16, 20, 43, 44]. The summary OR of 
the highest group was 1.54 (95% CI 1.32–1.80, I2 = 42.0%, 
Pheterogeneity = 0.087; Fig. 2). When conducting the sensi-
tivity analysis, the pooled OR was robust. No publication 
bias was revealed by the Egger’s tests (P = 0.051) and fun-
nel plots (Supplemental Fig. 3A).
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Moreover, we discovered a positive linear relation-
ship between TG/HDL-C and arterial stiffness risk [15, 
16, 19–21, 29, 43–45] (Pnon−linear = 0.376; Fig. 3A). With 
per 1 unit increase in TG/HDL-C, arterial stiffness risk 
increased by 26% (OR 1.26, 95% CI 1.14–1.39, I2 = 61.8%, 
Pheterogeneity = 0.002; Fig.  4). With sensitivity analysis, no 
individual studies altered the summary OR significantly. 
Publication bias was revealed through the Egger’s tests 
(P = 0.001) and funnel plots (Supplemental Fig.  4A). 
After adjusting for publication bias, the summary finding 
was robust (OR 1.16, 95% CI 1.05–1.28).

Additionally, TG/HDL-C was positively related to 
PWV (β 0.09, 95% CI 0.04–0.14, I2 = 38.4%, Pheterogeneity = 
0.165; Supplemental Fig. 4) [14, 29, 47].

TyG and arterial stiffness risk
The meta-analysis included 13 studies to evaluate asso-
ciations of arterial stiffness with the highest versus lowest 

Table 1 Baseline characteristics of study participants with and 
without Arterial stiffness
characteristics Overall 

(N = 1,949)
Arterial 
stiffness 
(N = 414)

Non-
arterial 
stiffness 
(N = 1,565)

P

Age, years 62 (53–69) 70 
(64–75)

58 (51–66) < 0.001

Men, n (%) 716 (36.18) 151 
(36.47)

565 (36.10) 0.889

Married or cohabi-
tating, n (%)

1690 (86.80) 306 
(75.74)

1384 
(89.70)

< 0.001

High school or 
above, n (%)

187 (9.45) 29 (7.00) 158 (10.10) 0.056

Smoking, n (%) 534 (27.38) 110 
(27.23)

424 (27.43) 0.937

Alcohol drinking, 
n (%)

216 (11.11) 24 (5.94) 192 (12.46) < 0.001

Physical activity, 
MET·min/week

7461.27 
(4213.09-12507.85)

5040.00 
(2741.54-
7810.58)

8234.12 
(4826.92-
13525.19)

< 0.001

BMI, Kg/m2 25.27 
(22.77–27.72)

25.02 
(22.75–
27.24)

25.33 
(22.80-
27.83)

0.043

WC, cm 87.55 
(80.20-95.05)

88.70 
(81.55–
95.40)

87.40 
(80.05–
94.90)

0.145

SBP (mmHg) 124.67 
(113.50-138.83)

141.17 
(129.00-
152.83)

121.33 
(111.33-
133.33)

< 0.001

DBP (mmHg) 74.67 
(67.67–81.67)

78.67 
(70.50-
85.67)

73.33 
(67.00-
80.67)

< 0.001

FPG (mmol/L) 5.41 (5.09–5.99) 5.59 
(5.12–
6.38)

5.39 
(5.09–5.93)

< 0.001

TC (mmol/L) 4.37 (3.80–4.98) 4.38 
(3.77–
5.15)

4.36 
(3.80–4.95)

0.297

TG (mmol/L) 1.49 (1.08–2.14) 1.53 
(1.12–
2.28)

1.46 
(1.07–2.12)

0.026

HDL-C (mmol/L) 1.32 (1.11–1.55) 1.32 
(1.12–
1.54)

1.32 
(1.11–1.55)

0.626

LDL-C (mmol/L) 2.41 (1.98–2.88) 2.40 
(1.94-
3.00)

2.41 
(1.99–2.85)

0.645

TG/HDL-C 1.11 (0.73–1.83) 1.17 
(0.77–
1.88)

1.08 
(0.72–1.82)

0.158

TyG index 8.81 (8.45–9.23) 8.93 
(8.53–
9.32)

8.78 
(8.43–9.20)

< 0.001

baPWV (m/s) 15.19 
(13.28–17.48.)

19.82 
(18.87–
21.32)

14.36 
(12.92–
15.86)

< 0.001

Note: Data are presented as median (Q1-Q3) or number (%). BMI, body mass 
index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; TG, 
triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; TyG, triglyceride-glucose; baPWV, brachial-ankle pulse 
wave velocity

Table 2 Associations of TG/HDL-C and TyG index with arterial 
stiffness (baPWV ≥ 1800 cm/s) and baPWV levels

Range Model 1 Model 2 Model 3
TG/HDL-C
Q1 < 0.73 Ref Ref Ref
Q2 0.73–

1.11
1.20 
(0.84–1.70)

1.22 
(0.86–1.75)

1.43 
(0.95–2.15)

Q3 1.11–
1.83

1.60 
(1.14–2.25)

1.54 
(1.09–2.19)

1.70 
(1.13–2.55)

Q4 ≥ 1.83 1.66 
(1.17–2.35)

1.64 
(1.15–2.34)

1.81 
(1.18–2.78)

P for trend 0.001 0.003 0.005
Per 1 unit increase 1.11 

(1.02–1.21)
1.11 
(1.02–1.20)

1.12 
(1.01–1.23)

Per 1 unit increase, 
m/s*

0.13 
(0.04–0.21)

0.12 
(0.03–0.20)

0.11 
(0.03–0.19)

TyG index
Q1 < 8.45 Ref Ref Ref
Q2 8.45–

8.81
1.18 
(0.82–1.69)

1.27 
(0.88–1.83)

1.57 
(1.04–2.37)

Q3 8.81–
9.23

1.63 
(1.15–2.32)

1.68 
(1.17–2.41)

1.91 
(1.25–2.92)

Q4 ≥ 9.23 2.14 
(1.50–3.03)

2.22 
(1.55–3.18)

2.73 
(1.75–4.26)

P for trend < 0.001 < 0.001 < 0.001
Per 1 unit increase 1.64 

(1.34–2.01)
1.64 
(1.33–2.02)

1.78 
(1.38–2.70)

Per 1 unit increase, 
m/s*

0.65 
(0.45–0.85)

0.64 
(0.44–0.84)

0.58 
(0.39–0.79)

Data are odds ratio (ORs) or beta coefficient (β) and 95% confidence intervals 
(95% CIs).

Model 1: adjusted for age and gender

Model 2: adjusted for age, gender, marital status, education, smoking, alcohol 
drinking, physical activity

Model 3: adjusted for age, gender, marital status, education, smoking, alcohol 
drinking, physical activity, body mass index, waist circumference, systolic blood 
pressure, diastolic blood pressure, total cholesterol

*: multiple linear regressions for PWV levels according to TG/HDL-C or TyG index 
(per 1 unit increment)
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TyG [16–18, 22, 25, 46, 49, 51, 52]. The pooled OR of the 
highest TyG level was 1.86 (95% CI 1.53–2.25, I2 = 73.7%, 
Pheterogeneity < 0.001; Fig. 2). With sensitivity analysis, the 
summary results were consistent with original estimates. 
The Egger’s tests (P = 0.111) and funnel plots did not 
reveal publication bias (Supplemental Fig. 4B).

Further, with 21 records included in the dose-response 
meta-analysis, we discovered a positive linear relation-
ship of TyG with arterial stiffness risk [16, 17, 19, 22, 
25, 29, 46, 48–52] (Pnon−linear = 0.289; Fig. 3B). With per 
1 unit increase of TyG, the pooled arterial stiffness risk 
increased by 57% (OR 1.57, 95% CI 1.36–1.82, I2 = 94.1%, 
Pheterogeneity < 0.001; Fig. 4). With sensitivity analysis, the 
size and direction of pooled results also remained similar. 
The Egger’s tests (P < 0.001) and funnel plots all detected 
publication bias (Supplemental Fig.  4B). After adjust-
ment, the major findings were not affected substantially 
(OR 1.10, 95% CI 0.97–1.26).

Moreover, TyG was positively related to PWV lev-
els with the pooled β value of 0.57 (95% CI 0.35–0.78, 
I2 = 97.2%, Pheterogeneity < 0.001; Supplemental Fig. 5) [14, 
17, 22, 25, 29, 49, 51, 53].

Subgroup analysis
Given the restricted number of studies, subgroup analy-
sis was only performed between TG/HDL-C and TyG 
and arterial stiffness in the dose-response analysis. The 
overall findings of subgroup analyses confirmed that the 
main findings were robust, though we discovered poten-
tial sources of heterogeneity (Supplemental Table 9). 

For TG/HDL-C, we found that age, study quality, and an 
adjusted variable (FPG) may be sources of heterogeneity 
(all P < 0.05) by univariable meta-regression. For TyG, the 
heterogeneity was reduced among subgroups stratified 
by gender, sample size, and an adjustment factor (SBP), 
all of which may be potential sources of heterogeneity (all 
P < 0.05).

Discussion
In the cross-sectional analysis, both TG/HDL-C and TyG 
index were positively correlated with arterial stiffness and 
PWV levels. The validity and generalizability of the find-
ings were confirmed by the subsequent meta-analysis, 
indicating TG/HDL-C and TyG could be reliable predic-
tors of arterial stiffness.

Although the correlations of IR with arterial stiffness 
have been discussed for decades, the relationships of IR 
with arterial stiffness are still being debated. Several stud-
ies have illustrated that TG/HDL-C and TyG are related 
to arterial stiffness [17–19]. We observed consistent posi-
tive and linear associations between TG/HDL-C and TyG 
and arterial stiffness. Meanwhile, significant interaction 
between SBP and TyG for arterial stiffness was observed, 
which is consistent with a recent meta-analysis [54].

Our meta-analysis included 40 studies, along with the 
current study, to assess associations of TG/HDL-C and 
TyG with arterial stiffness. The results suggested that 
TG/HDL-C and TyG were positively related to arte-
rial stiffness risk and PWV levels, in line with previous 
reviews [23, 55]. Moreover, this meta-analysis revealed 

Fig. 1 Subgroup analysis of associations between TG/HDL-C and TyG index (per 1 unit increment) and arterial stiffness Data are shown as OR (95% CI). 
Note: Adjusted for age, gender, marital status, education, smoking, alcohol drinking, physical activity, body mass index, waist circumference, systolic and 
diastolic blood pressure, total cholesterol, a for TG/HDL-C, b for TyG index
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linear associations of TG/HDL-C and TyG with arterial 
stiffness risk, reinforcing the validity and generalizability 
of our findings.

To investigate the source of heterogeneity, a series of 
subgroup analyses were conducted in the dose-response 
analysis. Despite the high heterogeneity, the findings of 
subgroup and sensitivity analyses generally supported 
our major results. For TG/HDL-C, the heterogeneity may 
be due to variations in age, study quality, and a confound-
ing factor (FPG). The study of Ungvari et al. found that 
age-induced pathological alterations in vascular structure 
and function may result in the genesis of arterial stiff-
ness [56]. Moreover, it is well-documented that diabetes, 

measured by FPG, plays a crucial role in increasing arte-
rial stiffness risk [57]. Regarding TyG, the high hetero-
geneity might result from differences in sex, sample size, 
and an adjusted variable (SBP). It seems reasonable to 
assume that sex-related discrepancies in hormonal status 
and adipose tissue distribution could explain the differ-
ences between sexes [58, 59]. The difference in SBP may 
be explained by SBP being associated with progression of 
arterial stiffness [54].

Several biological mechanisms may explain relation-
ships of TG/HDL-C and TyG with arterial stiffness and 
PWV levels. To date, emerging studies have demon-
strated that both excessive activation of insulin receptor 

Fig. 2 Forest plot of study-specific risks for arterial stiffness with highest versus lowest TG/HDL-C and TyG index
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and vascular mineralocorticoid receptors (MR), as occurs 
in a state of IR, are now recognized as playing a criti-
cal role in increasing Na+ channel (EnNaC) activity and 
expression via mTOR and SGK-1-dependent mechanisms 
[60]. Further, current data from epidemiological and 
experimental studies support the notion that over-activa-
tion of the EnNaC is associated with a series of negative 
consequences, including decreased NO bio-availability 
[61, 62], endothelial cell stiffening [63, 64], impaired 
vasodilator function [65, 66], oxidative stress, and stim-
ulation of an inflammatory environment [62, 64], all of 
which contribute to the genesis of vascular fibrosis and 
stiffness [55, 60, 62–64]. In addition, IR may directly lead 
to vascular endothelial dysfunction [67], which has been 
implicated in the pathogenesis of arterial stiffness [55].

The current study has some strengths. First, the study 
provided the most up-to-date pooled estimates, and it 
performed dose-response analysis. Second, the study 
combined cross-sectional study with dose response 
meta-analysis, which provided more robust evidence. 
Moreover, we found positive linear associations which 
support the finding that higher TG/HDL-C and TyG are 
related to increased arterial stiffness risk. Finally, this 
study was conducted with TG/HDL-C and TyG analyzed 
separately as categorical variables and continuous vari-
ables, with similar results observed, further validating the 
stability of our main findings.

The present study has certain limitations, however, that 
should be acknowledged when interpreting its results. 
First, although baPWV was the commonly-used mea-
sure of arterial stiffness due to its simplicity and non-
invasiveness, it could be affected by stiffness of peripheral 
arteries, making it less effective [68]. Second, although 
our findings indicated a more profound relationship 
between the TyG index and arterial stiffness compared 
to TG/HDL-C, the difference was not significant. Further 
research is needed to explore the potential of this finding. 

Third, although medication may be a confounding factor, 
we failed to adjust for it due to a number of missing val-
ues in medication history. The relationship can be clari-
fied in a future study. Fourth, several studies were based 
on populations with diabetes or hypertension, which 
may be another cause of potential bias, although results 
of subgroup analysis were robust. Eventually, there was 
evidence of heterogeneity or publication bias; however, 
the overall findings were unaffected significantly after 
the trim and fill adjustment. In light of the above factors, 
more relevant studies are needed to clarify the relation-
ships of TG/HDL-C and TyG with arterial stiffness risk 
and PWV levels.

Conclusion
Taken together, our results indicate that TG/HDL-C 
and TyG may be reliable predictors of arterial stiffness 
risk, while TyG is positively associated with PWV lev-
els. Given the convenience of measuring TG/HDL-C and 
TyG in clinical settings, further research should focus on 
determining whether inclusion of TG/HDL-C and TyG 
measures can improve the efficacy of current arterial 
stiffness prediction tools.

Highlights.

1. 1. TG/HDL-C and TyG index were positively 
associated with risk of arterial stiffness and PWV 
levels.

2. 2. TG/HDL-C and TyG index may be convincing 
predictors of arterial stiffness that could be used in 
clinical practice.

3. 3. This study refined and expanded upon findings 
of associations of TG/HDL-C and TyG index with 
arterial stiffness risk.

Fig. 3 Dose?response association of TG/HDL-C (A) and TyG index (B) with the risk of arterial stiffness.
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