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Abstract 

Background Acute pancreatitis (AP) has become a significant global health concern, and a high body mass index 
(BMI) has been identified as a key risk factor exacerbating this condition. Within this context, lipid metabolism 
assumes a critical role. The complex relationship between elevated BMI and AP, mediated by lipid metabolism, 
markedly increases the risk of complications and mortality. This study aimed to accurately define the correlation 
between BMI and AP, incorporating a comprehensive analysis of the interactions between individuals with high BMI 
and AP.

Methods Mendelian randomization (MR) analysis was first applied to determine the causal relationship between BMI 
and the risk of AP. Subsequently, three microarray datasets were obtained from the GEO database. This was followed 
by an analysis of differentially expressed genes and the application of weighted gene coexpression network analy-
sis (WGCNA) to identify key modular genes associated with AP and elevated BMI. Functional enrichment analysis 
was then performed to shed light on disease pathogenesis. To identify the most informative genes, machine learning 
algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least 
Absolute Shrinkage and Selection Operator (LASSO), were employed. Subsequent analysis focused on the colocali-
zation of the Quantitative Trait Loci (eQTL) data associated with the selected genes and Genome-Wide Association 
Studies (GWAS) data related to the disease. Preliminary verification of gene expression trends was conducted using 
external GEO datasets. Ultimately, the diagnostic potential of these genes was further confirmed through the devel-
opment of an AP model in mice with a high BMI.

Results A total of 21 intersecting genes related to BMI>30, AP, and lipid metabolism were identified from the data-
sets. These genes were primarily enriched in pathways related to cytosolic DNA sensing, cytokine‒cytokine receptor 
interactions, and various immune and inflammatory responses. Next, three machine learning techniques were utilized 
to identify HADH as the most prevalent diagnostic gene. Colocalization analysis revealed that HADH significantly 
influenced the risk factors associated with BMI and AP. Furthermore, the trend in HADH expression within the external 
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Introduction
Acute pancreatitis (AP) triggers a significant inflamma-
tory response caused by a wide range of factors. This 
sequence of events leads to the activation of pancreatic 
enzymes within the pancreas, resulting in autodigestion, 
tissue swelling, bleeding, and potentially, pancreatic tis-
sue necrosis. Key triggers include cholelithiasis and alco-
hol consumption. Statistical evidence underscores the 
substantial public health impact of AP, with an incidence 
rate of 33.74 cases per 100,000 person-years [1]. In cer-
tain countries, the incidence rate of AP has risen to 72 
cases per 100,000 person-years [2]. Remarkably, the over-
all mortality rate associated with this variant of pancrea-
titis is 15%. When organ failure becomes a prominent 
feature of the disease, the mortality rate surges to a stag-
gering 35% [3]. In Sweden, the annual financial burden 
of AP is 38,500,000 euros, with the average treatment 
cost per patient reaching approximately 10,000 euros [4]. 
The evaluation of the disease’s impact underscores the 
critical need for proactive management strategies and 
heightened awareness among healthcare providers and 
the public. Furthermore, this study highlights the essen-
tial need for comprehensive and prompt diagnostic and 
therapeutic interventions. However, the complex patho-
genesis of AP at the microlevel presents a formidable 
challenge, with many aspects yet to be uncovered.

The World Health Organization defined a Body Mass 
Index (BMI) of 30 or higher as indicating obesity. Obesity 
substantially affects the development and progression 
of AP, exerting multiple adverse effects on this condi-
tion. Research indicates that obesity can exacerbate the 
inflammatory response associated with AP, leading to 
detrimental outcomes [5, 6]. A study conducted in 2014 
corroborated these findings, highlighting the strong link 
between obesity and the exacerbation of the systemic 
inflammatory response in acute pancreatitis [7]. Indi-
viduals with a BMI of 23 or higher face a significantly 
increased risk of developing severe acute pancreatitis 
compared to those with a normal BMI [8]. Obesity is 
acknowledged as a major risk factor for AP, introducing 
additional complexity to the disease etiology. Consider-
ing the established link between obesity and AP, unrave-
ling the potential molecular mechanisms that connect 
these two conditions is crucial. Gaining such insights is 

essential for enhancing our understanding of AP patho-
genesis and could pave the way for innovative therapeu-
tic approaches for individuals affected by this condition. 
Furthermore, lipid metabolism has been identified as 
a key element in the pathogenesis of various diseases, 
including obesity, AP, cancer, immune disorders, and 
neurodegenerative diseases [9–12]. The complex inter-
play between lipid metabolism and disease pathogenesis 
highlights its importance in understanding disease mech-
anisms and developing personalized treatment strategies.

Bioinformatics offers a systematic approach to deci-
phering complex biological processes, aiding in the iden-
tification of molecular signatures that underpin disease 
pathophysiology. Machine learning, a subset of artificial 
intelligence, bolsters bioinformatics through the use of 
algorithms capable of identifying patterns and relation-
ships within vast datasets. The integration of machine 
learning into modern precision medicine is attributed to 
its ability to accurately process and manage large quanti-
ties of data, enhancing the development and application 
of personalized treatment strategies [13]. By integrating 
the capabilities of bioinformatics and machine learning, 
it becomes possible to efficiently explore the complex 
network of molecular interactions and pinpoint potential 
biomarkers with clinical significance.

Despite the limited research exploring the causal rela-
tionship between BMI and AP and the scarcity of studies 
identifying shared diagnostic biomarkers for high BMI 
status and AP, this study sought to address these gaps. 
Initially, hypothesizing a distinct causal link between 
BMI and AP complicated by genetic factors, this inves-
tigation represents a pioneering effort to combine Men-
delian randomization (MR), bioinformatics analysis, and 
machine learning algorithms to examine the BMI-AP 
connection. Moreover, this study aimed to identify key 
genes implicated in the progression of AP in individuals 
with a BMI >30.

Methods
Data collection
Exposure
BMI data were collected from the IEU database, spe-
cifically from the IEU OpenGWAS project (mrcieu.

validation dataset aligned with the trend in the experimental data, thus providing a preliminary validation 
of the experimental findings.The changes in its expression were further validated using external datasets and quanti-
tative real-time polymerase chain reaction (qPCR).

Conclusion This study systematically identified HADH as a potential lipid metabolism-grounded biomarker for AP 
in patients with a BMI>30.

Keywords AP, BMI, Lipid metabolism, Machine learning
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ac.uk), including samples ukb-a-248, ukb-b-19953, and 
ukb-b-2303.

Outcome
AP data were collected from the IEU database, specifi-
cally from the IEU OpenGWAS project, including sample 
ukb-b-19388.

Transcriptomic data
Three RNA sequencing datasets were obtained from the 
GEO public database (http:// www. ncbi. nlm. nih. gov/ geo) 
[14]. These include:

GSE151839: Gene expression data from skin and fat 
biopsies of 10 obese (BMI 35-50) and 10 nonobese 
(BMI 18.5-26.9) individuals.
GSE44000: Gene expression data from subcutaneous 
adipose tissue of 7 obese (BMI>30) and 7 nonobese 
(BMI<25) individuals.
GSE194331: Gene expression data from whole blood 
samples were collected from 32 healthy individuals 
and 87 individuals diagnosed with AP.

Additionally, 1222 lipid metabolism-related genes 
(LMRGs) were downloaded from NCBI (National Center 
for Biotechnology Information (nih.gov), accessed in July 
2023) using the keywords "lipid metabolism" and "Homo 
sapiens". The GSE109227 and GSE166047 datasets were 
used as validation cohorts. The research design is illus-
trated in the flowchart in Fig. 1.

Causal effect of BMI on AP
To address linkage disequilibrium, this study excluded 
SNPs with a  r2 greater than 0.001 within a 10,000 kb 
radius of the most significantly associated SNP across 
three distinct BMI datasets. A significance threshold of 
P < 5×10−8 was set, and SNPs meeting this criterion were 
selected as instrumental variables (IVs) to investigate the 
causal association between BMI and AP. This study uti-
lized dual-sample MR analysis to determine the magni-
tude and direction of the impact of BMI on AP. Various 
MR methods (MR‒Egger, weighted mode, simple mode, 
inverse variance weighted (IVW) and weighted median) 
were employed to establish causality, with a preference 
for the IVW approach due to its robustness. After estab-
lishing causality, heterogeneity was assessed to ensure the 
reliability and consistency of the findings.

Identification of differentially expressed genes (DEGs)
Fat biopsy gene expression data from GSE151839 
were combined with GSE44000 gene expression data. 
Acknowledging the difficulty of directly comparing sam-
ples from different batches and the potential pitfalls of 

merging datasets without accounting for batch effects 
and variations, this study addressed this issue using the 
“sva” R package. Batch effects were removed by preserv-
ing only common genes in the merged dataset, facilitat-
ing the integration of datasets from different platforms. 
Outlier samples were excluded through correlation anal-
ysis, resulting in 16 samples with BMI>30 and 11 samples 
with BMI<30 being retained. For GSE194331, after the 
data were downloaded, genes with an average expression 
level greater than 1 were retained to increase the reliabil-
ity of the data. Logarithmic processing was performed 
on the data, and outlier samples were excluded through 
correlation analysis, leaving 70 AP samples and 20 con-
trol samples. DEGs were identified utilizing the “limma” 
package (P <0.05 and |log2FC|≥0.5) [15]. DEGs were vis-
ualized using volcano plots.

Weighted gene coexpression network analysis (WGCNA)
To elucidate the associations between gene expression 
levels and diseases, the “WGCNA” package was used to 
construct a coexpression network. Data preprocessing 
began with the “goodSamplesGenes” function within the 
“WGCNA” R package, which effectively removed statisti-
cally significant outlier samples. Subsequently, an appro-
priate soft power parameter (β) was carefully chosen to 
construct a weighted adjacency matrix, which was sub-
sequently transformed into a topological overlap matrix 
(TOM). Modules were visually delineated and labeled 
with distinctive colors, accompanied by the extraction of 
module features (MEs). Following network construction, 
the study assessed the relationship between modules and 
clinical features by calculating the Pearson correlation 
coefficient to gauge the strength of correlation between 
module expression patterns and clinical traits. Key mod-
ule genes were identified by pinpointing modules exhibit-
ing pronounced positive and negative correlations in the 
context of the module-trait relationship.

Functional enrichment analysis
To determine the underlying biological processes and 
specific mechanisms by which pathogenic genes are asso-
ciated with AP in patients with a BMI>30, GO and KEGG 
enrichment analyses of the CDEGs were performed. 
These CDEGs were the intersection of DEGs, key module 
genes, and LMRGs. The outcomes were depicted utiliz-
ing the "ggplot2" R library, and statistical significance was 
attained when the p value was less than 0.05 (P < 0.05). 
This comprehensive analytical framework provides valu-
able insights into the functional relevance and molecu-
lar pathways underlying AP in patients with a BMI>30, 
shedding light on the intricate mechanisms driving this 
condition.

http://www.ncbi.nlm.nih.gov/geo
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Fig. 1 The flow chart of this study
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Immune infiltration analysis
To evaluate the degree of immune cell infiltration within 
the gene expression profiles linked to AP in patients with 
a BMI>30, this study employed the “GSVA” R library. 
Subsequently, the “ggplot2” R library, which is visually 
represented as a bar graph, was used to determine the 
abundance and proportion of infiltrating immune cells in 
each sample. To ascertain statistically significant differ-
ences in the proportions of 28 distinct immune cell types 
between the experimental group and the control group, 
Student’s t test was conducted, considering a p value 
threshold of less than 0.05 (P < 0.05) to denote statistical 
significance.

Machine learning algorithms
To detect potential biomarkers for AP among patients 
with a BMI>30, this study utilized the least absolute 
shrinkage and selection operator (LASSO), random for-
est (RF), and support vector machine recursive elimi-
nation (SVM-RE) algorithms to obtain genes with the 
greatest diagnostic value. Upon determining the inter-
secting genes, the study designated these overlapping 
entities as the hub genes, offering the most significant 
diagnostic value for AP in individuals with a BMI>30.

Bayesian colocalization analysis
The assessment involved evaluating the likelihood that 
a single genetic variant contributes to variations in both 
the risk of AP and HADH expression, as well as affect-
ing BMI and HADH expression, based on Genome-Wide 
Association Studies (GWAS) and expression Quantita-
tive Trait Loci (eQTL) data [16, 17]. A posterior colo-
calization probability (PP4) of 80% was established as the 
threshold to indicate a shared causal signal. This shared 
causality was visualized using "LocusCompareR" [18], a 
tool designed for such comparative genomic analyses.

External dataset validation
To enable cross-species analysis and further validate the 
findings, this study employed the "homologene" package 
within R software for the homologous transformation of 
hub genes into their corresponding mouse gene counter-
parts. Following this transformation, external datasets 
were utilized to validate the expression levels of these 
hub genes. This validation process is crucial for confirm-
ing the relevance and significance of the identified hub 
genes in different biological contexts, thereby enhancing 
the credibility and robustness of the study’s findings.

Establishment of a mouse model for high BMI‑related AP
In this study, eight-week-old male mice were maintained 
on a high-fat diet for 12 weeks. Following this period, six 
mice were randomly divided into two groups: a control 
group and an AP group. For the AP group, the mice were 
anesthetized and weighed, and their abdomens were 
sterilized. Surgical procedures were then performed to 
expose the pancreas and identify the pancreatic duct. A 
5% sodium taurocholate solution was administered into 
the pancreatic duct at a dosage of 0.1 ml per 100 grams 
of body weight  (Fig.  2). Conversely, the control group 
received a similar volume of physiological saline. All mice 
were euthanized 24 hours posttreatment, and blood sam-
ples were taken from the ophthalmic artery to measure 
pancreatic amylase and lipase levels. Pancreatic tissues 
were also collected for quantitative real-time polymerase 
chain reaction (q-PCR) analysis to further investigate the 
effects.

qPCR
Total RNA was isolated from mouse pancreatic tissue 
specimens, and the RNA concentration was assessed 
utilizing an RNA purification kit. Next, RNA sam-
ples were reverse transcribed into cDNA with a reverse 

Fig. 2 Modeling diagram. After the mice were anesthetized, the abdomen was disinfected with a cloth, the abdomen was opened layer by layer, 
the pancreas was exposed, the pancreatic duct was located, and sodium taurocholate or physiological saline was injected
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transcription kit. Subsequently, the polymerase chain 
reaction (PCR) protocol was applied, and the outcomes 
were evaluated utilizing the 2-ΔΔCt method. The primer 
sequences utilized in this investigation are listed in Table 
S1.

Statistical analysis
All the statistical analyses and visualizations were per-
formed using R software (version 4.3.1). Comprehen-
sive descriptions of the statistical tests employed can be 
found in the corresponding bioinformatics methods sec-
tion and figure legends.

Results
Causal effect of BMI on AP
Across all three datasets, there was no significant evi-
dence of horizontal pleiotropy or heterogeneity, lead-
ing us to select the inverse variance weighted (IVW) 
method as our primary analytical technique. The find-
ings, detailed in Table S2 and illustrated in Fig. 3, dem-
onstrated a significant causal relationship between BMI 
and the likelihood of developing AP. Specifically, the 
genetic variants ukb-a-248 (P < 0.05, odds ratio [OR] 
95% confidence interval [CI] = 1.0020 [1.0012–1.0029]), 
ukb-b-2303 (P < 0.05, OR 95% CI = 1.0020 [1.0011–
1.0028]), and ukb-b-19953 (P < 0.05, OR 95% CI = 1.0022 
[1.0013–1.0030]) were found to have a significant causal 
relationship with ukb-b-19388, indicating a positive asso-
ciation between BMI and the risk of AP. This observation 
was corroborated by a weighted median analysis, which 
served as a secondary analytical method and further sup-
ported the IVW results.

Sensitivity analysis
In the sensitivity analysis, which involved excluding one 
SNP at a time, the study revealed that the relationship 
between specific BMI ranges and the likelihood of devel-
oping AP remained stable. This robustness check con-
firmed that the observed causal connection did not rely 
on any single genetic variant, thereby strengthening the 
reliability of the results (Fig. 4).

Identification of obesity‑related DEGs (ORDEGs)
The expression levels before and after removing batch 
effects are depicted in Fig. 5. Postremoval, the data dis-
tribution across different datasets became notably more 
uniform, with medians aligned and both the mean and 
variance showing greater consistency. Subsequent to this 
adjustment, a differential expression analysis was con-
ducted, identifying a total of 1,372 DEGs in the experi-
mental samples, which included 531 genes that were 
downregulated and 841 genes that were upregulated. 
The top 10 genes (RFX7, CSTA, TXN, TRIP4, IFNGR2, 

ATP6V1E1, GTF2B, CSF2RA, GMFG and GLT1D1) 
with the most significant differences in expression are 
highlighted in Fig.  6A. Subsequently, WGCNA was uti-
lized to detect coexpressed gene modules within both 
the BMI>30 and BMI<30 groups. To ensure adherence 
to scale-free network criteria, a soft threshold of β=16 
was selected, as indicated by a scale-free R2 value of 
0.85 (Fig.  6B). The dynamic tree cut algorithm success-
fully delineated 27 distinct gene modules (Fig.  6C). Of 
particular interest, the light yellow, dark turquoise, and 
dark green modules exhibited a pronounced correlation 
with BMI>30, demonstrating a strong correlation coeffi-
cient (|R| > 0.6) and significance level (P < 0.01) (Fig. 6D). 
These modules collectively encompassed 1233 genes. 
Finally, from these modules, a subset of 698 ORDEGs 
were selected for further investigation (Fig. 6E)

Identification of AP‑related DEGs (APRDEGs)
In the AP dataset, a total of 5,582 genes were differen-
tially expressed among the experimental samples, with 
2,885 genes downregulated and 2,697 genes upregu-
lated. The top 10 genes (LDHD, AZGP1, CA3, SLC27A2, 
PHGDH, ESR1, BTLA, MMP9, LAPTM5 and IL1RN) 
exhibiting the most significant differences in expression 
are highlighted in Fig.  7A. Subsequently, WGCNA was 
employed to detect coexpressed gene modules within 
both the experimental and control cohorts. To maintain 
compliance with scale-free network standards, a soft 
threshold of β= 8 was chosen, as indicated by a scale-
free R2 value of 0.85 (Fig.  7B). The dynamic tree cut 
algorithm successfully delineated 27 distinct gene mod-
ules (Fig. 7C). Interestingly, the blue and brown modules 
exhibited a pronounced correlation with obesity, dem-
onstrating a strong correlation coefficient (|R| > 0.6) and 
significance level (P < 0.01) (Fig. 7D). These modules col-
lectively encompassed 10121 genes. Finally, from these 
modules, a subset of 4828 DEGs was selected for further 
investigation (Fig. 7E). LMRGs, ORDEGs and APRDEGs 
were defined as common differentially expressed genes 
(CDEGs).

Enrichment analysis of CDEGs
Twenty-one CDEGs were screened, which were poten-
tial marker genes for AP in patients with a BMI>30 
based on lipid metabolism (Fig.  8A). GO and KEGG 
enrichment analyses were performed on the 21 CDEGs 
(ABCA3, NLRP3,FASN, ORMDL3, SERPINA1, SPHK1, 
IL18, ESR1, LRIG1, CHKA, ACSS2, HADH, SGMS2, 
IL1RN, IL4R, CCL5, ACACB, IL1B, HSDL2, MBOAT2 
and MMP9) mentioned above to explore common 
regulatory pathways. GO analysis suggested that 
shared genes may be related to the regulation of the 
neuroinflammatory response, regulation of T-helper 
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Fig. 3 Scatter plots of causality in AP on 3 BMI datasets. The slope of each line corresponding to the estimated MR effect in different models. A 
ukb-a-248. B ukb-b-2303. C ukb-b-19953
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2 cell differentiation and regulation of the inflamma-
tory response (Fig.  8B). The KEGG analysis suggested 
that these genes might be primarily associated with 
the cytosolic DNA−sensing pathway and cytokine−
cytokine receptor interaction (Fig. 8C).

Immune cell landscape
To investigate the pivotal function of immune cells in 
the onset and progression of AP among patients with 
a BMI>30, this study separately assessed immune infil-
tration levels in both the BMI>30 and AP datasets. 
In the AP dataset, 24 out of 28 types of immune cells 

Fig. 4 Leave-one-out sensitivity tests. The MR results of the remaining IVs were calculated after removing the IVs one by one. A ukb-a-248. B 
ukb-b-2303. C ukb-b-19953
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exhibited noteworthy variances, all displaying elevated 
expression levels in the AP group (Fig. 9A). Conversely, 
within the BMI>30 dataset, 24 out of the 28 cell types 
analyzed showed significant differences, as depicted 
in Fig.  9B. Among these, activated dendritic cells, 
CD56bright natural killer cells, central memory CD8+ 
T cells, effector memory CD4+ T cells, eosinophils, 
and macrophages demonstrated consistent trends.

Identification of key genes by machine learning algorithms
To systematically filter out nonessential genes, this study 
employed three distinct machine learning techniques to 
identify pivotal genes within the BMI>30 and AP datasets 
separately.

For the AP dataset, LASSO regression was initially uti-
lized to screen 13 genes (FASN, SERPINA1,SPHK1,IL18, 
LRIG1, CHKA, ACSS2, HADH, SGMS2, IL4R, ACACB, 

Fig. 5 Boxplots of gene expression before and after standardization for 2 selected GEO datasets. A Before standardization. B After standardization
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HSDL2 and MBOAT2) from a pool of 21 CDEGs 
(Fig.  10A). Subsequently, the RF algorithm was applied, 
revealing 10 genes (MBOAT2, LRIG1, ACSS2, IL18, 
HADH, HSDL2, IL1RN, MMP9, ACACB and SERPINA1) 
of significance (Fig. 10B), while the SVM-RFE algorithm 

identified 5 genes (ACSS2, MBOAT2, LRIG1, IL18 and 
HADH) (Fig. 10C). These outcomes were then combined, 
resulting in the identification of the final 5 genes out of 
21 (ACSS2, MBOAT2, LRIG1, IL18, HADH) as potential 
biomarkers for AP (Fig. 10D).

Fig. 6 Identification of ORDEGs. A Volcano plot showing DEGs in the BMI>30 and BMI <30 samples. B Soft-thresholding filtering. C Clustering 
dendrogram of genes. D Correlation heatmap of gene modules and clinical features. E Venn diagram showing the overlap of module genes 
and DEGs
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In the BMI >30 dataset, LASSO regression pin-
pointed 5 genes (ABCA3, NLRP3, ESR1, HADH and 
MMP9) from the initial pool of 21 CDEGs (Fig.  10E). 
Additionally, the RF algorithm identified 10 genes 
(HADH, MMP9, ABCA3, ESR1, CHKA, LRIG1, IL1RN, 

ORMDL3, IL1B and NLRP3) (Fig.  10F), and the SVM-
RFE algorithm highlighted 8 genes (MMP9, HADH, 
ESR1, ABCA3, IL1RN, LRIG1, CHKA and IL1B) 
(Fig. 10G). Following the convergence of these results, 
4 of the 21 genes (MMP9, ABCA3, HADH, and ESR1) 

Fig. 7 Identification of DEGs and AP-related module genes. A Volcano plot showing DEGs in the AP and normal samples. B Soft-thresholding 
filtering. C Clustering dendrogram of genes. D Correlation heatmap of gene modules and clinical features. E Venn diagram showing the overlap 
of module genes and DEGs
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were identified as potential biomarkers for BMI>30 
(Fig.  10H). Ultimately, this study tentatively identified 
HADH as the most crucial biomarker for AP in patients 
with a BMI>30.

Colocalization results
In this investigation, a comprehensive analysis was con-
ducted to ascertain the likelihood of a shared genetic var-
iant among four GWAS datasets—three related to BMI 
and one related to AP—in conjunction with the eQTL 
of the HADH gene, a scenario designated as PP4. Our 
findings substantiate the pivotal influence of the HADH 
gene on variations in BMI and susceptibility to AP, as evi-
denced by PP4 values of 100.00%, 98.58%, 98.61%, and 
98.61% for each dataset, respectively (Fig. S1).

Validation of HADH
To assess the potential utility of HADH in diagnosing AP 
among patients with a BMI >30, this study conducted 
validation experiments on mice and analysed the results 
using training datasets (GSE109227 and GSE166047).

In the GSE109227 dataset, a statistically meaning-
ful variance (P < 0.0001) in the expression of Hadh, 
an HADH homolog in mice, was observed (Fig.  11A). 
Similarly, in GSE166047, HADH exhibited a statisti-
cally meaningful variance (P < 0.05) in expression levels 
between samples with a BMI >30 and those with a BMI< 
30 (Fig. 11B).

Validation of HADH Using qPCR
The qPCR results revealed a notable decrease in HADH 
expression in the AP cohort with a high BMI compared 
to that in the control group (P < 0.05) (Fig. 12). Clinical 

Fig. 8 Enrichment analysis of the intersecting genes. A A total of 21 overlapping genes were identified among the APRDEGs, ORDEGs and LMRGs. 
B Gene Ontology (GO) enrichment results of 21 intersecting genes. C Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results for 21 
intersecting genes
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Fig. 9 Box diagram of the proportions of 28 types of immune cells. A dataset with a BMI >30 showed a difference in infiltration between the two 
groups. B AP dataset showing the difference in infiltration between the two groups
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attributes, including pancreatic amylase, pancreatic 
lipase, and other pertinent parameters for the six mice, 
are detailed in Table S3. In summary, HADH has emerged 
as a prospective biomarker for diagnosing AP in patients 
with a BMI>30.

Discussion
The global prevalence of AP substantiates its significance 
as a common gastrointestinal emergency, necessitating 
urgent attention and intervention. Although substantial 
advancements have been made in the clinical treatment 
and diagnostic laboratory parameters of AP in recent 
years, the intricate anatomical positioning of the pan-
creas, coupled with the subtle presentation of this type of 
pancreatitis, poses significant challenges in the realm of 
early diagnosis. Delayed detection of the disease has pro-
found ramifications, including heightened susceptibility 
to complications and elevated mortality rates. Failing to 
promptly diagnose and institute appropriate therapeu-
tic measures has led to severe pancreatitis in a substan-
tial portion of patients, such as necrotizing pancreatitis 
or even organ failure. Consequently, the elucidation of 
diagnostic biomarkers for this condition remains a press-
ing concern. Mounting evidence points to a conspicuous 
correlation between high BMI and the onset and pro-
gression of AP, as highlighted in the literature [19, 20]. 
An increased prevalence of comorbidities is frequently 
observed in obese patients, predisposing them to an ele-
vated risk of developing severe pancreatitis [5, 21]. Fur-
thermore, lipids, which are essential elements of cellular 
architectures, play a pivotal role in forming phospholipid 
bilayers, which are fundamental to cell membrane integ-
rity and function. In addition to serving as vital sources 
of energy and key players in cellular metabolic activities, 
rigorous scientific investigations have revealed the com-
plex dynamics interlinking lipid metabolism with obesity 
and AP. These studies have shed light on the profound 
and intricate connections underpinning these biological 
phenomena, offering new insights into their interdepend-
encies [7, 12, 22, 23]. In the pursuit of tailored diagnostic 

and therapeutic approaches for AP, it has become crucial 
to investigate the cumulative effect of BMI > 30, AP, and 
lipid metabolism from the standpoint of gene expression.

This study broke new ground by utilizing available 
GWAS data through a dual-sample MR approach to 
clarify the causal link between BMI and the risk of AP. 
The results decisively demonstrated a direct correlation 
between higher BMI and increased vulnerability to AP. 
In an effort to explore the molecular foundations of AP, 
especially among individuals with a BMI > 30, within the 
context of lipid metabolism, this research undertook a 
series of critical analytical efforts. The “limma” R pack-
age offers a robust framework for analysing gene expres-
sion data [15]. In this study, 1372 DEGs were observed 
among the BMI > 30 and BMI < 30 groups using the 
“limma” R package. In this study, 1233 significant mod-
ule genes were identified, 698 ORDEGs were identified 
from the intersection of DEGs and module genes. Sub-
sequently, the same methods were used to analyse the 
AP dataset, resulting in 4828 APDEGs. The intersection 
of ORDEGs and APDEGs, along with LMRGs, revealed 
21 common risk genes associated with AP in patients 
with a BMI > 30. This foundational phase of this study 
enabled the identification of genes that undergo signifi-
cant expression changes, potentially playing pivotal roles 
in the pathogenesis of AP among individuals with a BMI 
> 30. Despite the recognition of these genes, the precise 
mechanisms through which they contribute to AP regu-
lation in obese patients remain elusive. Moreover, the 
biomarkers initially identified, while numerous, proved 
to be impractical for clinical application. The objective 
of this investigation was to refine the search for diagnos-
tic biomarkers with increased specificity and accuracy, 
necessitating a more detailed examination of the expres-
sion of these genes.

Initially, to elucidate the regulatory mechanisms of 
the identified genes within the human body, this study 
performed an enrichment analysis of signaling path-
ways and biological functions linked to the 21 identified 
genes. KEGG analysis revealed that these CDEGs were 

(See figure on next page.)
Fig. 10 Selection of potential diagnostic biomarkers with machine learning methods. A LASSO regression analysis was applied to screen diagnostic 
biomarkers based on the 21 intersecting genes in the AP dataset. The genes with the lowest binominal deviance were identified as the most 
suitable candidates. B The results of the Gini coefficient method for the random forest classifiers in the AP dataset. The x-axis represents genetic 
variables, and the y-axis represents importance indices. C The number of CDEGs with the lowest error and highest accuracy were considered 
the most suitable candidates via the SVM-RFE algorithm in the AP dataset. D Venn diagram visualizing the overlap of selected biomarkers 
between 3 algorithms, yielding 5 genes selected as candidate biomarkers. E LASSO regression analysis was applied to screen diagnostic biomarkers 
based on the 21 intersecting genes in the BMI>30 dataset. The genes with the lowest binominal deviance were identified as the most suitable 
candidates. F The results of the Gini coefficient method for the random forest classifiers in the BMI>30 dataset. The x-axis represents genetic 
variables, and the y-axis represents importance indices in the BMI>30 dataset. G The number of CDEGs with the lowest error and highest accuracy 
were considered the most suitable candidates via the SVM-RFE algorithm in the AP dataset. H Venn diagram visualizing the overlap of selected 
biomarkers between 3 algorithms, yielding 4 genes selected as candidate biomarkers
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Fig. 10 (See legend on previous page.)
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predominantly enriched in pathways and functions asso-
ciated with infection and inflammation. These pathways 
included the cytosolic DNA-sensing pathway, cytokine‒
cytokine receptor interaction pathway, and NOD-like 
receptor signaling pathway. These findings indicate that 
these terms are closely related to inflammatory pro-
cesses and the body’s response to them. Prior research 
has underscored the pivotal role of cytosolic DNA sens-
ing in tissue damage and inflammation across a variety 

of diseases [24–27]. Obesity-induced mitochondrial 
DNA (mtDNA) release initiates an increase in chronic 
sterile inflammatory responses in adipose tissue via this 
pathway [28]. Additionally, it plays a role in inflamma-
tion associated with AP, where acinar cell death activates 
interferon (IFN) signaling through the STING pathway 
in macrophages. This highlights the essential role of IFNs 
in AP through various innate immune-sensing pathways 
[29]. Cytokine‒cytokine receptor interactions and the 

Fig. 11 Diagnostic values of the candidate biomarkers BMI>30 and AP assessed by expression comparison. A Comparison of HADH gene 
expression between the AP and normal groups in the GSE109227 test dataset. B Comparison of HADH expression between the BMI >30 and BMI< 
30 groups in the GSE166047 test dataset (* P < 0.05, *** P < 0.001)

Fig. 12 The results of q-PCR analysis of mRNA expression levels are shown. The expression levels of HADH in patients with a high BMI were 
significantly greater than those in patients with AP and a high BMI (** P < 0.01)
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MAPK signaling pathway are associated with consistent 
cytokine expression throughout different stages of severe 
acute pancreatitis, indicating their involvement in the 
regulation and progression of the inflammatory response 
during the disease [30]. NOD-like receptors constitute a 
broad and intricate group of signaling regulators. These 
proteins consolidate both favorable and unfavorable 
signals and subsequently activate additional signaling 
regulators implicated in inflammatory responses, tumori-
genesis, cellular senescence, and stem cell characteristics 
[31]. Moreover, inhibition of the NLRP3 inflammasome 
has been shown to reduce the degree of experimentally 
induced AP in obese mice [32]. These findings shed light 
on the roles of these genes in contributing to the intricate 
regulatory networks that oversee cellular functions and 
systemic responses.

Moreover, GO analysis revealed significant enrichment 
in processes such as the neuroinflammatory response, 
regulation of T-helper 2 cell differentiation, regulation 
of the inflammatory response, and positive regulation 
of the type 2 immune response. We were surprised to 
find that the GO terms were predominantly related to 
immunity and inflammation. To gauge the extent of infil-
tration by immune elements and understand the propor-
tion of immune cells in AP in patients with a BMI > 30, 
this study employed the "ssGSEA" algorithm to assess 
immune infiltration levels. Several immune cell types, 
such as activated dendritic cells, CD56bright natu-
ral killer cells, central memory CD8+ T cells, effector 
memory CD4+ T cells, eosinophils, and macrophages, 
exhibited consistent correlations in the BMI>30 and AP 
datasets. These findings significantly underscore the role 
of immune factors in the mechanisms triggering AP in 
individuals with a BMI > 30. These findings suggest the 
initiation of a prolonged proinflammatory response and 
the mobilization of inflammatory cells, consistent with 
the findings of previous studies [33–35]. These findings 
offer valuable insights, indicating that inflammation plays 
a crucial role in the pathogenesis of AP in patients with a 
BMI > 30.

To pinpoint more accurate diagnostic biomarkers for 
AP in patients with a BMI > 30, focusing on lipid metabo-
lism, this study employed LASSO, RF, and SVM-RFE to 
conduct further analysis on two disease-specific datasets. 
LASSO regression, commonly used to filter variables 
and mitigate the risk of overfitting, was employed. The 
optimal number of DEGs can be determined using the 
binomial deviation method [36]. RF is adept at ranking 
genes and is well suited for managing high-dimensional 
data, constructing prognostic models, and assessing the 
significance of individual variables [37]. SVM-RFE has 
proven to be a convenient tool for eliminating redundant 
components and retaining outcome-relevant variables, 

especially in datasets with limited samples [38]. In this 
study, four genes (MMP9, ABCA3, HADH and ESR1) 
were identified as potential diagnostic markers by cross-
referencing the outcomes derived from three distinct 
machine learning methodologies in the BMI >30 dataset. 
The same methodologies were applied to pinpoint five 
genes (ACSS2, MBOAT2, LRIG1, IL18 and HADH) with 
potential diagnostic value in the AP dataset. Fascinat-
ingly, the HADA gene has prominently surfaced during 
the meticulous search for diagnostic biomarkers appli-
cable to both conditions under study. This finding was 
validated through subsequent colocalization analysis, 
analysis of GEO external datasets, and qPCR experiments 
in animal models. This observation led us to propose that 
the HADA gene has a significant, undeniable influence 
on the initiation and progression of AP in individuals 
with a BMI >30.

In the context of recent advancements, an extensive 
body of work has been devoted to pinpointing biomark-
ers critical for the diagnosis and progression of AP. A 
landmark study in 2023 by Zheng Wang et  al. revealed 
severe AP, with a special focus on the role of immuno-
genic cell death mechanisms. Their groundbreaking 
findings revealed that LY96, BCL2, and IFNGR1 were 
instrumental biomarkers for both the emergence and 
evolution of severe AP [35]. In a hospital-based case‒
control investigation, Francisco D’Oliveira Martins and 
his team proposed that GSTM1 may increase vulnerabil-
ity to AP [39]. Data from the AP, septic AP, and control 
groups were collected, and CitH3 levels were meticu-
lously quantified using enzyme-linked immunosorb-
ent assay (ELISA). This method is pivotal for identifying 
circulating CitH3 as a reliable marker for diagnosing and 
predicting outcomes in septic AP patients [40]. A sub-
sequent forward-looking, double-blind study identified 
fatty acid ethyl ester (FAEE) as a precise marker for diag-
nosing alcohol-related pancreatitis [41]. Further research 
has highlighted the potential of intercellular adhesion 
molecule 1, red cell distribution width (RDW), along 
with urinary trypsinogen-2 and trypsinogen activating 
peptide (TAP), as informative biomarkers for AP [42–
44]. Despite these advances, investigations specifically 
targeting AP in individuals with a BMI >30 are lacking. 
Bridging this knowledge gap, our research suggested that 
HADH is a novel biomarker indicative of AP onset within 
this specific population.

HADH is located on chromosome 4q25 and is affiliated 
with the 3-hydroxyacyl-CoA dehydrogenase gene fam-
ily. It codes 3-hydroxyacyl-CoA dehydrogenase, a pivotal 
enzyme in the fatty acid beta-oxidation pathway. HADH 
expression is widespread across various tissues (espe-
cially adipose tissue), with notably high enzyme activ-
ity observed in the pancreas. Mutations in HADH have 
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been linked to hyperinsulinemic hypoglycemia, a condi-
tion characterized by abnormalities in insulin secretion 
and recognized as a fatty acid oxidation deficiency dis-
ease [45–48]. Moreover, reduced HADA expression has 
been demonstrated to enhance tumor cell migration and 
invasion by activating the Akt signaling pathway [49]. 
Research indicates that elevated HADH expression is cor-
related with an unfavorable prognosis in acute myeloid 
leukemia patients [50]. Poor clinical outcomes have also 
been observed in colon cancer patients with high HADH 
expression [51]. These findings highlight the diverse roles 
of HADA in cellular processes across different diseases.

A study leveraging proteomics techniques revealed 
that, in comparison with individuals of normal weight, 
obese patients exhibited markedly lower HADH protein 
levels, averaging merely 45% of the control group’s HADH 
protein levels. Analysis via Ingenuity Pathway Analysis 
suggested that this decrease in HADH might be associ-
ated with inhibited activation of the LXR/RXR pathway 
[52]. This hypothesis is supported by experimental obser-
vations in which HADH-deficient mice displayed a com-
promised ability to metabolize TG in plasma under cold 
stress conditions. This impairment led to significant tri-
glyceride and fatty acid accumulation [53], underscoring 
the role of elevated plasma fatty acid levels in promoting 
obesity. Fatty acid interferes with the ability of insulin to 
inhibit lipolysis [54], leading to increased fatty acid cir-
culation and accumulation, which in turn triggers the 
proinflammatory NF-κB pathway in both animal models 
and cell culture studies, indicating persistent inflamma-
tion [55]. Moreover, HADH is crucial for the differential 
handling of stored lipids [56], highlighting its significant 
role in metabolic health and disease progression.

What series of reactions occur in AP patients with a 
BMI >30 due to alterations in HADH expression levels? 
In patients exhibiting a high BMI, the downregulation 
of HADH expression reduces fatty acid beta-oxidation, 
the primary pathway for fatty acid degradation, caus-
ing intracellular fatty acid accumulation. This metabolic 
alteration has profound implications for cellular physiol-
ogy: (1) Fatty acid accumulation can lead to mitochon-
drial dysfunction, selectively inhibiting the active form 
of mitochondrial complex I. This suppression triggers 
necrotic cell death by releasing intracellular calcium 
and disrupting mitochondrial complexes I and V  [57, 
58]. These mitochondrial dysfunctions have extensive 
implications, disrupting cellular energy homeostasis and 
overall functionality. (2) The increase in free fatty acids 
subsequently triggers an increase in reactive oxygen spe-
cies (ROS) production. ROS act as potent mediators of 
mitochondrial damage and tissue inflammation, con-
tributing to the pathogenesis of AP [59]. (3) Elevated 
levels of fatty acids decrease the production of reduced 

glutathione, further compromising the cell’s capacity 
to mitigate oxidative stress [60]. (4) The buildup of free 
fatty acids within cells can induce lipotoxicity, resulting 
in local and systemic consequences. This plays a role in 
the inflammatory response, multisystem organ failure, 
and necrotic acinar cell death in AP among patients 
with a BMI >30 [58]. Inflammation is a significant con-
sequence of disrupted fatty acid metabolism and mito-
chondrial dysfunction. The upregulation of inflammatory 
mediators stimulated by elevated fatty acid levels implies 
a potential connection between HADH-related pathways 
and the onset of inflammatory conditions. Additionally, 
other studies have confirmed that the release of free fatty 
acids contributes to the exacerbation and severity of AP 
[61]. Based on previous research findings and our own 
findings, this study revealed that reduced HADH expres-
sion disrupts lipid metabolism, leading to the accumula-
tion of FFAs, potentially playing an essential role in the 
pathogenesis of AP individuals with a BMI >30. This 
underscores the importance of conducting further inves-
tigations in future studies.

To validate this hypothesis, this study utilized exter-
nal datasets concerning individuals with a high BMI and 
AP to corroborate the findings. The results were prom-
ising, as the expression patterns of HADH genes aligned 
with the research findings in both datasets. At this junc-
ture, there are sufficient grounds to consider HADH as a 
potential biomarker with diagnostic value in the develop-
ment of AP in patients with a BMI >30.

Advantages and limitations
This study integrated MR with bioinformatics data 
analysis to explore the crucial role of HADH in patients 
with AP and a BMI over 30, particularly regarding the 
immune response. It can facilitate more comprehensive 
and in-depth genetic research, expedite biological discov-
ery, and enhance personalized medical outcomes for this 
patient population, thereby laying a theoretical founda-
tion for personalized precision treatment. It is important 
to acknowledge that these findings are primarily based on 
computational analyses and existing data. Further valida-
tion through animal and cell experiments is imperative to 
confirm and extend these observations. Animal models, 
such as rodent models with genetic modifications related 
to HADH expression or activity, can offer a more direct 
means of elucidating the causative relationship between 
HADH and AP in patients with a BMI >30. By manipulat-
ing HADH expression levels or activity in vivo, this study 
revealed the resulting effects on pancreatic function, 
inflammation, and immune responses. These experi-
ments provide a deeper understanding of the mechanis-
tic interactions and pathways involved. Furthermore, this 
study only conducted corresponding analyses on the 
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existing dataset, and the specific role of HADH in disease 
progression and outcomes still needs further research.

Conclusion
In this study, a comprehensive approach was employed, 
leveraging MR, bioinformatics methods, and vari-
ous machine learning algorithms to pinpoint HADH 
as a potential biomarker for AP in patients with a BMI 
>30, with a focus on lipid metabolism. These findings 
can empower clinicians to customize treatment strate-
gies according to the diverse genetic profiles of BMI in 
patients with AP. Moreover, these findings pave the way 
for the development of medications specifically target-
ing HADH specifically to improve treatment efficacy and 
reduce side effects in patients with AP and a BMI exceed-
ing 30.
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