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Introduction
Dysregulation of lipid metabolism is a metabolic hall-
mark in cancerous tissues [1, 2]. Lipids play various roles 
in maintaining characteristics unique to cancerous tis-
sues, and their consumption and supply are elevated 
in these tissues [3, 4]. To support the high prolifera-
tive capacity of cancer cells, the expression of choline 
kinase, an enzyme involved in the synthesis of phospha-
tidylcholine (PC) and phosphatidylethanolamine (PE), 
which are major lipids constituting the cell membrane, is 
found to be upregulated in various types of cancer [5–8]. 
Mediators like sphingosine-1-phosphate (S1P), phos-
phatidylinositol (PI), and prostaglandin (PG) E2, which 
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Abstract
Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the 
potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived 
specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in 
prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade 
that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers 
included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, 
with liquid chromatography–tandem MS being the most common analytical platform. The most frequently 
evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including 
phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, 
diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, 
dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide 
and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In 
conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, 
the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable 
prognostic tools in clinical practice.
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respectively activate signaling pathways such as signal 
transducer and activator of transcription 3 (STAT3), 
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) 
pathway, and RAS pathway, are also upregulated in can-
cer tissues, facilitating cancer cell proliferation [9–13]. 
Enhanced de novo synthesis of fatty acids (FAs) in can-
cer cells increases the content of saturated and mono-
unsaturated FAs in cell membranes, contributing to 
oxidative stress resistance [14]. Under stress conditions 
like hypoxia, cancer cells form intracellular lipid drop-
lets, storing FAs, triglycerides (TGs), and cholesterol to 
acquire resistance to energy depletion [3, 4]. The forma-
tion of these droplets is known as a phenotype of highly 
malignant cancers. Thus, a distinct lipid profile in cancer 
tissues reflects biological properties such as malignancy 
[15, 16].

Clinical judgement including treatment strategies 
depends on the prognostic predictions which consist 
with tumor malignancy and progression. However, exist-
ing prognostic predictors, such as pathological findings 
and the TNM classification, rely on subjective judgments 
and lack reproducibility [17–19]. Therefore, establish-
ing novel, objective prognostic predictors to assist clini-
cal judgment is necessary. Against this backdrop, recent 
attempts have been made to apply lipidomics—analyz-
ing the characteristic lipid profile of cancer— for cancer 
prognosis prediction based on insights into lipid meta-
bolic aberrations reflecting the biological characteristics 
of cancers [20, 21].

Lipidomics aims to analyze lipid classes, including their 
molecular species, in biological systems comprehensively 
and quantitatively [22]. As mentioned, because lipids 
reflect the biological characteristics of cancer, applying 
lipid profiles as biomarkers can provide additional infor-
mation not previously available, potentially aiding clini-
cal judgment [21]. The most utilized analytical method 
in lipidomics has been mass spectrometry (MS), which 
yields extensive structural information of lipid mol-
ecules [22]. With the advancement of MS methods [3], 
research attempting to apply lipidomics for cancer prog-
nosis prediction have shown a marked increase over the 
last decade. However, there are no specialized reviews on 
research applying lipidomics for cancer prognostic pre-
diction, making it difficult to overview the current state, 
prospects and future subjects of this research field.

This systematic review aims to summarize research 
from the past decade that attempted prognostic pre-
diction of cancer patients through mass spectrometric 
analysis of lipids in cancer patient-derived specimens 
(including annual trends in report numbers, risk of 
research bias, types of cancers studied, countries where 
the research was conducted, specimens and mass spec-
trometric methods used, cohort size and design of the 

studies, and lipid markers identified as prognostic fac-
tors) and to derive future prospects.

Methods
We conducted study search using PubMed (https://
pubmed.ncbi.nlm.nih.gov/) with search-period from 
August 2013 to September 2023. For searching studies 
that focus on prognosis prediction of cancer patients by 
lipid profiling using MS analysis, we employed a follow-
ing combination of search terms: “lipid” [All Fields] AND 
“mass spectrometry” [All Fields] AND (“cancer” [All 
Fields] OR “carcinoma” [All Fields]) AND (“recurrence” 
[All Fields] OR “prognosis” [All Fields] OR “survival” [All 
Fields] OR “progression” [All Fields]). Our inclusion cri-
teria were as follows: primary studies assessing on prog-
nosis prediction of cancer patients by lipid profiling; MS 
was employed as an analytical platform; human-derived 
specimen, such as cancerous or normal tissue, serum, 
urine, exosome, was used for lipid analysis; studies pub-
lished in English. The term ‘prognosis’ encompassed 
various prognostic aspects including survival, disease/
progression-free period, recurrence, stage, TNM classi-
fication, and pathological prognostic factors. The exclu-
sion criteria were as follows: evaluated outcomes do not 
include prognostic information; prognosis prediction 
models include molecules other than lipids analyzed by 
MS; studies based on animals or cell-lines; studies writ-
ten in languages other than English; Review article or 
meta-analysis. Based on the inclusion and exclusion cri-
teria as mentioned above, we screened the potentially 
relevant studies by reviewing title and abstract on elec-
tronic search. After exclusion of the irrelevant studies, 
we assessed full-text of the extracted relevant studies for 
eligibility. The QUADAS-2 tool [23] was used to evalu-
ate the quality and risk of bias of the finally included arti-
cles. We extracted following data items from the finally 
included studies to summarize the study characteristics: 
cancer type; histological type; year of publication; coun-
try where the study was conducted; sample type; analy-
sis platform; molecular identification method; study size; 
presence or absence of validation using independent 
cohort; observed lipid biomarkers; associated prognosis 
or prognostic factors.

Results
Study search and annual trends in the number of 
published studies
A flow diagram of the study search is shown in Fig.  1. 
Our search through PubMed identified 462 potentially 
relevant studies. Of these, 416 studies were excluded by 
reviewing the title and abstract. The remaining 46 studies 
were assessed for eligibility by full-text review, and eight 
were excluded. Finally, 38 studies that met the inclusion 
criteria were included in this study. The annual trends 

https://pubmed.ncbi.nlm.nih.gov/
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Fig. 1 Flow diagram of the study search. Abbreviation: MS, mass spectrometry. *There were studies that meet multiple exclusion criteria

 



Page 4 of 21Takanashi et al. Lipids in Health and Disease          (2024) 23:154 

in the number of studies identified through the database 
search have increased since 2013. Also, the annual num-
ber of included studies that address prognosis prediction 
of cancer patients by lipidomics using MS analysis has 
been increasing since 2016 (Fig. 2).

QUADAS-2 evaluation
The results of the QUADAS-2 assessment of the 
included studies are shown in Fig.  3. In evaluating the 
risk of bias (Fig.  3a), 76% of the studies were evaluated 
to have a ‘high’ risk of bias regarding the ‘patient selec-
tion’ mainly attributable to retrospective patient selection 
and adopted case-control design. 92% of the studies had 
a ‘high’ risk of bias with respect to the ‘index test’: this 

is due to the necessity of using diagnostic results based 
on existing diagnostic methods as the reference standard 
for evaluating the results of the index test, and impossi-
bility to pre-specify the threshold of the index test due 
to the prevalence of exploratory studies without valida-
tion cohorts. All of the studies had a ‘low’ risk of bias 
regarding ‘reference standard’ and ‘flow and timing’. In 
evaluating concerns regarding applicability (Fig.  3b), all 
of the studies had ‘low’ concerns for ‘patient selection’, 
‘index test’, and ‘reference standard’ as these matters were 
addressed with a study design that matched the review 
question. The detailed evaluation results are presented in 
the Supplemental file.

Fig. 3 Graph showing the proportion of the included articles with varying risk of bias (a) and applicability (b) of the QUADAS-2 domains

 

Fig. 2 The annual trends in number of studies identified through the database search was on an increasing trend from 2013 (blue line). The annual 
number of published studies that address prognosis prediction of cancer patients by lipid profiling using mass spectrometry analysis is on an increasing 
trend from 2016 (orange bar)
 *The published articles in 2023 are limited from January to September

 



Page 5 of 21Takanashi et al. Lipids in Health and Disease          (2024) 23:154 

Study characteristics
Study characteristics of the 38 included studies are sum-
marized in Table  1. Below, we describe the results for 
each extracted study characteristic.

Cancer types
The included studies were performed on 16 cancer types. 
The number of studies reported for each cancer type is 
as follows (Fig.  4a): there were six studies (16%) each 
on colorectal [24–29] and prostate cancer [30–35], five 
(13%) on breast cancer [36–40], three (8%) each on lung 
[41–43] and ovarian cancer [44–46], two (5%) on bladder 
cancer [47, 48], intrahepatic cholangiocarcinoma [49, 50], 
pancreatic cancer [51, 52], and renal cell carcinoma [53, 
54], one (3%) each from cervical cancer [55], chordoma 
[56], endometrial cancer [57], liver cancer [58], malignant 
mesothelioma [59], nasopharyngeal carcinoma [60], and 
oral cancer [61].

Countries
The included studies were reported from 16 countries. 
The number of studies reported for each country is as fol-
lows (Fig. 4b): 10 studies (26%) were reported from China 
[24, 26, 28, 45, 46, 50, 52, 55, 59, 60], eight (21%) from 
Japan [31, 37–39, 41–43, 53], four (11%) from the USA 
[30, 33, 47, 48], two (5%) each from Australia [32, 34], 
Brazil [29, 61], and Germany [25, 40], one (3%) each from 
Argentina [54], Canada [57], Czech [51], Finland [44], 
Italy [56], Netherlands [49], Portugal [36], Romania [27], 
Singapore [58], and Spain [35].

Sample and MS types
The sample types used in the studies were tissue (19 
cases; 47%) [24, 25, 30, 31, 36–38, 41–43, 47–50, 53, 56, 
58, 60, 61], serum (20 cases; 50%) [26–29, 32–34, 39, 40, 
44–46, 51, 52, 54, 55, 57–59, 61], and urine (one case; 3%) 
[35]. In two cases of serum and one urine, extracellular 
vesicle (EV) was used as the measurement materials [35, 
40, 52]. For the analysis of tissue samples, the most com-
monly used analysis platform was liquid chromatogra-
phy–tandem mass spectrometry (LC-MS), accounting for 
12 cases (60%) [30, 31, 38, 41–43, 47, 48, 56, 58, 60, 61], 
followed by imaging mass spectrometry (IMS) [37, 49, 
50, 53] and other methods [24, 25, 36, 47], each with four 
cases (20%). In the analysis of serum samples, LC-MS was 
predominantly used in 17 cases (85%) [26–28, 32–34, 39, 
44–46, 52, 54, 55, 57–59, 61], with other methods being 
used in three cases (15%) [29, 40, 51]. LC-MS was also 
employed to analyze urinary EVs (Fig. 4c) [35].

Molecular identification methods
In the studies, the molecular identification methods 
used were predominantly software-based, accounting 
for 19 cases (49%) [25, 26, 28, 30, 33, 40, 44–48, 51, 52, 

54–57, 59, 61], followed by databases in eight cases (21%) 
[24, 27, 29, 33, 35, 50, 53, 58]. Direct verification of raw-
tandem MS (MS/MS) data and the use of radioisotope-
labeled standards were each employed in eight (21%) [31, 
32, 34, 37, 41–43, 49] and two cases (5%) [38, 39]. There 
were also two cases (5%) [36, 60] where the details were 
not specified in the text. Within the software category, 
Analyst was the most frequently used in five cases (24%) 
[26, 30, 44, 56, 61], followed by Mass Hunter Qualita-
tive Analysis in three cases (14%) [45, 46, 51]. ALEX [25, 
51], Metabolon [47, 57], MS-DIAL [28, 52], Progenesis 
QI [54, 55] and LipidSearch [33, 59] were used each in 
two cases (10%). LipidBlast [48], LipidQuant [51], and 
MetIDQ Carbon [40] were each used each in one case 
(5%). In terms of databases, LIPID MAPS (https://www.
lipidmaps.org/) was the most common, utilized in six 
cases (50%) [27, 29, 35, 50, 53, 58], followed by HMDB 
(https://hmdb.ca/) in three cases (25%) [27, 33, 50], 
METLIN (https://metlin.scripps.edu/landing_page.
php?pgcontent=mainPage) in two cases (17%) [33, 58], 
and NIST Mass Spectral Library (https://chemdata.nist.
gov/) in one case (8%) [24] (Fig. 4d).

Study size and design
The median number of cases analyzed was 72 (range: 
9–830). In the histogram of case numbers (Fig.  5a), 33 
studies included fewer than 160 cases, demonstrating 
a bias in the distribution of case numbers. In compari-
son, only five studies exceeded 160 cases [26, 32, 44, 45, 
51]. Regarding the breakdown by cancer type, the cancer 
types with studies involving more than 100 cases were 
colorectal cancer, prostate cancer, breast cancer, ovar-
ian cancer, bladder cancer, pancreatic cancer, liver can-
cer, nasopharyngeal carcinoma, and oral cancer. Among 
these, studies of a significantly larger scale exceeding 500 
cases were conducted for ovarian cancer (n = 711) [44] 
and pancreatic cancer (n = 830) [51] (Fig. 5b). Studies that 
performed validation analysis using independent cohorts 
accounted for nine studies (24%) [25, 32, 34, 44, 47, 50–
52, 58], of which seven studies (18%) [25, 32, 34, 44, 47, 
51, 58] used multi-center cohorts, with a median number 
of cases being 159 (range: 79–830).

Evaluated prognostic outcomes (prognosis or prognostic 
factors)
The evaluated prognostic outcomes were a total of 15 
types (Fig. 6). Among them, overall survival [26, 29, 32, 
34, 40, 44, 51, 52, 59, 61] and stage [24, 27, 28, 31, 35, 
36, 39, 48, 50, 58] were the most frequent, with 11 cases 
each (22%), followed by recurrence with nine cases (18%) 
[37, 41–43, 45, 46, 54, 55, 57], and disease-free survival 
[25, 44, 49] and lymph node metastasis [38, 39, 60] with 
three cases each (6%). Evaluation items with two or 
fewer reports were characterized by cancer type-specific 

https://www.lipidmaps.org/
https://www.lipidmaps.org/
https://hmdb.ca/
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://chemdata.nist.gov/
https://chemdata.nist.gov/
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Fig. 4 (See legend on next page.)
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assessments, including biochemical recurrence (for pros-
tate cancer) [30, 33], distant metastasis [55, 60], T-factor 
[39, 42], each with two cases (4%), Gleason grade (for 
prostate cancer) [30], Ki-67 expression (for chordoma) 
[56], lymphatic vessel invasion [25], muscle invasion (for 
bladder cancer) [47], pleural invasion (for lung cancer) 
[42], progression-free survival [53], and recurrence-free 
period [46], each with one case (2%) (In cases where a 
certain outcome within the same study was assessed 
using different sample types, it was counted indepen-
dently.). When we examine the breakdown of each eval-
uated outcome by sample type (tissue, liquid samples 
[including serum, serum EV, and urinary EV]), overall 
survival, which was the most frequent, was predomi-
nantly based on liquid samples (tissue: one case, liquid 
samples: 10 cases), whereas for stage (tissue: six cases, 
liquid samples: five cases) and recurrence (tissue: four 
cases, liquid samples: five cases), the sample type distri-
bution was approximately equal. Gleason grade, Ki-67 
expression, lymphatic vessel invasion, muscle invasion, 
and plural invasion, all related to histopathological exam-
inations, were exclusively assessed using tissue samples.

Observed lipid biomarkers
We present the number of reports on lipid markers found 
in tissue or liquid samples associated with poor prognosis 
using a butterfly chart (Fig. 7). In cases where lipid spe-
cies (same head group but different molecular species 
within the same study) exhibited low and high values, 
they were counted independently. Also, in cases where 
different prognostic outcomes were reported for the 
same molecule, they were counted independently.

A total of 38 different lipid markers were reported. Of 
these, nine types (24%) were observed in both high and 
low values in either tissue or liquid samples, forming the 
“bi-directional group”, implying a poor prognosis. The 
“sample-specific directional group”, which shows differ-
ent trends in lipid marker levels depending on the sample 
types, consisted of three types (8%). There were 19 types 
(50%) in the “high-directional group”, which only showed 
elevated levels, and seven types (18%) in the “low-direc-
tional group”, which only exhibited reduced levels.

Among the lipid markers categorized in the bi-direc-
tional group, PC, a principal constituent of the cell 
membrane, had the highest number of reports at 19 [27, 
30, 33–37, 40, 42, 44–46, 48, 51, 54, 55], followed by 

ceramide (Cer) with 13 reports [26, 27, 32–35, 44, 51, 56, 
57, 61], TG [25, 28, 30, 32, 33, 46, 59, 60] and lysophos-
phatidylcholine (LPC) [24, 30, 33, 36, 40, 45, 46, 51] with 
10, sphingomyelin (SM) with eight [27, 30, 33, 34, 41, 43, 
46, 61], PE with seven [27, 33, 48, 50, 52, 58, 60], diacyl-
glycerol (DG) with five [29, 33, 48, 60], and both phos-
phatidic acid (PA) [27, 50, 60] and phosphatidylserine 
(PS) [26, 48, 60] with three each. In the sample-specific 
directional group, lysophosphatidylethanolamine (LPE) 
had three reports [26, 33, 50], and both lysophosphatidic 
acid (LPA) [33, 50] and dihydroceramide (DHCer) [56, 
61] had two each. In the high-directional group, PG [33, 
47, 55, 60] and S1P [33, 38, 39] had the highest number 
of reports at five, followed by PI with three [31, 33, 48], 
and FA [27, 50], glucosylceramide (GlcCer) [50, 61], and 
unsaturated fatty acid (UFA) [32, 49] each with two. The 
remaining 13 types of lipid markers were reported once 
each. In the low-directional group, saturated fatty acid 
(SFA) [32, 49] and lactosylceramide (LacCer) [55] had 
two reports each, with the remaining five types of lipid 
markers reported once each.

Discussion
The trend in the number of research reports applying 
lipidomics in cancer for prognosis prediction has been 
increasing since 2016, and it was surmised that this field 
of research has been active for less than a decade. In 
addition to the widespread use of conventional LC-MS 
in lipidomics, the increasing popularity of a relatively 
new MS method, IMS [62], and the emerging limita-
tions in prognostic prediction in pathological diagnosis, 
namely the lack of reproducibility due to subjective judg-
ments [17–19], were considered to be factors behind the 
increase in research reports.

Our systematic search identified 38 publications that 
matched the inclusion criteria. In the quality assessment 
using QUADAS-2, the majority of the studies adopted a 
retrospective design, and due to the exploratory nature of 
the studies, it was impossible to pre-specify the threshold 
of the index test, resulting in 76.3% and 92.1% of reports 
being judged as “high risk” in patient selection and index 
test, respectively. Regarding study size and design, analy-
ses based on small sample sizes were standard (median: 
72 cases). Furthermore, only nine studies (24%) uti-
lized an independent validation cohort within the same 
research. Therefore, the evidence level of the reports 

(See figure on previous page.)
Fig. 4 Diagrams showing the proportion of studied cancer types (a), countries (b), sample and MS types (c), and molecular identification methods (d)
 * Others included cervical cancer, chordoma, endometrial cancer, liver cancer, malignant mesothelioma, nasopharyngeal carcinoma, and oral cancer; 
each reported number was one (3%), respectively
 ** Others included Argentina, Canada, Czech, Finland, Italy, Netherlands, Portugal, Romania, Singapore, and Spain; each reported number was one (3%), 
respectively
 *** Analysis platform was LC-MS.
 IC, intrahepatic cholangiocarcinoma; IMS, imaging mass spectrometry; LC-MS, liquid chromatography - mass spectrometry, MS, mass spectrometry; PC, 
pancreatic cancer; RCC, renal cell carcinoma
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Fig. 5 (a) Histogram of study size. 33 studies included fewer than 160 cases, demonstrating a bias in the distribution. (b) Study size by cancer types. The 
cancer types with studies involving more than 100 cases were colorectal cancer, prostate cancer, breast cancer, ovarian cancer, bladder cancer, pancreatic 
cancer, liver cancer, nasopharyngeal carcinoma, and oral cancer
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Fig. 6 (a) Diagram showing the proportion of evaluated prognostic outcomes. (b) Evaluated outcome by sample type
 * Others included Gleason grade, Ki-67 expression, lymphatic vessel invasion,
 muscle invasion, pleural invasion, progression-free survival, and recurrence-free period; each reported number was one (2%), respectively
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Fig. 7 (See legend on next page.)
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included in this review was considered low, suggesting 
that this research field is still not well-established and 
is immature. Future research should focus on validation 
through prospective studies using large cohorts based 
on these exploratory analysis results to accumulate high-
level evidence.

There were 16 cancer types in which lipidomic research 
has been conducted, ranging from common to rare types. 
The top four reported cancer types (colorectal, prostate, 
breast, lung cancers) corresponded to the most com-
monly diagnosed cancer types in global cancer statistics 
in 2020 (breast (11.7%), lung (11.4%), colorectal (10.0%) 
and prostate (7.3%) cancers) [63]. It is speculated that 
cancers with a higher patient population also have a 
greater demand for research and supply of specimens.

The top three countries with the highest number of 
research reports were China, Japan, and the USA. These 
three nations correspond to the top three countries with 
abundant funding for cancer research from 2016 to 2020 
[64]; this funding availability might facilitate access to 
expensive equipment, such as mass spectrometers, cre-
ating an environment conducive to advanced cancer 
research.

The sample types used for prognostic prediction were 
liquid samples (serum and urine) and tissue samples, 
which were almost equivalent in their application. Liquid 
samples have the advantage of being less invasive during 
collection compared to tissue samples. They also excel 
in continuous monitoring even after surgical removal of 
tumors, suggesting their potential application as recur-
rence markers for postoperative monitoring. In clinical 
implementation, utilizing enzyme-linked immunosor-
bent assay (ELISA) for lipid measurement can be possible 
option [65]. On the other hand, tissue samples can only 
be obtained through invasive procedures such as surgery 
or biopsy. They have the advantage of directly analyz-
ing the biological characteristics of tumor tissues (such 
as malignancy, directly linked to prognosis) compared 
to serum or urine samples. Immunostaining of enzymes 
involved in the synthesis/degradation of lipid markers 
identified by MS may enable clinical implementation of 
prognostic markers. Studies analyzing paired tissue and 
serum samples for the same lipid markers were limited to 
the analysis of liver cancer by Lu et al.: both sample types 
showed low PE species levels in advanced-stage patients. 
The advantage of using paired samples is that it provides 

more options for clinical implementation of prognostic 
markers, such as ELISA in serum and immunostaining in 
tissue, depending on the identified lipid markers.

The most commonly used analysis platform across liq-
uid and tissue samples was LC-MS, a widely used method 
in lipidomics [62]. In studies using tissue samples, IMS 
was employed in 20% (n = 4) of cases. LC-MS analysis 
requires homogenization of tissue and lipid extraction 
via the Bligh & Dyer method [41], frequently needing a 
relatively large sample volume. Conversely, IMS allows 
direct measurement of molecules in thin tissue sections 
and retains spatial information of measured molecules, 
enabling investigation of the molecular distribution cor-
responding to biological structures. With advancements 
in MS, the application of IMS in lipidomics is increasing 
[62]. Three of the IMS studies in this review used matrix-
assisted laser desorption ionization (MALDI)-IMS, and 
one used desorption electrospray ionization (DESI)-IMS. 
MALDI-IMS, the most prevalent IMS method, allows 
analysis of a broad mass range of molecules by ionizing 
them with various matrices applied to the sample. Using 
this method, Hosokawa et al. discovered that PC (32:1) 
was specifically distributed in tumor regions in recur-
rent cases of triple-negative breast cancer patients [37]. 
Similarly, Huizing and Li et al. analyzed intrahepatic 
cholangiocarcinoma, finding correlations between high 
ratios of unsaturated to saturated sulfatide (ST) spe-
cies and shorter disease-free survival, and high levels 
of FA (22:4), PA (P-18:0_0:0), GlcCer (d18:1/12:0) but 
low levels of LPA (16:0), LPE (16:0), and PE species with 
advanced stages [49]. In these studies, IMS effectively 
visualized tumor-specific molecular distributions by ana-
lyzing tumor and normal parts of tissue samples. DESI-
IMS, which ionizes molecules without pre-treatment like 
matrix application, avoids signal interference from the 
matrix, allowing visualization of free FA and lipid media-
tors, which are challenging to measure with MALDI-IMS 
[62]. Tamura et al. utilized this method to reveal that low 
level of oreic acid distributed in clear cell renal cell carci-
noma tumor regions correlated with shorter progression-
free survival [53]. The application of IMS in this research 
field is anticipated to expand.

In lipidomics, several methods exist for identify-
ing lipid molecules. Firstly, a method involves compar-
ing the observed mass-to-charge ratio (m/z) value of 
the focused molecule with known compounds’ m/z 

(See figure on previous page.)
Fig. 7 Butterfly chart of the observed lipid biomarkers. The blue bars represent tissue samples, while the orange bars indicate liquid samples. The right 
half of the chart shows the number of reports where lipid markers are high, and the left half indicates the number of reports where they are low. In both 
directions, the outcomes suggest a tendency towards poor prognosis
 AcCa, acylcarnitine; CE, cholestelyl ester; Cer, ceramide; DG, diacylglycerol; DHCer, dihydroceramide; DHSM, dihydrosphingomyelin; FA, fatty acid; FAHFA, 
fatty acid ester of hydroxy fatty acid; GlcCer, glucosylceramide; Hex1Cer, hexosylceramide; LacCer, lactosylceramide; LPA, lysophosphatidic acid; LPC, lyso-
phosphatidylcholine; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; LPS, lipopolysaccharide; PA, phosphatidic acid; PC, phosphatidyl-
choline; PE, phosphatidylethanolamine; PG, prostaglandin; PI, phosphatidylinositol; PS, phosphatidylserine; S1P, sphingosine-1-phosphate; SFA, saturated 
fatty acid; SM, sphingomyelin; ST, sulfatide; TG, triglyceride; UFA, unsaturated fatty acid
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reported in various databases, typically allowing a mass 
error range within 1–20 ppm; this approach is advanta-
geous due to its simplicity and low cost. In cases where 
the assignment is unambiguous, MS/MS data analysis 
is employed to identify characteristic fragment ion pat-
terns specific to individual lipid molecules; this method 
is more reliable but requires expertise and is labor-inten-
sive [62]. Recent developments have seen the creation of 
software capable of identifying multiple lipid molecules 
based on MS/MS data, a powerful tool for exploratory 
non-target lipidomics, albeit with a certain probability 
of identification errors [66]. For targeted analysis in case 
the focused molecules are pre-specified, methods involv-
ing the measurement of radioisotope-labeled standards 
alongside samples are used [38, 39]. This review found 
that software-based molecular identification methods 
comprise 49% of the methods employed, making it the 
most popular approach. The predominance of software 
usage may be due to most studies being exploratory non-
target analyses. While most lipid molecule identification 
software lacks published data on identification accuracy, 
MS-DIAL has demonstrated a low false discovery rate of 
1.50–2.08% [66]. Direct identification from MS/MS data 
is advisable for a few targeted molecules, whereas soft-
ware is practical for identifying multiple molecules.

Regarding study size and design, the median num-
ber of cases used was 72, indicating that most studies 
employed small cohorts, often limited to 160 cases or 
fewer. One reason may be the need to stock raw samples 
for lipid analysis using MS, limiting the number of avail-
able specimens. Another consideration is the difficulty in 
analyzing a large number of cases. In non-targeted lipi-
domics, the lipid species analyzed can number thousands 
per case [41, 43], data analysis becoming a bottleneck as 
the number of cases increases. This trend is particularly 
pronounced in analyses using IMS due to the addition of 
spatial information of molecules, prompting attempts to 
develop methods for simplifying the analysis of extensive 
distribution data [67]. Studies using validation cohorts 
were limited to nine (24%). As previously mentioned, the 
difficulty in securing sufficient samples for preparing val-
idation cohorts is a likely reason for this limitation. The 
study with the smallest number of cases was MALDI-
IMS analysis of intrahepatic cholangiocarcinoma (train-
ing cohort: n = 5, validation cohort: n = 5) [50]. Given the 
noted bottleneck in IMS analysis, it may be practical for 
studies using IMS to split small cohorts for validation 
purposes.

The most frequent prognostic outcome evaluated was 
overall survival (11 cases), of which serum samples were 
used in 10 cases. Given that the ultimate goal of cancer 
patient treatment strategies is the improvement of over-
all survival, it is natural that this outcome was the most 
commonly used evaluation criterion. The predominant 

use of serum samples in most cases can be attributed to 
several advantages: they enable stratification in treatment 
choices through prognostic predictions even for patients 
who are not scheduled for surgery (and thus cannot pro-
vide tissue samples), and they allow for post-treatment 
ongoing prognostic evaluation due to their relatively 
non-invasive nature and the feasibility of repeated sam-
pling. The second most common evaluated outcome was 
the stage of cancer. Conventional pathological diagnoses 
have been problematic due to subjective judgments and 
lack of reproducibility [17–19]. Therefore, they might 
support the pathological stage diagnosis if the identified 
lipid molecules can be applied as novel biomarkers with 
high objectivity and reproducibility. Regarding the third 
most common factor, recurrence, if it becomes possible 
to select patient groups with a high risk of recurrence 
accurately, this would enable precise determination of 
post-surgical treatment strategies (such as the applica-
bility of adjuvant chemotherapy), potentially improving 
patient prognosis.

In this review, we identified a total of 38 reported 
lipid markers. Due to the extensive range of lipid types 
reported and the space constraints of this review, we 
focused on discussing the main findings.

Most lipids constituting the membrane structure of 
mammalian cells are composed of five types, namely PC, 
PE, PS, SM and PI, with the rest accounting for only a few 
percent [68]. In this review, all five major lipids constitut-
ing the membrane structure were reported as prognos-
tic markers, and they were frequently mentioned. Due 
to the predominant non-biased exploratory analyses in 
the included studies, lipids that are abundant in quantity 
were more likely to be identified as prognostic markers. 
Of these, PC, PE, PS, and SM were categorized in the bi-
directional group. PC is the most abundant lipid species 
in the cell membrane structure, followed by PE. This hier-
archy is consistent across different types of membrane 
structures, such as the plasma membrane and various 
organelles [68]. In cancer cells, the de-novo synthesis and 
uptake of PC and PE from the bloodstream or adipose tis-
sue are enhanced in various cancer types to support their 
high proliferative capacity [5–8]. PS is externalized to the 
outer leaflet of the plasma membrane in cancer cells by 
phospholipid scramblases. Externalized PS on the surface 
of cancer cells supports immune evasion by controlling 
the infiltration of immune cells into tumors, thus enhanc-
ing cancer cell survival, drug resistance, and metastasis 
[69]. SM, constituting lipid rafts [2], is predominantly 
localized in the plasma membrane [68]. Lipid rafts hold 
and localize various signalling proteins, thereby enhanc-
ing the efficiency of signalling pathways that promote 
cancer cell proliferation. Thus, SM plays a crucial role in 
cancer cell proliferation and survival [2]. Next, we dis-
cuss less abundant lipids. Cer, the second most frequently 
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reported lipid after PC, is a precursor of SM. In cancer 
cells, the accumulation of Cer can contribute to apoptosis 
and tumorigenesis [70]. TG, forming lipid droplets along 
with cholesterol in many aggressive cancer types with 
a “lipid accumulating phenotype”, provides an energy 
source under hypoxic stress [3]. TG blood level is consid-
ered a risk factor for lung cancer [71]. The bi-directional 
nature of lipid markers, showing both high and low val-
ues, may suggest that the balance between lipid supply 
and consumption varies among cancer types.

LPE, LPA, and DHCer were categorized in the sample-
specific directional group. LPE and LPA evoke intercel-
lular signal transduction through G-protein coupled 

receptors, exhibiting growth factor-like effects [3, 26]. In 
this review, low values in tissues and high values in liquid 
samples indicated a poor prognosis trend, although the 
mechanisms remain unclear. The synthesis of DHCer in 
cancer cells contributes to survival and treatment resis-
tance through cytoprotective autophagy [72], and its high 
tissue levels are consistent with poor prognosis. How-
ever, the reason why low levels in liquid samples indicate 
poor prognosis is not clear [61]. If the lipid markers in 
this group consistently show high or low levels specific 
to the sample, it might be easy to apply them universally 
across different cancer types.

Fig. 8 Prognostic lipid roles in cancer cells. Enhanced de-novo synthesis and uptake of PC and PE support proliferative capacity. PS on the surface of 
cancer cells supports immune evasion by controlling the infiltration of immune cells. SM constitutes lipid rafts in the plasma membrane and supports 
enhancing the efficiency of signalling pathways that promote cancer cell proliferation. Cer, a precursor of SM, contributes to apoptosis and tumorigen-
esis. TG, cholesterol, and FA, which form lipid droplets, provide an energy source. LPE and LPA evoke intercellular signal transduction through G-protein 
coupled receptors, exhibiting growth factor-like effects. DHCer contributes to survival and treatment resistance through cytoprotective autophagy. PG, 
S1P, and PI are signalling mediators contributing to cancer cell proliferation by activating the RAS, STAT3, and PI3K/AKT pathways. The relative amount of 
UFAs to SFAs enhances the oxidative stress resistance of cancer cells
 Cer, ceramide; DHCer, dihydroceramide; FA, fatty acid; LPA, lysophosphatidic acid; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, prostaglandin; PI, phosphatidylinositol; PI3K/AKT: phosphoinositide 3-kinase/protein kinase B, PS: phosphatidylserine, 
S1P: sphingosine-1-phosphate, SFA: saturated fatty acid, SM: sphingomyelin, STAT3: signal transducer and activator of transcription 3, TG: triglyceride, UFA: 
unsaturated fatty acid
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Lipids categorized in the high-directional group, PG, 
S1P, and PI, are representative signalling mediators. 
They contribute to cancer cell proliferation by activat-
ing the RAS, STAT3, and PI3K/AKT pathways, respec-
tively [9–11]. Regarding UFA, Scheinberg et al. focused 
on Cer species with the same length of fatty acid side 
chains in serum samples of prostate cancer patients. They 
adopted a high ratio of Cer containing UFA (C24:1) to 
Cer containing SFA (C24:0) as a poor prognostic factor 
in the overall survival prediction model [32]. Huizing et 
al. demonstrated that a high ratio of unsaturated to satu-
rated ST species in intrahepatic cholangiocarcinoma tis-
sue correlates with shorter disease-free survival [49]. In 
cancer cells, de novo synthesis of FAs is upregulated. The 
synthesized SFAs are converted to UFAs by enzymes such 
as stearoyl-CoA desaturases. Since SFAs are more prone 
to lipid peroxidation, leading to ferroptotic cell death, an 
increase in the relative amount of UFAs to SFAs in high-
grade malignant tissues, due to enhanced expression of 
stearoyl-CoA desaturases, enhances the oxidative stress 
resistance of cancer cells [3]. Therefore, an increase in the 
relative amount of UFAs is considered a poor prognostic 
factor. Consequently, a decrease in the relative amount of 
SFAs is counted as a poor prognostic factor in the low-
directional group in Fig. 7. For other lipid species, many 
are reported only in tissues or liquid samples, and the 
number of reports is limited, suggesting the potential for 
further research on unexplored sample and cancer types. 
If the lipid markers in this group consistently show high 
values irrespective of the sample, they might be univer-
sally applicable across different samples and cancer types. 
However, their categorization might change for lipid 
markers with few reports as more studies are published.

Finally, we will mention a few lipid markers categorized 
into the low-directional group. Both cholesterol and oleic 
acid (a type of FA) form lipid droplets within cells and are 
important energy sources for cancer cells [3]. Tamura et 
al. hypothesized that with the progression of cancer and 
increased energy consumption, the depletion of lipid 
storage beyond supply leads to a decrease in lipids serv-
ing as energy sources, which may be a poor prognostic 
factor [53]. We present a schema summarizing the prog-
nostic lipid roles discussed above (Fig. 8).

Conclusions
Our systematic review summarized 38 studies from the 
past decade that attempted prognostic prediction of 
cancer patients through lipidomics. The lipid markers 
reported were diverse, encompassing a total of 38 types. 
Among these, lipids that constitute the cellular mem-
brane structure (such as PC, PE, PS, SM, and PI) have 
been identified as potential prognostic markers across 
various types of cancer. Future research is anticipated on 
the clinical application of these potential lipid markers.
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