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Abstract

Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the
potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived
specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in
prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade
that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers
included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used,
with liquid chromatography-tandem MS being the most common analytical platform. The most frequently
evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including
phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine,
diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid,
dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide

and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In
conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However,
the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable

prognostic tools in clinical practice.
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Introduction

Dysregulation of lipid metabolism is a metabolic hall-
mark in cancerous tissues [1, 2]. Lipids play various roles
in maintaining characteristics unique to cancerous tis-
sues, and their consumption and supply are elevated
in these tissues [3, 4]. To support the high prolifera-
tive capacity of cancer cells, the expression of choline
kinase, an enzyme involved in the synthesis of phospha-
tidylcholine (PC) and phosphatidylethanolamine (PE),
which are major lipids constituting the cell membrane, is
found to be upregulated in various types of cancer [5-8].
Mediators like sphingosine-1-phosphate (S1P), phos-
phatidylinositol (PI), and prostaglandin (PG) E2, which
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respectively activate signaling pathways such as signal
transducer and activator of transcription 3 (STATS3),
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)
pathway, and RAS pathway, are also upregulated in can-
cer tissues, facilitating cancer cell proliferation [9-13].
Enhanced de novo synthesis of fatty acids (FAs) in can-
cer cells increases the content of saturated and mono-
unsaturated FAs in cell membranes, contributing to
oxidative stress resistance [14]. Under stress conditions
like hypoxia, cancer cells form intracellular lipid drop-
lets, storing FAs, triglycerides (TGs), and cholesterol to
acquire resistance to energy depletion [3, 4]. The forma-
tion of these droplets is known as a phenotype of highly
malignant cancers. Thus, a distinct lipid profile in cancer
tissues reflects biological properties such as malignancy
[15, 16].

Clinical judgement including treatment strategies
depends on the prognostic predictions which consist
with tumor malignancy and progression. However, exist-
ing prognostic predictors, such as pathological findings
and the TNM classification, rely on subjective judgments
and lack reproducibility [17-19]. Therefore, establish-
ing novel, objective prognostic predictors to assist clini-
cal judgment is necessary. Against this backdrop, recent
attempts have been made to apply lipidomics—analyz-
ing the characteristic lipid profile of cancer— for cancer
prognosis prediction based on insights into lipid meta-
bolic aberrations reflecting the biological characteristics
of cancers [20, 21].

Lipidomics aims to analyze lipid classes, including their
molecular species, in biological systems comprehensively
and quantitatively [22]. As mentioned, because lipids
reflect the biological characteristics of cancer, applying
lipid profiles as biomarkers can provide additional infor-
mation not previously available, potentially aiding clini-
cal judgment [21]. The most utilized analytical method
in lipidomics has been mass spectrometry (MS), which
yields extensive structural information of lipid mol-
ecules [22]. With the advancement of MS methods [3],
research attempting to apply lipidomics for cancer prog-
nosis prediction have shown a marked increase over the
last decade. However, there are no specialized reviews on
research applying lipidomics for cancer prognostic pre-
diction, making it difficult to overview the current state,
prospects and future subjects of this research field.

This systematic review aims to summarize research
from the past decade that attempted prognostic pre-
diction of cancer patients through mass spectrometric
analysis of lipids in cancer patient-derived specimens
(including annual trends in report numbers, risk of
research bias, types of cancers studied, countries where
the research was conducted, specimens and mass spec-
trometric methods used, cohort size and design of the
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studies, and lipid markers identified as prognostic fac-
tors) and to derive future prospects.

Methods

We conducted study search using PubMed (https://
pubmed.ncbi.nlm.nih.gov/) with search-period from
August 2013 to September 2023. For searching studies
that focus on prognosis prediction of cancer patients by
lipid profiling using MS analysis, we employed a follow-
ing combination of search terms: “lipid” [All Fields] AND
“mass spectrometry” [All Fields] AND (“cancer” [All
Fields] OR “carcinoma” [All Fields]) AND (“recurrence”
[All Fields] OR “prognosis” [All Fields] OR “survival” [All
Fields] OR “progression” [All Fields]). Our inclusion cri-
teria were as follows: primary studies assessing on prog-
nosis prediction of cancer patients by lipid profiling; MS
was employed as an analytical platform; human-derived
specimen, such as cancerous or normal tissue, serum,
urine, exosome, was used for lipid analysis; studies pub-
lished in English. The term ‘prognosis’ encompassed
various prognostic aspects including survival, disease/
progression-free period, recurrence, stage, TNM classi-
fication, and pathological prognostic factors. The exclu-
sion criteria were as follows: evaluated outcomes do not
include prognostic information; prognosis prediction
models include molecules other than lipids analyzed by
MS; studies based on animals or cell-lines; studies writ-
ten in languages other than English; Review article or
meta-analysis. Based on the inclusion and exclusion cri-
teria as mentioned above, we screened the potentially
relevant studies by reviewing title and abstract on elec-
tronic search. After exclusion of the irrelevant studies,
we assessed full-text of the extracted relevant studies for
eligibility. The QUADAS-2 tool [23] was used to evalu-
ate the quality and risk of bias of the finally included arti-
cles. We extracted following data items from the finally
included studies to summarize the study characteristics:
cancer type; histological type; year of publication; coun-
try where the study was conducted; sample type; analy-
sis platform; molecular identification method; study size;
presence or absence of validation using independent
cohort; observed lipid biomarkers; associated prognosis
or prognostic factors.

Results

Study search and annual trends in the number of
published studies

A flow diagram of the study search is shown in Fig. 1.
Our search through PubMed identified 462 potentially
relevant studies. Of these, 416 studies were excluded by
reviewing the title and abstract. The remaining 46 studies
were assessed for eligibility by full-text review, and eight
were excluded. Finally, 38 studies that met the inclusion
criteria were included in this study. The annual trends
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Studies identified through database search (PubMed)
n =462

Studies excluded by reviewing titles and abstracts
n =416

<Reasons for exclusion*>

- Evaluated outcomes do not include prognostic
information (n = 330)

- Prognosis prediction models include molecules
other than lipids analyzed by MS (n = 164)

- Studies based on animals or cell-lines (n = 214)

- Written in languages other than English (n = 5)

- Review article or meta-analysis (n = 27)
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Full-text articles assessed for eligibility
n =46

Studies excluded by reviewing full text
n=238

<Reasons for exclusion*>

- Evaluated outcomes do not include prognostic
information (n = 4)

- Prognosis prediction models include molecules
other than lipids analyzed by MS (n = 4)
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Studies included in the study
n =38

Fig. 1

Flow diagram of the study search. Abbreviation: MS, mass spectrometry. *There were studies that meet multiple exclusion criteria
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Fig. 2 The annual trends in number of studies identified through the database search was on an increasing trend from 2013 (blue line). The annual
number of published studies that address prognosis prediction of cancer patients by lipid profiling using mass spectrometry analysis is on an increasing

trend from 2016 (orange bar)
*The published articles in 2023 are limited from January to September
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Fig. 3 Graph showing the proportion of the included articles with varying risk of bias (a) and applicability (b) of the QUADAS-2 domains

in the number of studies identified through the database
search have increased since 2013. Also, the annual num-
ber of included studies that address prognosis prediction
of cancer patients by lipidomics using MS analysis has
been increasing since 2016 (Fig. 2).

QUADAS-2 evaluation

The results of the QUADAS-2 assessment of the
included studies are shown in Fig. 3. In evaluating the
risk of bias (Fig. 3a), 76% of the studies were evaluated
to have a ‘high’ risk of bias regarding the ‘patient selec-
tion’ mainly attributable to retrospective patient selection
and adopted case-control design. 92% of the studies had
a ‘high’ risk of bias with respect to the ‘index test”: this

is due to the necessity of using diagnostic results based
on existing diagnostic methods as the reference standard
for evaluating the results of the index test, and impossi-
bility to pre-specify the threshold of the index test due
to the prevalence of exploratory studies without valida-
tion cohorts. All of the studies had a ‘low’ risk of bias
regarding ‘reference standard’ and ‘flow and timing’ In
evaluating concerns regarding applicability (Fig. 3b), all
of the studies had ‘low’ concerns for ‘patient selection,
‘index test, and ‘reference standard’ as these matters were
addressed with a study design that matched the review
question. The detailed evaluation results are presented in
the Supplemental file.
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Study characteristics

Study characteristics of the 38 included studies are sum-
marized in Table 1. Below, we describe the results for
each extracted study characteristic.

Cancer types

The included studies were performed on 16 cancer types.
The number of studies reported for each cancer type is
as follows (Fig. 4a): there were six studies (16%) each
on colorectal [24-29] and prostate cancer [30-35], five
(13%) on breast cancer [36—40], three (8%) each on lung
[41-43] and ovarian cancer [44—46], two (5%) on bladder
cancer [47, 48], intrahepatic cholangiocarcinoma [49, 50],
pancreatic cancer [51, 52], and renal cell carcinoma [53,
54], one (3%) each from cervical cancer [55], chordoma
[56], endometrial cancer [57], liver cancer [58], malignant
mesothelioma [59], nasopharyngeal carcinoma [60], and
oral cancer [61].

Countries

The included studies were reported from 16 countries.
The number of studies reported for each country is as fol-
lows (Fig. 4b): 10 studies (26%) were reported from China
[24, 26, 28, 45, 46, 50, 52, 55, 59, 60], eight (21%) from
Japan [31, 37-39, 41-43, 53], four (11%) from the USA
[30, 33, 47, 48], two (5%) each from Australia [32, 34],
Brazil [29, 61], and Germany [25, 40], one (3%) each from
Argentina [54], Canada [57], Czech [51], Finland [44],
Italy [56], Netherlands [49], Portugal [36], Romania [27],
Singapore [58], and Spain [35].

Sample and MS types

The sample types used in the studies were tissue (19
cases; 47%) [24, 25, 30, 31, 36-38, 41-43, 47-50, 53, 56,
58, 60, 61], serum (20 cases; 50%) [26—29, 32—34, 39, 40,
44-46, 51, 52, 54, 55, 57-59, 61], and urine (one case; 3%)
[35]. In two cases of serum and one urine, extracellular
vesicle (EV) was used as the measurement materials [35,
40, 52]. For the analysis of tissue samples, the most com-
monly used analysis platform was liquid chromatogra-
phy—tandem mass spectrometry (LC-MS), accounting for
12 cases (60%) [30, 31, 38, 41-43, 47, 48, 56, 58, 60, 61],
followed by imaging mass spectrometry (IMS) [37, 49,
50, 53] and other methods [24, 25, 36, 47], each with four
cases (20%). In the analysis of serum samples, LC-MS was
predominantly used in 17 cases (85%) [26—-28, 32-34, 39,
44-46, 52, 54, 55, 57-59, 61], with other methods being
used in three cases (15%) [29, 40, 51]. LC-MS was also
employed to analyze urinary EVs (Fig. 4c) [35].

Molecular identification methods

In the studies, the molecular identification methods
used were predominantly software-based, accounting
for 19 cases (49%) [25, 26, 28, 30, 33, 40, 44—48, 51, 52,
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54-57, 59, 61], followed by databases in eight cases (21%)
[24, 27, 29, 33, 35, 50, 53, 58]. Direct verification of raw-
tandem MS (MS/MS) data and the use of radioisotope-
labeled standards were each employed in eight (21%) [31,
32, 34, 37, 41-43, 49] and two cases (5%) [38, 39]. There
were also two cases (5%) [36, 60] where the details were
not specified in the text. Within the software category,
Analyst was the most frequently used in five cases (24%)
[26, 30, 44, 56, 61], followed by Mass Hunter Qualita-
tive Analysis in three cases (14%) [45, 46, 51]. ALEX [25,
51], Metabolon [47, 57], MS-DIAL [28, 52], Progenesis
QI [54, 55] and LipidSearch [33, 59] were used each in
two cases (10%). LipidBlast [48], LipidQuant [51], and
MetIDQ Carbon [40] were each used each in one case
(5%). In terms of databases, LIPID MAPS (https://www.
lipidmaps.org/) was the most common, utilized in six
cases (50%) [27, 29, 35, 50, 53, 58], followed by HMDB
(https://hmdb.ca/) in three cases (25%) [27, 33, 50],
METLIN (https://metlin.scripps.edu/landing_page.
php?pgcontent=mainPage) in two cases (17%) [33, 58],
and NIST Mass Spectral Library (https://chemdata.nist.
gov/) in one case (8%) [24] (Fig. 4d).

Study size and design

The median number of cases analyzed was 72 (range:
9-830). In the histogram of case numbers (Fig. 5a), 33
studies included fewer than 160 cases, demonstrating
a bias in the distribution of case numbers. In compari-
son, only five studies exceeded 160 cases [26, 32, 44, 45,
51]. Regarding the breakdown by cancer type, the cancer
types with studies involving more than 100 cases were
colorectal cancer, prostate cancer, breast cancer, ovar-
ian cancer, bladder cancer, pancreatic cancer, liver can-
cer, nasopharyngeal carcinoma, and oral cancer. Among
these, studies of a significantly larger scale exceeding 500
cases were conducted for ovarian cancer (n=711) [44]
and pancreatic cancer (n=830) [51] (Fig. 5b). Studies that
performed validation analysis using independent cohorts
accounted for nine studies (24%) (25, 32, 34, 44, 47, 50—
52, 58], of which seven studies (18%) [25, 32, 34, 44, 47,
51, 58] used multi-center cohorts, with a median number
of cases being 159 (range: 79-830).

Evaluated prognostic outcomes (prognosis or prognostic
factors)

The evaluated prognostic outcomes were a total of 15
types (Fig. 6). Among them, overall survival [26, 29, 32,
34, 40, 44, 51, 52, 59, 61] and stage [24, 27, 28, 31, 35,
36, 39, 48, 50, 58] were the most frequent, with 11 cases
each (22%), followed by recurrence with nine cases (18%)
[37, 41-43, 45, 46, 54, 55, 57], and disease-free survival
[25, 44, 49] and lymph node metastasis [38, 39, 60] with
three cases each (6%). Evaluation items with two or
fewer reports were characterized by cancer type-specific
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Fig. 4 Diagrams showing the proportion of studied cancer types (a), countries (b), sample and MS types (c), and molecular identification methods (d)
* Others included cervical cancer, chordoma, endometrial cancer, liver cancer, malignant mesothelioma, nasopharyngeal carcinoma, and oral cancer;

each reported number was one (3%), respectively

** Others included Argentina, Canada, Czech, Finland, Italy, Netherlands, Portugal, Romania, Singapore, and Spain; each reported number was one (3%),

respectively
*** Analysis platform was LC-MS.

IC, intrahepatic cholangiocarcinoma; IMS, imaging mass spectrometry; LC-MS, liquid chromatography - mass spectrometry, MS, mass spectrometry; PC,

pancreatic cancer; RCC, renal cell carcinoma

assessments, including biochemical recurrence (for pros-
tate cancer) [30, 33], distant metastasis [55, 60], T-factor
[39, 42], each with two cases (4%), Gleason grade (for
prostate cancer) [30], Ki-67 expression (for chordoma)
[56], lymphatic vessel invasion [25], muscle invasion (for
bladder cancer) [47], pleural invasion (for lung cancer)
[42], progression-free survival [53], and recurrence-free
period [46], each with one case (2%) (In cases where a
certain outcome within the same study was assessed
using different sample types, it was counted indepen-
dently.). When we examine the breakdown of each eval-
uated outcome by sample type (tissue, liquid samples
[including serum, serum EV, and urinary EV]), overall
survival, which was the most frequent, was predomi-
nantly based on liquid samples (tissue: one case, liquid
samples: 10 cases), whereas for stage (tissue: six cases,
liquid samples: five cases) and recurrence (tissue: four
cases, liquid samples: five cases), the sample type distri-
bution was approximately equal. Gleason grade, Ki-67
expression, lymphatic vessel invasion, muscle invasion,
and plural invasion, all related to histopathological exam-
inations, were exclusively assessed using tissue samples.

Observed lipid biomarkers

We present the number of reports on lipid markers found
in tissue or liquid samples associated with poor prognosis
using a butterfly chart (Fig. 7). In cases where lipid spe-
cies (same head group but different molecular species
within the same study) exhibited low and high values,
they were counted independently. Also, in cases where
different prognostic outcomes were reported for the
same molecule, they were counted independently.

A total of 38 different lipid markers were reported. Of
these, nine types (24%) were observed in both high and
low values in either tissue or liquid samples, forming the
“bi-directional group’, implying a poor prognosis. The
“sample-specific directional group’, which shows differ-
ent trends in lipid marker levels depending on the sample
types, consisted of three types (8%). There were 19 types
(50%) in the “high-directional group’, which only showed
elevated levels, and seven types (18%) in the “low-direc-
tional group’, which only exhibited reduced levels.

Among the lipid markers categorized in the bi-direc-
tional group, PC, a principal constituent of the cell
membrane, had the highest number of reports at 19 [27,
30, 33-37, 40, 42, 44-46, 48, 51, 54, 55], followed by

ceramide (Cer) with 13 reports [26, 27, 32-35, 44, 51, 56,
57, 61], TG [25, 28, 30, 32, 33, 46, 59, 60] and lysophos-
phatidylcholine (LPC) [24, 30, 33, 36, 40, 45, 46, 51] with
10, sphingomyelin (SM) with eight [27, 30, 33, 34, 41, 43,
46, 61], PE with seven [27, 33, 48, 50, 52, 58, 60], diacyl-
glycerol (DG) with five [29, 33, 48, 60], and both phos-
phatidic acid (PA) [27, 50, 60] and phosphatidylserine
(PS) [26, 48, 60] with three each. In the sample-specific
directional group, lysophosphatidylethanolamine (LPE)
had three reports [26, 33, 50], and both lysophosphatidic
acid (LPA) [33, 50] and dihydroceramide (DHCer) [56,
61] had two each. In the high-directional group, PG [33,
47, 55, 60] and S1P [33, 38, 39] had the highest number
of reports at five, followed by PI with three [31, 33, 48],
and FA [27, 50], glucosylceramide (GlcCer) [50, 61], and
unsaturated fatty acid (UFA) [32, 49] each with two. The
remaining 13 types of lipid markers were reported once
each. In the low-directional group, saturated fatty acid
(SFA) [32, 49] and lactosylceramide (LacCer) [55] had
two reports each, with the remaining five types of lipid
markers reported once each.

Discussion

The trend in the number of research reports applying
lipidomics in cancer for prognosis prediction has been
increasing since 2016, and it was surmised that this field
of research has been active for less than a decade. In
addition to the widespread use of conventional LC-MS
in lipidomics, the increasing popularity of a relatively
new MS method, IMS [62], and the emerging limita-
tions in prognostic prediction in pathological diagnosis,
namely the lack of reproducibility due to subjective judg-
ments [17-19], were considered to be factors behind the
increase in research reports.

Our systematic search identified 38 publications that
matched the inclusion criteria. In the quality assessment
using QUADAS-2, the majority of the studies adopted a
retrospective design, and due to the exploratory nature of
the studies, it was impossible to pre-specify the threshold
of the index test, resulting in 76.3% and 92.1% of reports
being judged as “high risk” in patient selection and index
test, respectively. Regarding study size and design, analy-
ses based on small sample sizes were standard (median:
72 cases). Furthermore, only nine studies (24%) uti-
lized an independent validation cohort within the same
research. Therefore, the evidence level of the reports
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Fig. 5 (a) Histogram of study size. 33 studies included fewer than 160 cases, demonstrating a bias in the distribution. (b) Study size by cancer types. The
cancer types with studies involving more than 100 cases were colorectal cancer, prostate cancer, breast cancer, ovarian cancer, bladder cancer, pancreatic
cancer, liver cancer, nasopharyngeal carcinoma, and oral cancer
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Fig. 7 Butterfly chart of the observed lipid biomarkers. The blue bars represent tissue samples, while the orange bars indicate liquid samples. The right
half of the chart shows the number of reports where lipid markers are high, and the left half indicates the number of reports where they are low. In both

directions, the outcomes suggest a tendency towards poor prognosis

AcCa, acylcarnitine; CE, cholestelyl ester; Cer, ceramide; DG, diacylglycerol; DHCer, dihydroceramide; DHSM, dihydrosphingomyelin; FA, fatty acid; FAHFA,
fatty acid ester of hydroxy fatty acid; GlcCer, glucosylceramide; Hex1Cer, hexosylceramide; LacCer, lactosylceramide; LPA, lysophosphatidic acid; LPC, lyso-
phosphatidylcholine; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; LPS, lipopolysaccharide; PA, phosphatidic acid; PC, phosphatidyl-
choline; PE, phosphatidylethanolamine; PG, prostaglandin; PI, phosphatidylinositol; PS, phosphatidylserine; S1P, sphingosine-1-phosphate; SFA, saturated
fatty acid; SM, sphingomyelin; ST, sulfatide; TG, triglyceride; UFA, unsaturated fatty acid

included in this review was considered low, suggesting
that this research field is still not well-established and
is immature. Future research should focus on validation
through prospective studies using large cohorts based
on these exploratory analysis results to accumulate high-
level evidence.

There were 16 cancer types in which lipidomic research
has been conducted, ranging from common to rare types.
The top four reported cancer types (colorectal, prostate,
breast, lung cancers) corresponded to the most com-
monly diagnosed cancer types in global cancer statistics
in 2020 (breast (11.7%), lung (11.4%), colorectal (10.0%)
and prostate (7.3%) cancers) [63]. It is speculated that
cancers with a higher patient population also have a
greater demand for research and supply of specimens.

The top three countries with the highest number of
research reports were China, Japan, and the USA. These
three nations correspond to the top three countries with
abundant funding for cancer research from 2016 to 2020
[64]; this funding availability might facilitate access to
expensive equipment, such as mass spectrometers, cre-
ating an environment conducive to advanced cancer
research.

The sample types used for prognostic prediction were
liquid samples (serum and urine) and tissue samples,
which were almost equivalent in their application. Liquid
samples have the advantage of being less invasive during
collection compared to tissue samples. They also excel
in continuous monitoring even after surgical removal of
tumors, suggesting their potential application as recur-
rence markers for postoperative monitoring. In clinical
implementation, utilizing enzyme-linked immunosor-
bent assay (ELISA) for lipid measurement can be possible
option [65]. On the other hand, tissue samples can only
be obtained through invasive procedures such as surgery
or biopsy. They have the advantage of directly analyz-
ing the biological characteristics of tumor tissues (such
as malignancy, directly linked to prognosis) compared
to serum or urine samples. Immunostaining of enzymes
involved in the synthesis/degradation of lipid markers
identified by MS may enable clinical implementation of
prognostic markers. Studies analyzing paired tissue and
serum samples for the same lipid markers were limited to
the analysis of liver cancer by Lu et al.: both sample types
showed low PE species levels in advanced-stage patients.
The advantage of using paired samples is that it provides

more options for clinical implementation of prognostic
markers, such as ELISA in serum and immunostaining in
tissue, depending on the identified lipid markers.

The most commonly used analysis platform across lig-
uid and tissue samples was LC-MS, a widely used method
in lipidomics [62]. In studies using tissue samples, IMS
was employed in 20% (n=4) of cases. LC-MS analysis
requires homogenization of tissue and lipid extraction
via the Bligh & Dyer method [41], frequently needing a
relatively large sample volume. Conversely, IMS allows
direct measurement of molecules in thin tissue sections
and retains spatial information of measured molecules,
enabling investigation of the molecular distribution cor-
responding to biological structures. With advancements
in MS, the application of IMS in lipidomics is increasing
[62]. Three of the IMS studies in this review used matrix-
assisted laser desorption ionization (MALDI)-IMS, and
one used desorption electrospray ionization (DESI)-IMS.
MALDI-IMS, the most prevalent IMS method, allows
analysis of a broad mass range of molecules by ionizing
them with various matrices applied to the sample. Using
this method, Hosokawa et al. discovered that PC (32:1)
was specifically distributed in tumor regions in recur-
rent cases of triple-negative breast cancer patients [37].
Similarly, Huizing and Li et al. analyzed intrahepatic
cholangiocarcinoma, finding correlations between high
ratios of unsaturated to saturated sulfatide (ST) spe-
cies and shorter disease-free survival, and high levels
of FA (22:4), PA (P-18:0_0:0), GlcCer (d18:1/12:0) but
low levels of LPA (16:0), LPE (16:0), and PE species with
advanced stages [49]. In these studies, IMS effectively
visualized tumor-specific molecular distributions by ana-
lyzing tumor and normal parts of tissue samples. DESI-
IMS, which ionizes molecules without pre-treatment like
matrix application, avoids signal interference from the
matrix, allowing visualization of free FA and lipid media-
tors, which are challenging to measure with MALDI-IMS
[62]. Tamura et al. utilized this method to reveal that low
level of oreic acid distributed in clear cell renal cell carci-
noma tumor regions correlated with shorter progression-
free survival [53]. The application of IMS in this research
field is anticipated to expand.

In lipidomics, several methods exist for identify-
ing lipid molecules. Firstly, a method involves compar-
ing the observed mass-to-charge ratio (m/z) value of
the focused molecule with known compounds’ m/z
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reported in various databases, typically allowing a mass
error range within 1-20 ppm; this approach is advanta-
geous due to its simplicity and low cost. In cases where
the assignment is unambiguous, MS/MS data analysis
is employed to identify characteristic fragment ion pat-
terns specific to individual lipid molecules; this method
is more reliable but requires expertise and is labor-inten-
sive [62]. Recent developments have seen the creation of
software capable of identifying multiple lipid molecules
based on MS/MS data, a powerful tool for exploratory
non-target lipidomics, albeit with a certain probability
of identification errors [66]. For targeted analysis in case
the focused molecules are pre-specified, methods involv-
ing the measurement of radioisotope-labeled standards
alongside samples are used [38, 39]. This review found
that software-based molecular identification methods
comprise 49% of the methods employed, making it the
most popular approach. The predominance of software
usage may be due to most studies being exploratory non-
target analyses. While most lipid molecule identification
software lacks published data on identification accuracy,
MS-DIAL has demonstrated a low false discovery rate of
1.50-2.08% [66]. Direct identification from MS/MS data
is advisable for a few targeted molecules, whereas soft-
ware is practical for identifying multiple molecules.

Regarding study size and design, the median num-
ber of cases used was 72, indicating that most studies
employed small cohorts, often limited to 160 cases or
fewer. One reason may be the need to stock raw samples
for lipid analysis using MS, limiting the number of avail-
able specimens. Another consideration is the difficulty in
analyzing a large number of cases. In non-targeted lipi-
domics, the lipid species analyzed can number thousands
per case [41, 43], data analysis becoming a bottleneck as
the number of cases increases. This trend is particularly
pronounced in analyses using IMS due to the addition of
spatial information of molecules, prompting attempts to
develop methods for simplifying the analysis of extensive
distribution data [67]. Studies using validation cohorts
were limited to nine (24%). As previously mentioned, the
difficulty in securing sufficient samples for preparing val-
idation cohorts is a likely reason for this limitation. The
study with the smallest number of cases was MALDI-
IMS analysis of intrahepatic cholangiocarcinoma (train-
ing cohort: n=5, validation cohort: n=5) [50]. Given the
noted bottleneck in IMS analysis, it may be practical for
studies using IMS to split small cohorts for validation
purposes.

The most frequent prognostic outcome evaluated was
overall survival (11 cases), of which serum samples were
used in 10 cases. Given that the ultimate goal of cancer
patient treatment strategies is the improvement of over-
all survival, it is natural that this outcome was the most
commonly used evaluation criterion. The predominant
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use of serum samples in most cases can be attributed to
several advantages: they enable stratification in treatment
choices through prognostic predictions even for patients
who are not scheduled for surgery (and thus cannot pro-
vide tissue samples), and they allow for post-treatment
ongoing prognostic evaluation due to their relatively
non-invasive nature and the feasibility of repeated sam-
pling. The second most common evaluated outcome was
the stage of cancer. Conventional pathological diagnoses
have been problematic due to subjective judgments and
lack of reproducibility [17-19]. Therefore, they might
support the pathological stage diagnosis if the identified
lipid molecules can be applied as novel biomarkers with
high objectivity and reproducibility. Regarding the third
most common factor, recurrence, if it becomes possible
to select patient groups with a high risk of recurrence
accurately, this would enable precise determination of
post-surgical treatment strategies (such as the applica-
bility of adjuvant chemotherapy), potentially improving
patient prognosis.

In this review, we identified a total of 38 reported
lipid markers. Due to the extensive range of lipid types
reported and the space constraints of this review, we
focused on discussing the main findings.

Most lipids constituting the membrane structure of
mammalian cells are composed of five types, namely PC,
PE, PS, SM and PI, with the rest accounting for only a few
percent [68]. In this review, all five major lipids constitut-
ing the membrane structure were reported as prognos-
tic markers, and they were frequently mentioned. Due
to the predominant non-biased exploratory analyses in
the included studies, lipids that are abundant in quantity
were more likely to be identified as prognostic markers.
Of these, PC, PE, PS, and SM were categorized in the bi-
directional group. PC is the most abundant lipid species
in the cell membrane structure, followed by PE. This hier-
archy is consistent across different types of membrane
structures, such as the plasma membrane and various
organelles [68]. In cancer cells, the de-novo synthesis and
uptake of PC and PE from the bloodstream or adipose tis-
sue are enhanced in various cancer types to support their
high proliferative capacity [5-8]. PS is externalized to the
outer leaflet of the plasma membrane in cancer cells by
phospholipid scramblases. Externalized PS on the surface
of cancer cells supports immune evasion by controlling
the infiltration of immune cells into tumors, thus enhanc-
ing cancer cell survival, drug resistance, and metastasis
[69]. SM, constituting lipid rafts [2], is predominantly
localized in the plasma membrane [68]. Lipid rafts hold
and localize various signalling proteins, thereby enhanc-
ing the efficiency of signalling pathways that promote
cancer cell proliferation. Thus, SM plays a crucial role in
cancer cell proliferation and survival [2]. Next, we dis-
cuss less abundant lipids. Cer, the second most frequently
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reported lipid after PC, is a precursor of SM. In cancer
cells, the accumulation of Cer can contribute to apoptosis
and tumorigenesis [70]. TG, forming lipid droplets along
with cholesterol in many aggressive cancer types with
a “lipid accumulating phenotype’, provides an energy
source under hypoxic stress [3]. TG blood level is consid-
ered a risk factor for lung cancer [71]. The bi-directional
nature of lipid markers, showing both high and low val-
ues, may suggest that the balance between lipid supply
and consumption varies among cancer types.

LPE, LPA, and DHCer were categorized in the sample-
specific directional group. LPE and LPA evoke intercel-
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receptors, exhibiting growth factor-like effects [3, 26]. In
this review, low values in tissues and high values in liquid
samples indicated a poor prognosis trend, although the
mechanisms remain unclear. The synthesis of DHCer in
cancer cells contributes to survival and treatment resis-
tance through cytoprotective autophagy [72], and its high
tissue levels are consistent with poor prognosis. How-
ever, the reason why low levels in liquid samples indicate
poor prognosis is not clear [61]. If the lipid markers in
this group consistently show high or low levels specific
to the sample, it might be easy to apply them universally
across different cancer types.

lular signal transduction through G-protein coupled

[Growth factor-like effect \

Immune
evasion

Growth factor -
receptor

e 3

Lipid droplet

@B B sTATS
# PIK/AKT

[Energy source ]

Signaling pathway
activation

Fig. 8 Prognostic lipid roles in cancer cells. Enhanced de-novo synthesis and uptake of PC and PE support proliferative capacity. PS on the surface of
cancer cells supports immune evasion by controlling the infiltration of immune cells. SM constitutes lipid rafts in the plasma membrane and supports
enhancing the efficiency of signalling pathways that promote cancer cell proliferation. Cer, a precursor of SM, contributes to apoptosis and tumorigen-
esis. TG, cholesterol, and FA, which form lipid droplets, provide an energy source. LPE and LPA evoke intercellular signal transduction through G-protein
coupled receptors, exhibiting growth factor-like effects. DHCer contributes to survival and treatment resistance through cytoprotective autophagy. PG,
S1P,and Pl are signalling mediators contributing to cancer cell proliferation by activating the RAS, STAT3, and PI3K/AKT pathways. The relative amount of
UFAs to SFAs enhances the oxidative stress resistance of cancer cells

Cer, ceramide; DHCer, dihydroceramide; FA, fatty acid; LPA, lysophosphatidic acid; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PG, prostaglandin; PI, phosphatidylinositol; PI3K/AKT: phosphoinositide 3-kinase/protein kinase B, PS: phosphatidylserine,
S1P: sphingosine-1-phosphate, SFA: saturated fatty acid, SM: sphingomyelin, STAT3: signal transducer and activator of transcription 3, TG: triglyceride, UFA:
unsaturated fatty acid
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.. . . . . . Abbreviati
Lipids categorized in the high-directional group, PG, ., revia Ior;;amide

S1P, and PI, are representative signalling mediators.  DESI desorption electrospray ionization
They contribute to cancer cell proliferation by activat- Bﬁcer ggi%‘?ciﬁgfn‘@de
ing the RAS, STATB’ and PI3K/AKT pathways, respec- ELISA enzyme-linked immunosorbent assay
tively [9-11]. Regarding UFA, Scheinberg et al. focused  Ev extracellular vesicle
on Cer species with the same length of fatty acid side ™ fattyacd
L. A GlcCer glucosylceramide
chains in serum samples of prostate cancer patients. They s imaging mass spectrometry
adopted a high ratio of Cer containing UFA (C24:1) to  LacCer lactosylceramide
Cer containing SFA (C24:0) as a poor prognostic factor <M liquid chromatography—tandem mass spectrometry
. . .. .. LPA lysophosphatidic acid
in the overall survival prediction model [32]. Huizing et  |pc lysophosphatidylcholine
al. demonstrated that a high ratio of unsaturated to satu-  LPE lysophosphatidylethanolamine
rated ST species in intrahepatic cholangiocarcinoma tis- ~ MALDI matrbcassisted laser desorption ionization
. . . MS/MS tandem mass spectrometry
sue correlates with shorter disease-free survival [49]. In  p, phosphatidic acid
cancer cells, de novo synthesis of FAs is upregulated. The PC phosphatidylcholine
synthesized SFAs are converted to UFAs by enzymes such ~ F* phosphatidylethanolamine
. PG prostaglandin
as stearoyl-CoA desaturases. Since SFAs are more prone  p, phosphatidylinositol
to lipid peroxidation, leading to ferroptotic cell death, an  PI3K/AKT  phosphoinositide 3-kinase/protein kinase B
increase in the relative amount of UFAs to SFAs in high- PS phosphatidylserine
. . . S1P sphingosine-1-phosphate
grade malignant tissues, due to enhanced expression of ¢ saturated fatty acid
stearoyl-CoA desaturases, enhances the oxidative stress M sphingomyelin
resistance of cancer cells [3]. Therefore, an increase in the ~ °T sulfatide _ o
. . . X STAT3 signal transducer and activator of transcription 3
relative amount of UFAs is considered a poor prognostic 1. triglyceride
factor. Consequently, a decrease in the relative amount of ~ UFA unsaturated fatty acid
SFAs is counted as a poor prognostic factor in the low-
directional group in Fig. 7. For other lipid species, many =~ Supplementary Information
are reported only in tissues or liquid samples, and the The online version contains supplementary material available at https://doi.
L . S 0rg/10.1186/512944-024-02121-0.
number of reports is limited, suggesting the potential for
further research on unexplored sample and cancer types. [ Supplementary Material 1 J
If the lipid markers in this group consistently show high
values 1rr‘espect1ve of t}.le sample, they might be univer- " dgements
sally applicable across different samples and cancer types.  yone.
However, their categorization might change for lipid
; : : Author contributions
maerrs with f(?w repo.rts as mor? ?tudles are publlsh(?d. Y.T. conceived the study concept and drafted the manuscript; K.S. produced
Finally, we will mention a few lipid markers categorized figure artworks; TK, AK, M.S. and KF. critically reviewed and revised the
into the low-directional group. Both cholesterol and oleic ~ manuscript. All authors read and approved the final manuscript.
acid (a type of FA) form lipid droplets within cells and are Funding
important energy sources for cancer cells [3]. Tamura et Thjs research was supported by MEXT KAKENHI Grant Number JP23K14474.
al. hypothesized that with the progression of cancer and  The funding played the role in publication. The funder did not participate in
increased energy consumption, the depletion of lipid U design data collection, and analysis.
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factor [53]. We present a schema summarizing the prog-

nostic lipid roles discussed above (Fig. 8). Declarations
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cancer patients through lipidomics. The lipid markers
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brane structure (such as PC, PE, PS, SM, and PI) have

been identified as potential prognostic markers across

various types of cancer. Future research is anticipated on

the clinical application of these potential lipid markers.
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