
Wang et al. Lipids in Health and Disease          (2024) 23:152  
https://doi.org/10.1186/s12944-024-02141-w

RESEARCH

Lipoproteins and metabolites in diagnosing 
and predicting Alzheimer’s disease using 
machine learning
Fenglin Wang1†, Aimin Wang1†, Yiming Huang1†, Wenfeng Gao2†, Yaqi Xu1, Wenjing Zhang1, Guiya Guo1, 
Wangchen Song1, Yujia Kong1, Qinghua Wang1, Suzhen Wang1*† and Fuyan Shi1*† 

Abstract 

Background  Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that poses a substantial economic 
burden. The Random forest algorithm is effective in predicting AD; however, the key factors influencing AD onset 
remain unclear. This study aimed to analyze the key lipoprotein and metabolite factors influencing AD onset using 
machine-learning methods. It provides new insights for researchers and medical personnel to understand AD 
and provides a reference for the early diagnosis, treatment, and early prevention of AD.

Methods  A total of 603 participants, including controls and patients with AD with complete lipoprotein and metab-
olite data from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database between 2005 and 2016, were 
enrolled. Random forest, Lasso regression, and CatBoost algorithms were employed to rank and filter 213 lipoprotein 
and metabolite variables. Variables with consistently high importance rankings from any two methods were incorpo-
rated into the models. Finally, the variables selected from the three methods, with the participants’ age, sex, and mari-
tal status, were used to construct a random forest predictive model.

Results  Fourteen lipoprotein and metabolite variables were screened using the three methods, and 17 variables 
were included in the AD prediction model based on age, sex, and marital status of the participants. The optimal 
random forest modeling was constructed with “mtry” set to 3 and “ntree” set to 300. The model exhibited an accuracy 
of 71.01%, a sensitivity of 79.59%, a specificity of 65.28%, and an AUC (95%CI) of 0.724 (0.645–0.804). When Mean 
Decrease Accuracy and Gini were used to rank the proteins, age, phospholipids to total lipids ratio in intermediate-
density lipoproteins (IDL_PL_PCT), and creatinine were among the top five variables.

Conclusions  Age, IDL_PL_PCT, and creatinine levels play crucial roles in AD onset. Regular monitoring of lipoproteins 
and their metabolites in older individuals is significant for early AD diagnosis and prevention.
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Background
Alzheimer’s disease (AD) is a chronic neurodegenera-
tive disorder and a protein-conformational disease that 
is primarily caused by abnormal processing and aggre-
gation of normally soluble proteins [1–3]. In the brains 
of patients with AD, β-amyloid proteins (Aβ) aggregated 
into plaques, and tau proteins aggregated abnormally 
within neurons [4–6]. The presence of these aggregates 
not only disrupts the normal functioning of neurons but 
also leads to cell death and brain tissue degeneration [7–
9]. The pathological changes in AD are closely associated 
with the imbalanced metabolism of Aβ, leading to the 
formation of senile plaques, as well as the excessive phos-
phorylation of tau protein, which results in the formation 
of neurofibrillary tangles in neurons [10–12].

Some studies have reported metabolic disturbances in 
patients with AD, suggesting a close association between 
AD onset and metabolic imbalance [13, 14]. Normal lipid 
metabolism is crucial for maintaining the proper func-
tioning of the brain [15–17]. Lipid metabolism disorders 
can lead to synaptic loss and, ultimately, memory impair-
ment through pathways such as inflammatory response, 
oxidative stress, blood–brain barrier damage, mitochon-
drial dysfunction, and neuronal signaling pathway dam-
age [18]. For example, cholesterol is a major component 
of cell membranes and myelin sheaths, playing a crucial 
role in maintaining synaptic integrity and neuronal func-
tion. Amyloid precursor protein (APP) trafficking, pro-
teolytic cleavage, and Aβ aggregation related to the core 
pathological process of AD are all related to biofilms and 
are affected by membrane components [19, 20]. Whether 
it is increased cholesterol levels, ApoE proliferation, trace 
amounts of sodium sulfate, or decreased plasmalogens, 
they all contribute to dysfunction in Aβ processing, ulti-
mately leading to AD. Even the slightest changes in lipid 
concentrations can have a significant impact on the pro-
gression and severity of AD [20]. Therefore, lipid distri-
bution and metabolism may affect the pathogenesis of 
AD. Moreover, cleavage products of APP accumulate at 
mitochondria-associated endoplasmic reticulum mem-
branes (MAMs), where it impairs mitochondrial bioen-
ergetics, disrupts cellular lipid homeostasis, and leads to 
alterations in membrane lipid components common in 
AD pathogenesis [21, 22].

Lipoproteins are globular particles composed of a 
hydrophobic core rich in sterol lipids and triglycerides 
and an outer shell composed of proteins, phospholipids, 
cholesterol, etc. Lipoproteins can be divided into chy-
lomicrons (CM), very-low-density lipoproteins (VLDL), 
intermediate-density lipoproteins (IDL), low-density 
lipoproteins (LDL), and high-density lipoproteins (HDL). 
Metabolites are small molecules of substrates, inter-
mediates, and products in cellular metabolic processes. 

Abnormal lipid metabolism may lead to excessive accu-
mulation of Aβ and abnormal phosphorylation of tau 
protein [23, 24]. This has a certain suggestive effect on the 
prediction of AD. Researchers have explored the study of 
Aβ and tau proteins, making significant contributions to 
early disease diagnosis and monitoring disease progres-
sion. However, the exact mechanisms underlying AD 
onset remain unclear [25], and the increasing prevalence 
of AD poses a substantial economic burden on nations 
and affected families [26].

Random forest is effective in predicting AD [27, 28]. 
By integrating the predictions of multiple decision trees, 
model accuracy can be enhanced, making random for-
ests suitable for complex classification problems [29, 30]. 
Moreover, random forests are highly resilient against 
noise and anomalies [31], making them capable of effec-
tively handling complex real-world data. We hypothesize 
that machine learning methods such as random forests 
can effectively screen out important variables from high-
dimensional data, and some key lipoproteins and metab-
olites may play an important role in the development of 
AD. Therefore, this study aimed to use various machine 
learning methods to screen risk factors for AD and ana-
lyze key lipid proteins and metabolite factors that influ-
ence the onset of AD using a random forest model.

Methods
Data sources
Data collected from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI)  database (https://​adni.​loni.​usc.​
edu/) were used to assist in the early diagnosis and track-
ing of AD. Based on the status of the participants and 
availability of lipoprotein and metabolite data, 603 par-
ticipants were recruited between 2005 and 2016, includ-
ing 294 controls and 309 patients with AD. To achieve 
the research objectives, the lipoprotein and metabolite 
data of the participants were filtered, excluding vari-
ables with missing values. Ultimately, 213 lipoprotein and 
metabolite variables were included in this study. All 603 
participants in this study had complete records for the 
213 lipoprotein and metabolite variables.

Variable screen and predictive model construction 
methods
In this study, three machine learning methods, ran-
dom forest, CatBoost algorithm, and Lasso regression, 
were used to screen key lipoproteins and metabolites. 
First, the 213 variables were sorted and filtered based 
on their importance, with any variables (lipoproteins 
and metabolites) ranking high in importance in ≥ 2 
machine learning methods included in the model. Sub-
sequently, the selected variables, along with the age, 
sex, and marital status of the participants, were used to 

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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construct a random forest predictive model to identify 
the key factors influencing AD onset. The random for-
est is trained by randomly selecting a subset of features, 
and only some features in each decision tree participate 
in the partitioning process, which effectively reduces 
the correlation between features and provides a more 
reliable feature importance ranking. The CatBoost algo-
rithm can automatically discover and utilize the inter-
action between features in the process of building a 
decision tree, better capture the nonlinear relationship 
between features, and improve the expressive ability of 
the model.

In this study, while using the Lasso regression to screen 
variables, the original data were first standardized with 
Z-scores to ensure that each feature in the model was 
properly standardized, thereby improving the stability 
of the model and reliability of the results. The result of 
standardization was such that the mean of each variable 
was 0, and the standard deviation was 1. However, the 
random forest and CatBoost algorithms are tree model-
based algorithms unaffected by the feature scale; there-
fore, no standardization was applied to the data, and the 
analysis was conducted using raw data.

The categorical variables used in the stochastic forest 
prediction model were assigned different values accord-
ing to their attributes. Sex was coded 1 for males and 0 
for females. Marital status was coded 1 for married indi-
viduals and 0 for those who were unmarried, widowed, 
or divorced. Apart from sex and marital status, the other 
variables were continuous. The main variables and their 
abbreviations are presented in Table 1.

In this study, a non-replacement random sampling 
method was used to build the random forest predictive 
model. The research cohort was divided into training and 
testing datasets in an 8:2 ratio. The training set was used 
to establish the random forest model, and the testing 
set was used to evaluate the model’s performance. Opti-
mizing model parameters aimed to enhance the model’s 
ability to capture the complexity of the data [32], which 
was achieved by calculating the optimal number of fea-
tures “mtry” and decision trees “ntree” used in each tree 
of the model [33]. Out-of-bag error is an estimate of the 
model’s performance on unused data by using out-of-bag 
data. The mean error rate based on out-of-bag error is an 
important metric used to evaluate the performance of 
classification models. It indicates the proportion of errors 

Table 1  Names and abbreviations of the main variables in this study

Variable Abbreviation Variable Abbreviation

Acetate ACETATE Phospholipids to total lipids ratio in medium HDL M_HDL_PL_PCT

Acetoacetate ACETOACETATE Cholesteryl esters to total lipids ratio in medium VLDL M_VLDL_CE_PCT

Acetone ACETONE Omega-3 fatty acids OMEGA_3

Albumin ALBUMIN Pyruvate PYRUVATE

Apolipoprotein A1 APOA1 Cholesterol to total lipids ratio in small HDL S_HDL_C_PCT

Citrate CITRATE Cholesterol esters in small HDL S_HDL_CE

Creatinine CREATININE Free cholesterol in small HDL S_HDL_FC

Glucose GLUCOSE Free cholesterol to total lipids ratio in small HDL S_HDL_FC_PCT

Glycoprotein acetyls GLYCA​ Phospholipids in small HDL S_HDL_PL

Average diameter for HDL particles HDL_SIZE Phospholipids to total lipids ratio in small HDL S_HDL_PL_PCT

Cholesteryl esters to total lipids ratio in IDL IDL_CE_PCT Average diameter for VLDL particles VLDL_SIZE

Phospholipids to total lipids ratio in IDL IDL_PL_PCT Triglycerides in VLDL VLDL_TG

Triglycerides in IDL IDL_TG Cholesterol to total lipids ratio in very large HDL XL_HDL_C_PCT

Cholesterol to total lipids ratio in large HDL L_HDL_C_PCT Free cholesterol to total lipids ratio in very large HDL XL_HDL_FC_PCT

Cholesteryl esters to total lipids ratio in large HDL L_HDL_CE_PCT Total lipids in very large HDL XL_HDL_L

Phospholipids to total lipids ratio in large HDL L_HDL_PL_PCT Phospholipids to total lipids ratio in very large HDL XL_HDL_PL_PCT

Triglycerides in large HDL L_HDL_TG Triglycerides to total lipids ratio in very large HDL XL_HDL_TG_PCT

Cholesteryl esters in large LDL L_LDL_CE Concentration of very large VLDL particles XL_VLDL_P

Cholesteryl esters to total lipids ratio in large LDL L_LDL_CE_PCT Phospholipids to total lipids ratio in very large VLDL XL_VLDL_PL_PCT

Phospholipids to total lipids ratio in large LDL L_LDL_PL_PCT Triglycerides in very large VLDL XL_VLDL_TG

Free cholesterol to total lipids ratio in large VLDL L_VLDL_FC_PCT Free cholesterol in chylomicrons and extremely large VLDL XXL_VLDL_FC

Total lipids in large VLDL L_VLDL_L Phospholipids in chylomicrons and extremely large VLDL XXL_VLDL_PL

Phospholipids in large VLDL L_VLDL_PL Age AGE

Triglycerides in large VLDL L_VLDL_TG Gender GENDER

Average diameter for LDL particles LDL_SIZE Marital status PTMARRY​



Page 4 of 12Wang et al. Lipids in Health and Disease          (2024) 23:152 

in the prediction process, and a lower mean error rate 
usually indicates that the model has higher accuracy and 
generalization performance. In this study, the minimum 
mean error rate of the model was calculated to determine 
the optimal number of feature “mtry” used by each tree 
in a random forest. Then, by plotting the relationship 
between the model error and the number of decision 
trees, the optimal number of decision trees used by the 
model is determined. Finally, utilizing the two optimal 
parameters, along with the settings of importance = true 
and num_class = 2, a random forest model is constructed.

Statistical analysis
In this study, SPSS 21.0 (IBM Corp., Armonk, NY, USA) 
software was used to compare the differences in basic 
information between the NC group and the AD group by 
using two independent samples t-test or chi-square test 
or Mann–Whitney test, and the test level was α = 0.05. 
The random forest package in R version 4.2.2 was used to 
construct the random forest model, glmnet package for 
Lasso regression, and CatBoost package for the CatBoost 
model.

Results
Basic information about the participants
A total of 603 participants were recruited for this study: 
294 controls and 309 in the group with AD. The average 
age of the controls was (74.72 ± 5.93 years), consisting of 
136 males (46.26%) and 158 females (53.74%). Among 
them, 201 (68.37%) were married, and 93 (31.63%) were 
unmarried. The mean age of the group with AD was 
(74.34 ± 7.68  years), including 175 males (56.63%) and 
134 females (43.37%). In the group with AD, 260 indi-
viduals (84.14%) were married, and 49 (15.86%) were 

unmarried. There was no statistically significant age dif-
ference between the two groups, but there were statisti-
cally significant differences in gender and marital status. 
Since this study mainly aimed to explore the key lipo-
proteins and metabolites that affect the incidence of AD, 
only the three basic variables of age, gender, and marital 
status were included in the final modeling, and the three 
variables of ethnicity, education scores, and MMSE were 
not included in the study. The basic information of the 
two groups is shown in Table 2.

Variable screening results based on the random forest 
method
In the random forest model, the Mean Decrease Accu-
racy (MDA) and Mean Decrease Gini (MDG) are crucial 
indicators for assessing variable importance. The MDA 
evaluates the contribution of each variable to the model 
accuracy, whereas the MDG measures the improvement 
in Gini impurities during the decision-tree splitting pro-
cess. Higher values of these indicators correspond to 
more significant variables.

This study used two indices to rank the importance 
of the 213 lipoproteins and metabolites. The top five 
important variables selected using the MDA indicator 
were glycoprotein acetylation (GLYCA), phospholipids 
to total lipids ratio in intermediate-density lipoproteins 
(IDL_PL_PCT), phospholipids to total lipids ratio in 
small high-density lipoproteins (S_HDL_PL_PCT), per-
centage of cholesteryl esters within low-density lipopro-
tein (L_LDL_CE_PCT), and cholesteryl esters to total 
lipids ratio in large HDL (L_HDL_CE_PCT). The top five 
most important variables selected using the MDG indica-
tors were GLYCA, creatinine, IDL_PL_PCT, acetate, and 

Table 2  Baseline data of the NC group and AD group

a Mann–Whitney test

Index NC group (n = 294) AD group (n = 309) χ2/t/Z P

Age 74.72 ± 5.93 74.34 ± 7.68 0.681 0.496

Sex

  Male (%) 136 (46.26) 175 (56.63) 6.494 0.011

  Female (%) 158 (53.74) 134 (43.37)

Marital status

  Married (%) 201 (68.37) 260 (84.14) 20.825 0.000

  Unmarried, etc.(%) 93 (31.63) 49 (15.86)

Ethnicity

  Hispanic / Latino (%) 8 (2.72) 7 (2.27) 0.129 0.719

  Not Hispanic / Latino (%) 286 (97.28) 302 (97.73)

  Education scores 16.38 ± 2.71 15.41 ± 2.94 4.226 0.000

MMSE

  M(QR) 1 3 -18.669a 0.000
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L_LDL_CE_PCT. The top 20 variables screened using the 
two indicators are presented in Fig. 1 and Table 3.

Variables screened using the Lasso regression model
The Lasso regression model was used to rank 213 lipid 
and metabolite variables. The coefficients of the variables 
with high importance were retained, whereas those with 
low importance were dismissed. In the final selection, 19 
variables were retained (Fig.  2). The absolute values of 
the coefficients indicated the variables’ contributions to 
the model, with larger values signifying greater contri-
butions. Among the retained variables, the top five with 
higher absolute coefficients were IDL_PL_PCT, L_HDL_
PL_PCT, GLYCA, creatinine, and acetate. The ranking 
of the importance of these 19 variables is presented in 
Table 4.

Variables screened using the CatBoost algorithm
The CatBoost algorithm was used to assess the impor-
tance of 213 lipid and metabolite variables. The mag-
nitude of the gain was used to measure each variable’s 
contribution to the model performance, with higher 
gain values indicating greater contributions. The vari-
ables were ranked based on the magnitude of their gains. 

The top five variables were GLYCA, acetoacetate, creati-
nine, L_HDL_PL_PCT, and glucose. The top 20 variables 
screened using the CatBoost algorithm are presented in 
Fig. 3 and Table 5.

Random forest prediction model construction
Based on the random forest, LASSO regression, and Cat-
Boost algorithms, 14 variables were selected: acetate, 
acetone, albumin, creatinine, glucose, GLYCA, IDL_PL_
PCT, L_HDL_CE_PCT, L_HDL_PL_PCT, L_LDL_CE_
PCT, L_LDL_PL_PCT, LDL_size, omega_3, and free 
cholesterol to total lipids ratio in very large HDL. The 
aforementioned 14 variables, along with age, sex, and 
marital status, were included in the random forest pre-
diction model. Figure 4 depicts the 14 selected variables.

The random forest model achieved optimal results 
with “mtry” (number of features used in each tree) set to 
3 and “ntree” (number of trees in the model) set to 300. 
The model exhibited an accuracy of 71.01%, a sensitiv-
ity of 79.59%, a specificity of 65.28%, and an AUC (95% 
CI) of 0.724 (0.645–0.804). The importance rankings 
of the variables in the random forest prediction model 
based on MDG and MDA showed some differences. 
The top five variables selected using the MDA were age, 

Fig. 1  Variables screened using the two indicators based on the random forest model
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IDL_PL_PCT, creatinine, marital status, and L_HDL_
CE_PCT. The top five variables selected using the MDG 
were age, IDL_PL_PCT, GLYCA, creatinine, and acetate. 
Notably, age, IDL_PL_PCT, and creatinine were among 

the top five in both rankings, underscoring their crucial 
roles in AD onset. The variable importance rankings in 
the random forest prediction model are presented in 
Fig. 5 and Table 6.

Table 3  Variables screened using the two indicators based on the random forest model

Numbering MeanDecreaseAccuracy Numbering MeanDecreaseGini

Variable Value Variable Value

1 GLYCA​ 8.0929545 1 GLYCA​ 4.426083

2 IDL_PL_PCT 5.3943304 2 CREATININE 3.984054

3 S_HDL_PL_PCT 5.2229553 3 IDL_PL_PCT 3.662835

4 L_LDL_CE_PCT 5.1077540 4 ACETATE 3.587541

5 L_HDL_CE_PCT 4.7717346 5 L_LDL_CE_PCT 2.954548

6 ACETATE 4.6262435 6 S_HDL_PL_PCT 2.901989

7 L_HDL_PL_PCT 4.5528902 7 L_HDL_PL_PCT 2.885128

8 VLDL_TG 4.1495399 8 L_HDL_CE_PCT 2.679472

9 XL_VLDL_TG 4.0905157 9 ALBUMIN 2.653867

10 S_HDL_FC_PCT 3.8902676 10 GLUCOSE 2.611271

11 XL_VLDL_P 3.8866123 11 LDL_SIZE 2.487458

12 L_LDL_PL_PCT 3.8786212 12 M_HDL_PL_PCT 2.371273

13 L_VLDL_L 3.8077384 13 CITRATE 2.310676

14 S_HDL_C_PCT 3.4992093 14 L_VLDL_TG 2.291144

15 HDL_SIZE 3.4256874 15 IDL_CE_PCT 2.281446

16 L_VLDL_PL 3.2869513 16 L_HDL_C_PCT 2.217397

17 VLDL_SIZE 3.2508577 17 S_HDL_FC_PCT 2.206338

18 IDL_CE_PCT 3.2162258 18 ACETONE 2.200589

19 L_LDL_CE 3.2096993 19 VLDL_SIZE 2.188805

20 L_HDL_C_PCT 3.1233766 20 XL_HDL_FC_PCT 2.152936

Fig. 2  Top 19 variables screened using the Lasso regression model
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Discussion
Recently, machine learning techniques have been applied 
in various fields. Medically, researchers have utilized 
machine learning to analyze extensive healthcare data 
[34, 35] for more accurate diagnoses and disease predic-
tions. The random forest algorithm performs well in AD 
[36, 37], effectively enhancing the precision of predictive 
models. The uniqueness of the random forest algorithm 
lies in constructing each decision tree through random 
sampling, allowing it to model based on different sub-
sets of data and features [37]. This helps mitigate the risk 

of overfitting, improves the predictive accuracy of the 
model, and ensures good generalization performance. 
Additionally, the random forest model can indicate the 
relative importance of variables and enhance the inter-
pretation of the results.

Zhang et  al. [38] conducted a study investigating the 
association between serum total cholesterol (TC) levels 
and neuropsychological performance, as well as intrin-
sic functional networks in non-demented older adults. 
They utilized ANCOVA analysis, adjusting for age, gen-
der, and education years to compare neuropsychological 

Table 4  Top 19 variables screened using the Lasso regression model

Numbering Variable Coefficient Numbering Variable Coefficient

1 IDL_PL_PCT -0.35634199 11 XXL_VLDL_FC -0.06525833

2 L_HDL_PL_PCT -0.32669529 12 OMEGA_3 -0.06366583

3 GLYCA​ 0.27019005 13 PYRUVATE -0.06112266

4 CREATININE 0.24233156 14 XL_HDL_TG_PCT -0.05989037

5 ACETATE -0.19706259 15 S_HDL_PL -0.03986326

6 XL_VLDL_PL_PCT 0.17481366 16 L_VLDL_FC_PCT 0.03764699

7 M_VLDL_CE_PCT -0.14568852 17 XXL_VLDL_PL -0.03737671

8 ALBUMIN -0.13129624 18 XL_HDL_PL_PCT 0.03595478

9 LDL_SIZE -0.10019704 19 ACETONE -0.02999795

10 GLUCOSE 0.07151750

Fig. 3  Top 20 variables screened using the CatBoost algorithm
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performance between the two groups. The study found 
that in nondemented older adults, higher serum cho-
lesterol levels were associated with disrupted functional 
connectivity in the salience network (SN). Proitsi et  al. 
[39] conducted a study involving nontargeted lipidom-
ics analysis of plasma samples from 148 patients with AD 
and 152 elderly controls. They utilized both univariate 
and multivariate analysis methods and found that blood 
lipids hold promise as potential biomarkers for AD. This 
discovery may lead to the emergence of new therapeu-
tic strategies. In a study conducted by Chung et al. [40], 
they evaluated the relationship between LDL cholesterol 
(LDL-C) and gray-matter volume (GMV) in a commu-
nity-based population without stroke or dementia. Using 

multiple linear regression analysis, they found that low 
circulatory LDL-C levels, in combination with hyperten-
sion, appeared to have a combined detrimental effect on 
posterior cingulate GMV, white matter hyperintensities 
(WMH), and verbal memory.

This study initially used the random forest, Lasso 
regression, and CatBoost algorithms to rank and fil-
ter the importance of the 213 lipid and metabolite vari-
ables included in this study. While determining the final 
modeling variables, the results of variable selection from 
using these three machine learning methods were com-
prehensively considered, which could reduce the prob-
ability of occasional variable selection using a single 
method and ensure the reliability of the modeling results. 

Table 5  Top 20 variables screened using the CatBoost algorithm

Numbering Variable Gain Numbering Variable Gain

1 GLYCA​ 5.6847263 11 XL_HDL_L 1.4111951

2 ACETOACETATE 3.3583078 12 IDL_PL_PCT 1.4055307

3 CREATININE 3.3360474 13 XL_HDL_FC_PCT 1.3737200

4 L_HDL_PL_PCT 3.1894335 14 ALBUMIN 1.3603727

5 GLUCOSE 2.6285391 15 OMEGA_3 1.3515118

6 ACETATE 2.4005382 16 L_HDL_CE_PCT 1.3450783

7 S_HDL_CE 2.3091079 17 XL_HDL_C_PCT 1.2445356

8 L_LDL_CE_PCT 2.0090769 18 S_HDL_FC 1.1996838

9 L_LDL_PL_PCT 1.5845339 19 APOA1 1.1360386

10 L_HDL_TG 1.5572068 20 IDL_TG 1.1357228

Fig. 4  Venn diagram of the overlap of the selected variables using the three methods
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Among the top 20 variables selected using each method, 
seven variables, including acetate, albumin, creatinine, 
glucose, GLYCA, IDL_PL_PCT, and L_HDL_PL_PCT, 

were co-screened using all three methods, indicating 
the significant role of these variables in predicting AD 
onset. Finally, by employing the random forest model and 

Fig. 5  Variable importance ranking in the random forest prediction model based on the Mean Decrease Accuracy and Mean Decrease Gini

Table 6  Top 17 variables screened using the random forest model

Numbering Mean Decrease Accuracy Numbering Mean Decrease Gini

Variable Value Variable Value

1 AGE 8.751644698 1 AGE 19.43709257

2 IDL_PL_PCT 5.267551238 2 IDL_PL_PCT 18.75051635

3 CREATININE 4.272402103 3 GLYCA​ 18.51842448

4 PTMARRY​ 3.992261285 4 CREATININE 18.28195316

5 L_HDL_CE_PCT 3.754458302 5 ACETATE 15.87359581

6 GENDER 3.377002136 6 XL_HDL_FC_PCT 15.03763361

7 LDL_SIZE 3.119752591 7 LDL_SIZE 14.90034705

8 ALBUMIN 2.458896046 8 L_HDL_PL_PCT 14.64282445

9 L_HDL_PL_PCT 1.970092350 9 L_HDL_CE_PCT 14.40590370

10 ACETATE 1.518452241 10 GLUCOSE 14.36430505

11 L_LDL_PL_PCT 1.465085481 11 ALBUMIN 13.97586022

12 GLUCOSE 1.056593961 12 ACETONE 13.64832198

13 GLYCA​ 1.011491047 13 L_LDL_CE_PCT 13.61667028

14 L_LDL_CE_PCT 0.754445650 14 OMEGA_3 13.52545686

15 XL_HDL_FC_PCT 0.573652684 15 L_LDL_PL_PCT 13.32199892

16 ACETONE 0.115878414 16 PTMARRY​ 4.742327863

17 OMEGA_3 -0.636658927 17 GENDER 3.376408026
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generating a visualization of variable importance rank-
ings, we visualized the importance ranking of the vari-
ables contributing to AD onset.

The results of the AD risk prediction model in this 
study indicated that the importance rankings of the 
variables age, IDL_PL_PCT, and creatinine, after being 
selected using the MDA and MDG indices, all ranked 
within the top five. This suggests that these three vari-
ables play crucial roles in AD onset. AD is one of the 
most common age-related neurodegenerative diseases 
[41], and its incidence significantly increases with age 
[42]. Removing triglycerides from very low-density lipo-
protein in muscles and adipose tissues can lead to the 
formation of cholesterol-rich IDL particles, and these 
IDL particles can promote atherosclerosis [43]. The cen-
tral nervous system is rich in lipids, primarily located on 
biological membranes, maintaining the structure and 
function of the central nervous system [16]. Changes in 
the lipid composition of the brain and plasma have been 
widely observed in patients with AD [44]. Phospholipids 
are key components of the cell membrane and can lead 
to synaptic dysfunction in patients with AD [45]. Physi-
cal activity and exercise prevent or delay AD onset [46], 
with lipid levels in patients with AD who exercise regu-
larly lower than in those without AD [47]. Creatinine 
concentrations in the cerebrospinal fluid of patients with 
AD were significantly higher than in those without AD, 
which may be related to the overuse of creatine phos-
phate [48]. This result is consistent with the conclusions 
of this study. Creatinine is a byproduct of phosphocre-
atine [49], which stores high-energy phosphate bonds 
and releases energy when the glucose supply is insuf-
ficient. These results suggest that a significant increase 
in creatinine concentration in the cerebrospinal fluid of 
patients with AD causes an imbalance in their energy 
metabolism.

In conclusion, age, IDL_PL_PCT, and creatinine were 
the key factors identified that influence AD onset. Clini-
cal screening and regular monitoring of lipoproteins and 
their metabolites in older patients can provide new per-
spectives for early AD diagnosis and prevention.

Strengths and limitations
The strength of this study was that three machine learn-
ing methods were used for the preliminary screening of 
variables, which reduced the probability of chance in the 
screening of variables using a single method. Finally, the 
screening results of the three methods were combined 
for modeling, which improved the accuracy of the model 
to an extent.

However, this study had some limitations. First, 
this was a cross-sectional study; therefore, we only 
focused on the measurements of key lipoproteins 

and metabolites that affect AD pathogenesis at a cer-
tain point in time and did not consider the relation-
ship between the longitudinal dynamic trajectories of 
these factors and AD pathogenesis. Second, no fol-
low-up period was observed; therefore, investigating 
the impact of these key lipoproteins and metabolites 
on AD morbidity was impossible. Third, no standard 
range of health values for the studied variables was 
observed.

Conclusion
This study identified age, IDL_PL_PCT, and creatinine 
as key factors closely associated with the onset of AD. 
Age is a well-established risk factor for AD, and this 
study further substantiates its significance in AD devel-
opment. The discovery of IDL_PL_PCT provides novel 
insights into the relationship between lipid metabolism 
abnormalities and AD, offering researchers and clini-
cians potential avenues for investigation. The elevated 
concentration of creatinine in patients with AD sug-
gests a potential link to energy metabolism imbalance. 
It can serve as an adjunct diagnostic marker, enhanc-
ing our understanding of AD pathogenesis and present-
ing potential therapeutic targets. For older individuals, 
closer monitoring and assessment should be carried out 
to facilitate early detection and increase the likelihood 
of diagnosing AD. Therefore, lipid metabolism manage-
ment should be emphasized in patient care, including 
diet control, moderate exercise, and potential pharma-
cological interventions to maintain healthy lipid status.
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