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Abstract
Aims About 20–40% patients with type 2 diabetes mellitus (T2DM) had an increased risk of developing diabetic 
nephropathy (DN). Dipeptidyl peptidase-4 inhibitors (DPP-4i) were recommended for treatment of T2DM, while 
the impact of DPP-4i on renal function remained unclear. This study aimed to explore the effect of DPP-4i on renal 
parameter of estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) in T2DM.

Methods A systematic search was performed across PubMed, Embase and Cochrane Library. A fixed or random-
effects model was used for quantitative synthesis according to the heterogeneity, which was assessed with I2 index. 
Sensitivity analysis and publication bias were performed with standard methods, respectively.

Results A total of 17 randomized controlled trials were identified. Administration of DPP-4i produced no significant 
effect on eGFR (WMD, -0.92 mL/min/1.73m2, 95% CI, -2.04 to 0.19) in diabetic condition. DPP-4i produced a favorable 
effect on attenuating ACR (WMD, -2.76 mg/g, 95% CI, -5.23 to -0.29) in patients with T2DM. The pooled estimate was 
stable based on the sensitivity test. No publication bias was observed according to Begg’s and Egger’s tests.

Conclusions Treatment with DPP-4i preserved the renal parameter of eGFR in diabetic condition. Available evidences 
suggested that administration of DPP-4i produced a favorable effect on attenuating ACR in patients with T2DM.

International Prospective Register for Systematic Review (PROSPERO) number CRD.42020144642.
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Introduction
The number of patients with type 2 diabetes mellitus 
(T2DM) was increasing annually across the world. An 
increased morbidity or mortality partially stem from 
macrovascular and/or microvascular complications 
occurred during T2DM progression. Diabetic nephropa-
thy (DN), one common microvascular complication, was 
characterized as a marked decrease of estimated glomer-
ular filtration rate (eGFR) and/or a persistent increase 
of albuminuria [1]. Evidence suggested that 20–40% of 
patients developed microvascular complications of DN 
in diabetic condition [2]. A chronic exposure to hyper-
glycaemia led to progressive impairment of the renal 
microvasculature [3]. Therapeutic strategies should not 
modulate glycaemic balance alone, while other measures 
including an attenuation of blood pressure and/or pre-
serving renal function should also be performed in dia-
betic context [4].

Traditional antidiabetic agents mainly focused on glu-
cose control in treatment of T2DM. Dipeptidyl pepti-
dase-4 inhibitors (DPP-4i) were developed as noninsulin 
hypoglycaemic agents since 2006, and these agents were 
orally administered in clinical practice. Preclinical study 
demonstrated that DPP-4 was expressed in the kidney, 
and increased DPP-4 activity was positively correlated 
with levels of creatinine and proteinuria [5]. Inhibition of 
DPP-4 effectively improved renal outcomes by decreas-
ing tubular and glomerular proteinuria in diabetic setting 
[6]. Evidence indicated that DPP-4i potentially attenu-
ated renal biomarkers for tubular injury in patients with 
diabetic kidney disease (DKD) [7]. In contrast, some 
studies yielded different estimates on renal parameters 
during treatment with DPP-4i. A long-term treatment 
with linagliptin produced no significant effect on eGFR 
compared to placebo (-0.8 vs. -2.2 mL/min/1.73 m2) in 
diabetic participants with renal impairment [8]. Similarly, 
administration of linagliptin did not significantly modu-
late albuminuria in diabetic individuals with renal dys-
function [9]. However, a pooled analysis demonstrated 
that treatment with DPP-4i significantly reduced eGFR 
(-1.11 mL/min/1.73 m2; 95% CI, -1.78 to -0.44; P = 0.001) 
in patients with T2DM [10]. It was an important issue 
to explore the extent to which DPP-4i modulated renal 
parameters in patients with T2DM. Therefore, this study 
was performed to evaluate an impact of DPP-4i on eGFR 
and albumin-to-creatinine ratio (ACR) in patients with 
T2DM.

Methods
Search strategy
This study was designed based on the Preferred Report-
ing Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) statement [11]. PubMed, Embase and 
Cochrane Library were searched for trials published 

before April 30, 2024. Relevant items included (“dipep-
tidyl peptidase-4 inhibitors” OR “sitagliptin” OR 
“vildagliptin” OR “teneligliptin” OR “saxagliptin” OR 
“linagliptin” OR “alogliptin”) AND (“type 2 diabetes” OR 
“type 2 diabetes mellitus” OR “T2DM”) AND (random-
ized controlled trials).

Study selection
Two reviewers screened databases independently and 
searched the reference lists for eligible articles manu-
ally. Randomized controlled trials (RCTs) evaluating the 
impact of DPP-4i on eGFR and/or ACR were selected. 
Inclusion criteria were established as follows: (i) an effect 
of DPP-4i on eGFR or ACR was studied; (ii) relative 
information on renal parameter was recorded at baseline 
and follow-up,  or a change was indicated directly; and 
(iii) patients were diagnosed with T2DM. The exclusion 
criteria were listed as follows: (i) non-human studies; 
(ii) lack of records on eGFR or ACR; and (iii) meetings, 
abstracts or reviews.

Data extraction
Detailed records were extracted into the table, including 
(i) first author; (ii) publication year; (iii) trial location; (iv) 
number of participants in DPP-4i and control groups; (v) 
age and body mass index (BMI); (vi) follow-up and dia-
betes duration; (vii) HbA1c% at baseline; and (viii) eGFR 
and ACR at baseline. Studies with multiple follow-ups 
were extracted as the longest duration.

Quality assessment
Quality of RCTs was evaluated based on the Cochrane 
criteria [14]. Related items included random sequence 
generation, allocation concealment, blinding of par-
ticipants, personnel, outcome assessment, incomplete 
outcome data, selective outcome reporting, and other 
potential sources of bias. A judgement of ‘yes’ indicated 
a low risk of bias, while a judgement of ‘no’ indicated a 
high risk of bias. A judgement of ‘unclear’ indicated an 
unknown or unclear risk of bias.

Quantitative data synthesis
A pooled calculation was performed on the renal param-
eter of eGFR or ACR. Weighted mean difference (WMD) 
and 95% confidence interval (CI) were calculated for 
changes of eGFR and ACR. A fixed- or random-effects 
model was used according to the heterogeneity, which 
was quantified by the index of I2. Sensitivity test was used 
to examine the influence of individual study on an over-
all estimate. In case of possible important heterogeneity, 
subgroup analysis was accordingly performed on related 
parameters. Publication bias was also examined by Begg’s 
and Egger’s tests if there were at least five studies report-
ing changes of eGFR or ACR. All these analysis were 
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performed by using Review Manager (5.3) and STATA 
(12.0) software.

Results
Characteristics of the included studies
The literature search produced 8,738 records, and 
17 publications (19 studies)  met an inclusion criteria 
(Fig.  1). In addition, 17 studies reported the change of 
eGFR, while 11 studies reported the change of ACR dur-
ing DPP-4i treatment. Fourteen studies lasted less than 
1 year (ranging from 1 to 6 months), and three studies 
lasted longer than 1 year (ranging from 13 to 26 months). 
Two studies had a sample size of larger than 100, respec-
tively. Characteristics of eligible were detailed illustrated 
(Table 1).

Quality evaluation
Study quality was objectively evaluated by two review-
ers with Cochrane criteria(Fig.  2). All the studies were 
randomly designed, and three studies provided suffi-
cient data about allocation concealment. Ten studies had 
detection bias on the basis of blinding of outcome assess-
ment. Additionally, thirteen trials had performance bias 
as blinding methods were not implemented.

Effect of DPP-4i on eGFR in T2DM
A pooled estimate suggested that administration of 
DPP-4i preserved eGFR (WMD, -0.92 mL/min/1.73 m2, 
95% CI, -2.04 to 0.19, I2 = 0%, P = 0.10) in patients with 
T2DM (Fig. 3). Subgroup analysis indicated that HbA1c 
at baseline, lengths of follow-up, BMI, comparator type 
and dosage did not influence the effect of DPP4i on 
the eGFR. In addition, no significant differences were 
observed in subgroups of DPP-4i alone, combined with 
other antidiabetic agents or inhibitors of renin-angioten-
sin-aldosterone system (RAASi) (Table 2).

Effect of DPP-4i on ACR in T2DM
Administration of DPP-4i produced a significant effect on 
reducing ACR (WMD, -2.76 mg/g, 95% CI, -5.23 to -0.29, 
I2 = 0%, P = 0.03) in T2DM  (Fig.  4). In addition, DPP-4i 
significantly reduced ACR in subgroups of HbA1c ≤ 7.5, 
BMI ≥ 30  kg/m2 and coadministration of RAASi. How-
ever, no significant effects were indicated in subgroups 
of BMI, comparator type or coadministration with other 
antidiabetic agents during DPP4i treatment (Table 2).

Evaluation of publication bias
The pooled estimates on eGFR and ACR were stable 
according to the leave-one-out sensitivity test (Supple-
mentary Figs. 1–2). This result proved that a significant 
difference was an overall effect of all the identified stud-
ies. No publication bias was observed on the association 
of DDP4i with eGFR or ACR according to Begg’s test 

(eGFR, P = 0.48, ACR, P = 1.00) or Egger’s test (eGFR, 
P = 0.478, ACR, P = 0.217) (Supplementary Figs.  3–4). In 
addition, no significant interactions were detected on the 
pooled estimates of eGFR or ACR across subgroup analy-
sis (Table 2).

Discussion
DPP-4i were commonly recommended for treatment 
of patients with or without DN. Pooled analysis dem-
onstrated that DPP-4i preserved renal function of 
eGFR in patients with T2DM. This finding was consis-
tent with that of previous study in which DPP-4i were 
safely administered in diabetic patients with or without 
chronic kidney disease (CKD). Administration of sita-
gliptin resulted in no significant change of eGFR as that 
of glipizide in diabetic patients with CKD [12]. Addition-
ally, outcomes from the Trial Evaluating Cardiovascular 
Outcomes with Sitagliptin (TECOS) demonstrated that 
sitagliptin did not significantly modulate eGFR after a 
long-term treatment [13]. A retrospective analysis also 
uncovered that teneligliptin could be safely used at an 
early stage in diabetic patients with DKD [14]. In addi-
tion, sitagliptin did not significantly modulate eGFR (-6 
mL/min/1.73 m2, 95% CI, -14 to 3) in overweight patients 
with T2DM [15]. Similarly, a nonsignificant change of 
eGFR was observed in subgroup analysis on BMI. Pooled 
estimates might stem from a lack of significant renal hae-
modynamic changes during DPP-4i treatment. Different 
hyperfiltration ranges might also participate in attenuat-
ing eGFR in T2DM [16].

The preserved effect of DPP-4i on eGFR was consistent 
with outcomes of SAVOR-TIMI 53 trial. Saxagliptin did 
not significantly modulate eGFR while showing a ben-
eficial effect on ACR in T2DM [17]. The pooled analy-
sis also revealed that DPP-4i favorably reduced ACR in 
patients with T2DM. A preclinical study showed that 
DPP-4i reduced ACR and slowed the progression of renal 
impairment independent of blood pressure [18]. Evidence 
showed that saxagliptin and vildagliptin significantly 
reduced albuminuria, respectively, in diabetic patients 
with hypertension. Saxagliptin might present a stronger 
effect on reducing albuminuria compared to vildagliptin, 
an action independent of glycaemic control [19]. In fact, 
administration of saxagliptin ameliorated microalbu-
minuria in patients with or without renal impairment 
[20]. These results indicated that DPP-4i might produce 
an effect on ACR in a direct pathway. Most DPP-4i were 
predominantly excreted by the kidneys, except for lina-
gliptin. A pooled analysis demonstrated that linagliptin 
significantly reduced ACR in patients receiving treatment 
of RAASi [21]. Subgroup analysis revealed that DPP-4i 
significantly reduced ACR in subgroup of HbA1c < 7.5. 
A previous study revealed that no significant correlation 
of DPP-4i with albuminuria was found in patients with 
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different levels of HbA1c [20]. This might come from 
multiple parameters applied by different teams, namely, 
ACR and albuminuria alone. Correlation analysis also 
indicated that changes of ACR were associated with 
eGFR and systolic blood pressure in sitagliptin-treated 

participants [22]. This analysis suggested that an impact 
of DPP-4i on ACR partially dependent on eGFR at base-
line. A significant effect of DPP-4i on ACR was also 
observed in patients with BMI > 30  kg/m2, while the 

Fig. 1 PRISMA flow chart for study selection
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underlying mechanism remained unclear in patients with 
T2DM.

The potential mechanism by which DPP-4i attenuated 
renal function might involve multiple pathways. First, 
DPP-4i increased the levels of glucagon-like peptide-1 
(GLP-1), thereby inhibiting glomerular hyperfiltration 
[23]. Second, inflammation played a key role in the pro-
gression of CKD, and DPP-4i produced an anti-inflam-
matory effect by targeting toll-like receptor 4 (TLR4) in 
diabetic model [24]. Third, oxidative stress participated in 
the occurrence of renal impairment. Vildagliptin allevi-
ated the process of renal sclerosis by inhibiting p22phox 
in diabetic condition [25]. DPP4i also significantly 

reduced an accumulation of reactive oxygen species 
(ROS) and promoted the activation of superoxide dis-
mutase (SOD). DPP-4i reduced oxidative stress through 
modulating haem oxygenase-1 (HO-1) and NF-E2-re-
lated factor 2 (Nrf2) [26]. Fourth, kidney fibrosis was rec-
ognized as a final step in progression of CKD, which was 
ameliorated by an inhibition of endothelial-to mesenchy-
mal transition (EndMT) during DPP-4i treatment [27]. In 
addition, DPP-4i produced a vasodilating effect on ves-
sels by inducing a release of endothelial nitric oxide syn-
thase (eNOS) [28]. Finally, DPP-4i improved pancreatic 
β-cell function in both fasting and postprandial states in 

Table 1 Demographic characteristics of the studies included
Study/year Location Treatment

arm (n)
follow-
up
(weeks)

Duration
of 
diabetes
(years)

BMI
(kg/m2)

HbA1c
(%)

eGFR
(mL/min/1.73m2)

ACR
(mg/g)

Narimani, 
2021 [41]

Iran sita(50 mg):43
pla(50 mg):41

12 14.4 ± 3.6
14.9 ± 2.8

28.0 ± 3.6
28.8 ± 4.7

7.9 ± 0.4
7.8 ± 0.3

73.3 ± 10.7
72.7 ± 7.7

314.4 ± 414.6
298.7 ± 427.4

Cosenso-
Martin, 2018 
[42]

Brazil vild(100 mg):24
glib(100 mg):24

12 6.9 ± 5.6
5.92 ± 4.0

31.5 ± 3.3
30.0 ± 3.5

8.3 ± 1.0
7.9 ± 0.9

86.2 ± 16.0
91.2 ± 17.5

25.7 ± 19.1
22.1 ± 20.1

Ott, 2016 
[43]

Germany lina(5 mg):30
pla(5 mg):32

4 3.8 ± 3.3
5.1 ± 3.0

29.6 ± 4.0
29.8 ± 4.8

7.0 ± 0.7
6.8 ± 0.8

140.0 ± 14.0
141.0 ± 15.0

NS

Suzuki, 2014 
[44]

Japan sita(50 mg):16
lira(0.9 mg):24

24 1.9 ± 2.3
2.4 ± 2.8

26.3 ± 7.2
28.2 ± 7.2

9.1 ± 1.6
9.8 ± 2.2

73.7 ± 12.6
73.2 ± 13.4

23.4 ± 31.0
40.2 ± 62.0

Mori, 2014 
[45]

Japan sita(50 mg):42
con:38

24 10.0 ± 6.7
8.8 ± 6.5

25.2 ± 4.2
25.3 ± 4.1

7.0 ± 0.7
6.9 ± 0.7

77.1 ± 18.9
75.5 ± 28.1

68.9 ± 133.4
61.4 ± 154.3

Dei Cas, 
2017 [46]

Italy vild(100 mg):40
glib(2.5 ~ 5 mg):24

48 7.3 ± 5.2
5.3 ± 6.7

29.6 ± 4.5
29.5 ± 6.4

7.7 ± 0.4
7.8 ± 0.4

96.1 ± 11.8
96.0 ± 14.5

NS

Takihata, 
2013 [47]

Japan sita(50 mg):58
piog(15 mg):57

24 NS 24.6 ± 3.3
25.8 ± 4.8

7.5 ± 0.7
7.4 ± 0.6

87.6 ± 17.5
88.1 ± 19.6

80.8 ± 185.0
100.5 ± 248.0

Lovshin, 
2017 [48]

Canada sita(100 mg):16
pla(100 mg):16

4 6.3 ± 5.2
9.3 ± 6.3

31.7 ± 5.5
30.2 ± 7.0

7.2 ± 0.8
7.3 ± 0.8

94.1 ± 7.2
94.2 ± 11.4

NS

Tonneijck, 
2016 [15]

Netherlands sita(100 mg):19
pla(100 mg):17
Lira(1.8 mg):19

12 7.3 ± 5.9
8.3 ± 5.2
8.0 ± 6.7

31.5 ± 5.7
30.4 ± 1.9
32.9 ± 3.7

7.1 ± 0.5
7.5 ± 0.7
7.4 ± 0.7

92.0 ± 13.0
90.0 ± 15.0
93.0 ± 12.0

16.6 ± 23.6
19.0 ± 28.9
8.4 ± 5.3

Zografou, 
2015 [49]

Greece vild(100 mg) + met(1700 mg):32
met(1700 mg):32

24 NS 31.6 ± 4.6
32.2 ± 5.9

8.1 ± 0.8
8.0 ± 0.8

122.0 ± 30.2
123.1 ± 35.2

26.2 ± 40.1
18.4 ± 19.3

Hayashi, 
2017 [50]

Japan sita(50 mg):40
dapa(5 mg):40

12 NS NS 7.5 ± 1.6
7.6 ± 1.1

83.5 ± 22.7
86.2 ± 18.4

NS

Mita, 2018 
[51]

Japan lina(5 mg):21
met(500-2250 mg):20

24 3.4 ± 5.9
3.3 ± 4.1

25.7 ± 4.5
26.3 ± 4.9

7.1 ± 0.7
7.5 ± 1.5

76.7 ± 17.2
92.0 ± 21.4

21.3 ± 28.3
19.5 ± 21.0

Nakamura, 
2014 [52]

Japan sita(50 mg):24
vog(0.6 mg):31

12 4.8 ± 3.4
3.5 ± 3.7

27.8 ± 3.5
25.7 ± 4.3

7.0 ± 0.6
6.9 ± 0.4

66.8 ± 20.8
63.6 ± 20.8

NS

Oe, 2015 [53] Japan sita(50 mg):38
vog(0.6 mg):39

24 4.0 ± 356.0
3.2 ± 331.6

27.7 ± 4.1
25.7 ± 4.3

7.1 ± 0.7
6.9 ± 0.5

75.0 ± 22.0
71.0 ± 15.0

NS

Mita, 2015 
[54]

Japan alog(25 mg):150
con:153

104 9.7 ± 7.4
9.1 ± 8.1

24.6 ± 4.3
24.9 ± 3.7

7.3 ± 0.8
7.2 ± 0.8

78.0 ± 20.0
77.0 ± 18.0

25.3 ± 34.4
23.2 ± 29.0

Yamada, 
2017 [55]

Japan sita(25–100 mg):55
con(100 mg):60

96 NS 25.9 ± 3.3
24.8 ± 3.9

7.0 ± 0.6
6.9 ± 0.5

66.6 ± 15.9
67.3 ± 18.4

NS

Roden, 2015 
[56]

Germany sita(100 mg):136
empa(10 mg or 25 mg):143
pla(100 mg):119

76 NS 28.2 ± 5.2
28.2 ± 5.5
28.7 ± 6.2

7.8 ± 0.8
7.9 ± 0.8
7.9 ± 0.8

87.6 ± 17.3
87.5 ± 18.3
86.8 ± 17.9

NS

Values are expressed as mean ± SD. Abbreviations: n, number of participants per group; sita, sitagliptin; vild, vildagliptin; alog, alogliptin; empa, empagliflozin; pla, 
placebo; piog, pioglitazone; con, conventional treatment; met, metformin; dapa, dapagliflozin; lira, liraglutide; vog, voglibose; lina, linagliptin; glib, glibenclamide; 
NS, not stated
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patients with T2DM, which potentially presented vasodi-
latory effects on renal system [29].

In addition to DPP-4i, other antidiabetic agents had 
been reported to exert multiple effects on renal function 
in T2DM. Incretin-based GLP-1 receptor agonists (GLP-
1RA) could improve renal function by presenting an 
antioxidant and/or anti-atherosclerotic effect in diabetic 
condition. Evidence demonstrated that weight reduc-
tion also contributed to a decrease of albuminuria during 
semaglutide treatment [30]. Administration of sodium–
glucose cotransporter 2 inhibitors (SGLT2i) was reported 
to show a transient reduction of eGFR and proteinuria in 
diabetic patients [31]. The reduction of glomerular filtra-
tion might result from an effect of renal adenosine under 
hyperglycaemic conditions [32]. Metformin was proved 

to improve renal function by slowing the progression 
of kidney fibrosis. Preclinical evidence suggested that 
metformin targeted the AMPK signalling pathway, thus 
contributing to the normalization of kidney structure 
[33]. Pioglitazone, a peroxisome proliferator-activated 
receptor γ (PPAR-γ) agonist, was also found to modu-
late the progression of renal fibrosis and ameliorate DN 
in diabetic model [34]. Pioglitazone showed a reno-
protective effect by attenuating mitochondrial function 
and stabilizing membrane potential [35]. Similarly, glib-
enclamide stabilized kidney structure by downregulat-
ing an expression of inflammatory markers. This action 
was accompanied with an alleviation of inflammatory 
cell infiltration in the kidney [36]. In the present study, 
DPP-4i did not demonstrate a stronger effect on renal 

Fig. 3 Forest plot for the impact of DDP-4i versus placebo or active comparators on eGFR

 

Fig. 2 Risk of bias assessment in the studies identified for meta-analysis
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parameters compared to other antidiabetic agents. The 
composite impact of multiple agents might ultimately 
surpass the effects of DPP-4i on renal parameters in 
diabetic participants. Head-to-head studies comparing 

DPP-4i with other antidiabetic agents should be designed 
to evaluate the effect on eGFR.

Finally, given the protective effect of RAASi on DN, 
it was important to determine whether DPP-4i showed 
a synergistic effect on renal function with RAASi. 

Table 2 Subgroups analysis on the correlation of DDP-4i with eGFR and ACR in T2DM
Variables Subgroups RCTs

(n)
WMD, 95% CI I2 P P value for interaction

eGFR Placebo 6 -0.7, -2.3 to 1.0 0% 0.4 0.54
Active agents 11 -1.2, -2.7 to 0.4 0% 0.1
Follow-up < 24weeks 6 0.2, -2.3 to 2.6 0% 0.9 0.27
Follow-up ≥ 24weeks 11 -1.2, -2.5 to 0.04 0% 0.1
DPP-4i monotherapy 7 -0.5, -2.1 to 1.1 0% 0.1 0.65
Combination therapies 10 -1.3, -2.9 to 0.2 0% 0.6
HbA1c ≤ 7.5% 9 -1.4, -3.0 to 0.1 0% 0.1 0.90
HbA1c > 7.5% 8 -0.4, -2.0 to 1.1 0% 0.6
BMI < 30 13 -1.0, -2.1 to 0.2 0% 0.1 0.64
BMI ≥ 30 3 0.2, -4.4 to 4.8 0% 0.9
DPP-4i monotherapy 6 -1.2, -2.9 to 0.5 0% 0.2 0.39
Coadministration with RAASi 11 -0.7, -2.2 to 0.7 0% 0.3
Sitagliptin at dose of 50 mg 7 -1.2, -3.4 to 1.0 8% 0.3 0.52
Sitagliptin at dose of 100 mg 4 -1.2, -2.9 to 0.6 0% 0.2

ACR Placebo 3 -11.5, -23.5 to 0.6 0% 0.1 0.28
Active agents 8 -2.4, -4.9 to 0.1 0% 0.1
Follow-up < 24weeks 4 -5.6, -12.2 to 1.1 0% 0.1 0.65
Follow-up ≥ 24weeks 7 -2.3, -5.0 to 0.3 0% 0.1
DPP-4i monotherapy 4 -5.9, -15.0 to 3.2 25% 0.2 0.53
Combination therapies 7 -2.5, -5.1 to 0.1 0% 0.1
HbA1c ≤ 7.5%* 7 -2.6, -5.2 to -0.01 0% 0.0 0.92
HbA1c > 7.5% 4 -4.2, -12.1 to 3.7 0% 0.3
BMI < 30 7 -2.1, -4.8 to 0.6 0% 0.1 0.58
BMI ≥ 30* 4 -6.2, -12.2 to -0.1 0% 0.0
DPP-4i monotherapy 2 -9.1, -22.9 to 4.8 0% 0.2 0.48
Coadministration with RAASi* 9 -2.6, -5.1 to -0.1 0% 0.1

* Pooled analysis was significantly demonstrated in relative group

Fig. 4 Forest plot for the impact of DDP-4i versus placebo or active comparators on ACR
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Angiotensin II (Ang II) downregulated the expression 
of megalin by activating DPP-4 in the proximal tubules, 
thereby resulting in an impairment of renal function. 
Inhibition of DPP-4 upregulated the expression of mega-
lin in an Ang II-mediated way, thus decreasing the phos-
phorylation of extracellular regulated kinase (ERK) [37]. 
Linagliptin marked decreased glycosylated haemoglo-
bin levels and preserved renal function when added to a 
conventional dose of RAASi in DN [38]. A pooled esti-
mate demonstrated that coadministration of DPP-4i with 
RAASi produced a favorable effect on reducing ACR in 
T2DM. Evidence uncovered that an addition of DPP-4i 
to a maximal dose of RAASi markedly reduced ACR in 
patients with renal dysfunction [39]. This suggested that 
coadministration of DPP-4i with RAASi produced a syn-
ergistic effect on improving renal function in diabetic 
patients with renal impairment. In addition, a previous 
study showed that sitagliptin potentially targeted the 
sympathetic nervous system, thus weakening the hypo-
tensive effect of angiotensin-converting enzyme inhibi-
tors (ACEI) in patients with metabolic syndrome [40]. 
Therefore, essential measures should be performed to 
monitor blood pressure when patients received a maxi-
mal dose of RAASi during treatment with DPP-4i.

Strengths
This meta-analysis had some strengths to be stated. This 
meta-analysis firstly combined evidence on changes of 
eGFR and ACR during DPP-4i treatment. Pooled results 
suggested that DPP-4i potentially produced a favorable 
effect in patients with DN. In addition, subgroup analysis 
was performed to explore the influence of related param-
eters on renal function.

Limitations
It should be noted that this study had some limitations. 
Firstly, included studies had relatively small sample sizes, 
and a few number of trials were identified. Secondly, the 
identified trials showed differences in characteristics of 
participants, eGFR or ACR at baseline, and dosage of 
DPP-4i. Variations of these parameters might present an 
impact on an overall estimate. Thirdly, only publications 
in related databases were included, which also produce 
an inevitable publication bias.

Conclusions
Administration of DPP-4i potentially reduced ACR and 
prevented the decline of eGFR in T2DM. These results 
suggested that diabetic participants with or without albu-
minuria potentially benefit more from DPP-4i treatment 
in clinical practice.
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