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Abstract
Backgrounds  A growing body of evidence has highlighted the interactions of lipids metabolism and immune 
regulation. Nevertheless, there is still a lack of evidence regarding the causality between lipids and autoimmune 
diseases (ADs), as well as their possibility as drug targets for ADs.

Objectives  This study was conducted to comprehensively understand the casual associations between lipid traits 
and ADs, and evaluate the therapeutic possibility of lipid-lowering drug targets on ADs.

Methods  Genetic variants for lipid traits and variants encoding targets of various lipid-lowering drugs were derived 
from Global Lipid Genetics Consortium (GLGC) and verified in Drug Bank. Summary data of ADs were obtained from 
MRC Integrative Epidemiology Unit (MER-IEU) database and FinnGen consortium, respectively. The causal inferences 
between lipid traits/genetic agents of lipid-lowering targets and ADs were evaluated by Mendelian randomization 
(MR), summary data-based MR (SMR), and multivariable MR (MVMR) analyses. Enrichment analysis and protein 
interaction network were employed to reveal the functional characteristics and biological relevance of potential 
therapeutic lipid-lowering targets.

Results  There was no evidence of causal effects regarding 5 lipid traits and 9 lipid-lowering drug targets on ADs. 
Genetically proxied 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition was associated with a reduced 
risk of rheumatoid arthritis (RA) in both discovery (OR [odds ratio] = 0.45, 95%CI: 0.32, 0.63, P = 6.79 × 10− 06) and 
replicate datasets (OR = 0.37, 95%CI: 0.23, 0.61, P = 7.81 × 10− 05). SMR analyses supported that genetically proxied 
HMGCR inhibition had causal effects on RA in whole blood (OR = 0.48, 95%CI: 0.29, 0.82, P = 6.86 × 10− 03) and skeletal 
muscle sites (OR = 0.75, 95%CI: 0.56, 0.99, P = 4.48 × 10− 02). After controlling for blood pressure, body mass index (BMI), 
smoking and drinking alchohol, HMGCR suppression showed a direct causal effect on a lower risk of RA (OR = 0.33, 
95%CI: 0.40, 0.96, P = 0.042).
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Introduction
Autoimmune diseases (ADs) are chronic inflammatory 
connective tissue disorders characterized by the loss of 
immunological tolerance to self-antigens and an over-
active immune response against healthy cells or tissues, 
causing multi-organs damage and the production of 
autoantibodies [1]. It has been estimated that ADs affect 
approximately 11% of the population worldwide, and the 
prevalence will continue to increase over time [2, 3]. Dur-
ing the past two decades, a large number of literature has 
demonstrated that genetic susceptibility, environmental 
factors, sex hormones, and immunological regulation 
dysfunction are generally considered to contribute to the 
onset and development of ADs [4]. Currently, the avail-
able medications for the treatment of ADs only provide 
symptomatic relief rather than a complete cure, although 
injectable biologics are well-established targeted therapy 
for ADs, the high out-of-pocket medication costs are a 
deterrent to patient adherence [5].

Lipids are fatty compounds that play important roles 
in regulating energy balance, contributing to cellular 
structural integrity and function, facilitating hormone 
production, etc [6, 7]. A growing body of literature has 
emphasized the pivotal role of lipid metabolism in sup-
porting an effective immune response, modulating 
inflammatory effects, and facilitating tissue regenera-
tion. Whereas, lipid metabolism dysregulation has been 
recognized as a critical factor participating in the patho-
genesis of cardiovascular diseases (CVD), metabolic dis-
eases, and Inflammatory disorders [8, 9]. In addition to 
these connections, the emergence of novel lipid-lowering 
agents, such as proprotein convertase subtilisin/kexin 
type 9 (PCSK9) and Niemann-Pick C1-like intracellular 
cholesterol transporter 1 (NPC1L1), has been introduced 
as potential drug targets for therapeutic development of 
a variety of diseases. Literature has indicated that these 
inhibitors are not only effective in lowering lipid levels, 
but may also have significant relevance in the treatment 
of heart failure, rheumatoid arthritis (RA), and systemic 
lupus erythematosus (SLE) [10, 11]. Although several 
studies have explored the association between lipid-low-
ering drugs and ADs, the findings have not yielded con-
sistent conclusions [12–14]. Furthermore, it is crucial to 
acknowledge that previous observational studies may be 
affected by confounding factors, which can obscure the 
establishment of causal relationships.

Mendelian randomization (MR) is a novel biostatisti-
cal approach that uses genetic variants as instrumental 

variables (IVs) to infer causal associations between expo-
sure factors (biomarkers or drug targets) and outcomes. 
As the transmission of genetic variants is naturally inher-
ited from a parent at conception, MR is less affected by 
confounding factors and reverse causation in contrast to 
observational epidemiological studies. Given that genetic 
variants within the genes encoding region targets can 
affect the expression or functions of target genes, it is 
analogous to the mechanisms of actions of drugs, there-
fore, in drug target MR, genetic variants, represent prox-
ies for an intervention on the proposed drug target, are 
leveraged as IVs to explore potential effects of drug target 
on disease outcomes [15–18].

In this study, we conducted univariable two-sample 
MR analyses to initially assess causal associations of 
lipid traits and lipid-lowering drug targets on the risks 
of ADs. Then, summary data-based MR (SMR) analyses 
were implemented to validate the associations of lipid-
lowering drug targets and ADs using expression quanti-
tative trait loci (eQTL) data in whole blood and multiple 
tissues. After adjusting for potential confounding factors 
by multivariable MR (MVMR), we performed enrich 
analyses and protein-protein interaction (PPI) networks 
to understand the biological significance and underlying 
interactions between lipid-lowering drug targets and the 
approved therapeutic targets of ADs.

Materials and methods
Study design
This study was designed following the Specifications for 
Reporting Observational Epidemiological Studies in MR 
(STROBE-MR) (Table S1) [19]. The data sources in the 
present study were derived from publicly available sum-
mary data of genome-wide association studies (GWAS) 
and eQTL data (Table S2). The study design is displayed 
in Fig.  1. Given that all datasets were freely available in 
the public domain, therefore, no additional ethical review 
was required.

IVs selection
First, we identified and extracted independent genetic 
variants associated with low-density lipoprotein cho-
lesterol (LDL-C), triglyceride (TG), and high-density 
lipoprotein cholesterol (HDL-C) in the largest GWAS 
from the Global Lipid Genetics Consortium (GLGC), 
according to the strict criteria (P < 5 × 10− 08, r2 < 0.001, 
kb = 10,000). To verify the reliability of the results, 
genome-wide associated genetic variants of additional 

Conclusions  Our study reveals causal links of genetically proxied HMGCR inhibition (lipid-lowering drug targets) 
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two lipid traits, apolipoprotein A1 (Apo-A1) and apoli-
poprotein B (Apo-B), were selected from the database 
of MRC Integrative Epidemiology Unit (MRC-IEU) to 
construct a new set of IVs, where Apo-A1 is the crucial 

transporter protein associated with HDL-C, and Apo-B 
is the transporter protein associated with LDL-C and 
TG formation. The detailed information regarding the 
selected IVs for pharmacological genes was listed in Table 

Fig. 1  Overview of the study design (a) Identification of genetic associations using Mendelian randomization. (b) Constructions of gene enrichment and 
network analysis. ADs: Autoimmune diseases; Apo-A1: apolipoprotein A1; Apo-B: apolipoprotein B; BMI: body mass index; CHD: coronary heart disease; 
DBP: diastolic blood pressure; MR: Mendelian randomization; eQTL: Expression quantitative trait loci; IVs: instrumental variables; GO: Gene Ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; PPI: Protein-protein interaction; SMR: summary data-based MR; TSMR: two-sample MR; MVMR: multivariable 
MR; LDL-C: low-density lipoprotein cholesterol; TG: triglyceride (TG); HDL-C: high-density lipoprotein cholesterol; HEIDI: heterogeneity in dependent 
instruments
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S3-4. Second, to identify the lipid-lowering effects of the 
drug target, the genes encoding the pharmacological 
targets of lipid traits were comprehensively screened in 
Drug Bank database (https://go.drugbank.com/). A total 
of 12 drug targets genes relevant to lipid traits (LDL-C, 
TG, HDL-C, Apo-A1 and Apo-B) was captured, includ-
ing the target genes for lowering LDL-C and Apo-B levels 
(HMGCR [3-hydroxy-3-methylglutaryl-CoA reductase], 
PCSK9, NPC1L1, ABCG5/ABCG8 [ATP binding cassette 
subfamily G member 5/8], LDLR [low-density lipopro-
tein receptor], APOB [apolipoprotein B]), target genes for 
lowering TG and Apo-B levels (LPL [lipoprotein recep-
tor], ANGPTL3 [angiopoietin-like 3], PPARA [peroxi-
some proliferator-activated receptor alpha] and APOC3 
[apolipoprotein C3]), and target genes for enhancing 
HDL-C and Apo-A1 levels (CETP [cholesterol ester 
transfer protein]) (Table S3). Moreover, we extracted sin-
gle-nucleotide polymorphisms (SNPs) within a ± 100  kb 
window region of the gene location in lipid traits that 
were robustly associated with LDL-C, TG, HDL-C, Apo-
A1 and Apo-B (P < 5 × 10− 08) using the GWAS data from 
GLGC and MRC-IEU, according to the methodology of 
the previous study (Tables S4) [20]. To enhance the sta-
tistical power and strength of the genetic instruments for 
each drug target, SNPs were then clumped to represent 
lipid-lowering drug targets if they were allowed to be in 
low linkage disequilibrium (LD) (R2 < 0.3) with a physi-
cal distance threshold of 250  kb and an F-statistic > 10 
(Tables S5-6). Given that no eligible SNPs were obtained 
within 100 kb upstream and downstream of the PPAPA, 
we excluded it from subsequent analyses. Ultimately, the 
remaining 11 drug targets were incorporated in the pres-
ent study, including HMGCR, PCSK9, NPC1L1, ABCG5/
ABCG8, APOB, LDLR, LPL, APOC3, ANGPTL3 and 
CETP.

In addition, we extracted GWAS data of coronary 
heart disease (CHD) as a positive control to validate 
the robustness of genetic variants as drug targets from 
the CARDIoGRAMplusC4D consortium. The detailed 
information of included data sources was summarized in 
Table S2.

As for the observed positive causality between drug 
targets and ADs, we used the summary-level eQTLs data 
in whole blood or tissues that were derived from eQTL-
Gen Consortium (https://www.eqtlgen.org/) or GTEx 
Consortium V8 (https://gtexportal.org/) to further vali-
date the differential expression of target genes. The cis-
eQTL SNPs were recognized as genetic instruments 
located within 500 kb encoding the target gene and sig-
nificantly affects the expression of the drug target gene 
(P < 5 × 10− 08, r2 < 0.1, MAF > 0.05).

Outcome sources
Summary genetic association data among five types 
of ADs, including RA, SLE, multiple sclerosis (MS), 
ulcerative Colitis (UC), and Crohn’s disease (CD), were 
obtained from the MRC-IEU Open GWAS database 
(https://gwas.mrcieu.ac.uk/) at the University of Bris-
tol and the FinnGen consortium. The sources of genetic 
data from the MRC-IEU database were defined as dis-
covery datasets for the outcome, where the GWAS of RA 
included 2,5708 European individuals (5,539 cases and 
20,169 controls) (ebi-a-GCST000679), the GWAS of SLE 
included 1,4267 European individuals (5,201 cases and 
9,066 controls) (ebi-a-GCST003156), the GWAS of MS 
included 115,803 European individuals (47,269 cases and 
68,374 controls) (ieu-b-18), the GWAS of UC included 
26,405 European individuals (5,587 cases and 197,774 
controls) (ebi-a-GCST000964), and the GWAS of CD 
included 51,874 European individuals (17,897 cases and 
33,977 controls) (ieu-a-12) [21–25]. For replication anal-
yses, independent summary data of ADs were derived 
from the FinnGen consortium (version 5), including sero-
positive RA (finn-b-RHEUMA_SEROPOS_STRICT), 
SLE (finn-b-M13_SLE), MS (finn-b-G6_MS), UC (finn-b-
ULCERNAS), and CD (finn-b-K11_KELACROHN).

Participant overlap assessment
During the causal inference of MR analysis, there has 
often been IV bias due to a high overlap between sam-
ples, which could lead to the possibility of a type 1 error 
[26]. The reliability and validity of MR analysis could 
be accepted with no or minor overlap between expo-
sures and outcomes (sample overlap < 10%). In the pres-
ent study, there was a lower sample overlap between the 
datasets of lipid traits/lipid-lowering drug targets and 
ADs (Supplementary Figure S1 & Supplementary Figure 
S2), indicating that the causal estimates were less likely to 
be affected by Winner’s curse bias.

Statistical analyses
MR analysis
To ensure the validity of causal estimates, three funda-
mental assumptions should be fulfilled when performing 
MR analysis: (1) The selected IVs must be highly corre-
lated with the exposure (the relevance assumption [27]. 
Here, the F statistic was used to evaluate the strength of 
the IVs–exposure correlation. The correlation with an 
F statistic > 10 was strong enough to avoid the weak IVs 
bias [28]; (2) The selected IVs should affect the outcome 
only through the exposure, not via other pathways (the 
exclusion restriction assumption) [29]. MR-Egger regres-
sion was used to identify the horizontal pleiotropy path-
way between IVs and outcome [30]; (3) IVs should be 
independent of confounders (the independence assump-
tion) [31].

https://go.drugbank.com/
https://www.eqtlgen.org/
https://gtexportal.org/
https://gwas.mrcieu.ac.uk/
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The causal associations of lipid traits and lipid-low-
ering drug targets with the risk of ADs were rigorously 
assessed through a comprehensive univariable two-
sample MR (TSMR) analysis with an inverse-variance 
weighted model, TSMR is a novel biostatistical approach 
that utilizes genetic variants from summary data across 
different populations to infer the causality between 
exposure factors and disease outcome. To validate the 
presence of expression-phenotype causal associations, 
additional SMR analysis was conducted to infer the 
causality between eQTL data of drug targets and ADs, 
which provides a more powerful estimate of the effect 
size of gene expression of genetic variants on the risk 
ADs. The magnitude of heterogeneity in the findings 
was tested using the heterogeneity in dependent instru-
ments (HEIDI) tool (P > 0.05 was defined as the findings 
not being affected by heterogeneity) [32]. Considering 
the underlying influences of other risk factors on the 
causality between lipid traits/lipid-lowering drug targets 
and ADs, five common risk factors (systolic blood pres-
sure [SBP], diastolic blood pressure [DBP], body mass 
index [BMI], smoking, and alcohol consumption) associ-
ated with ADs were identified from previous studies, and 
TSMR analyses were implemented to verify the causal 
associations between these factors and ADs; as for those 
risk factors that had a causal relationship with ADs, we 
then used MVMR analysis to evaluate the direct effect 
of lipid traits or lipid-lowering drug targets on ADs risk 
after controlling for the influence of these risk factors, 
where MVMR uses genetic variants as IVs to estimate the 
direct causal effects of multiple exposures on an outcome 
simultaneously [33].

Several sensitivity analyses were conducted to ensure 
the stability of the findings. First, the essential prereq-
uisite for satisfying causal inference is the absence of 
horizontal pleiotropy, which was then tested using the 
MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) 
method and results with a P-value greater than 0.05 were 
identified as the absence of horizontal pleiotropy [34]. 
Second, we used the Cochran Q statistic to rule out het-
erogeneity between IVs, and a P-value greater than 0.05 
indicated no heterogeneity [35]. In addition, we per-
formed leave-one-out cross-validation to rule out if any 
single SNPs significantly affect the stability of causal esti-
mates [36].

Considering the multiple tests when inferring the 
causal associations of lipid traits or lipid-lowering drug 
targets with five types of ADs, Bonferroni correction 
was employed to avoid the possible false-positive results 
(type I errors) due to multiple tests. In the TSMR analysis 
for lipid traits and ADs, P < 0.002 (5 lipid traits, 5 ADs) 
was set as the presence of causal associations; as for the 
TSMR analysis between lipid-lowering drug targets and 
ADs, P < 0.001 (10 target genes, 5 ADs) was defined as the 

evidence of significant causality. In addition, as for other 
statistical analyses, P < 0.05 was considered to be statisti-
cally significant.

Colocalization analysis
To resolve possible cascade imbalances and false-pos-
itive results, we performed co-localization analyses 
between 10 drug target genes and ADs to ensure that 
genetic variants only influence the phenotype by alter-
ing gene expression via the lipids pathway. Default a 
priori probabilities were P1 = 1 × 10− 04, P2 = 1 × 10− 04, and 
P12 = 1 × 10− 05. A posteriori probability corresponding to 
one of the basic assumptions of co-localization, where 
H0 indicates the probability that neither feature in the 
region is genetically associated, and H1/H2 suggests the 
probability that either phenotype one or phenotype two 
are genetically related in that region, H3 shows the prob-
ability that both features are related but have different 
causal variables, and H4 represents the probability that 
both features share a causal variable. The co-localization 
analysis provides the magnitude of the probability that 
the two traits are affected by the same causal variant with 
the calculation of H4.

Enrichment analysis
To investigate the biological relevance and functional 
characterization of potential drug targets, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and gene 
ontology (GO) enrichment analyses were performed [37]. 
KEGG provides a systematic analysis of gene function 
and pathways in terms of genes and molecules, and GO 
offers a broader classification of the molecular function 
(MF), cellular components (CC), and biological processes 
involved (BP) in genes or gene products.

Comparative analysis and protein interaction network 
construction
To comprehensively understand the possible interplays 
between lipid-lowering targets and the approved thera-
peutic drug targets of ADs, we summarized the informa-
tion about the currently approved drug targets for ADs 
from Drugbank. The protein-protein interaction (PPI) 
networks were constructed to reveal the functional link-
ages between target gene coding proteins and lipid-low-
ering drug targets and to investigate biological signaling 
and energy metabolism response mechanisms involved 
in autoimmune response.

All aforementioned statistical analyses were performed 
using “TwoSampleMR”, “MVMR”, “COLOC” and “clus-
terProfiler” packages in R4.2.2. The SMR analyses were 
performed using the software tool developed by Yang 
Lab under the Linux environment. Comparative analy-
sis was carried out based on an online gene search tool, 
STRING (https://string-db.org/), with a minimum 

https://string-db.org/
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confidence score of 0.4 and defaults for the remaining 
parameters. In addition, the BioGRID database was used 
for PPI construction (https://thebiogrid.org/), and Cyto-
scape (v3.9.1) was applied to visualize PPI results.

Results
Causal associations between lipid traits and ADs
A number of 80 SNPs associated with LDL-C, 56 SNPs 
associated with TG, 90 SNPs associated with HDL-C, 73 
SNPs associated with Apo-A1, and 56 SNPs associated 
with Apo-B were recognized as candidate IVs for lipid 
traits (Table S4).

The results indicated that genetically determined 
HDL-C increase was causally associated with the risk 
of developing CD in discovery datasets (odds ratio 
[OR] = 0.73, 95%CI: 0.56, 0.94, P = 0.017) (Fig.  2 & Table 
S8), but this finding was not validated in replicate CD 
datasets. No causality between other lipid traits and 
risk of CD was observed (Fig. 2 & Table S8). In terms of 
the associations between lipid traits and other ADs, we 
did not observe any causal links of LDL-C, TG, HDL-C, 
Apo-A1 and Apo-B with the risks of RA, SLE, MS, and 
UC (Fig.  2 & Table S9-12). Heterogeneity tests revealed 
the presence of heterogeneity when inferring causal esti-
mates of lipid traits and five types of ADs, the intercept 
term in MR-Egger regression supported that there was 
no overall horizontal pleiotropy (Table S13).

Causal associations between lipid-lowering drug targets 
and ADs
A total of 11 lipid-lowering drug targets genes was iden-
tified, including HMGCR, NPC1L1, PCSK5, ABCG5/
ABCG8, APOB, LDLR, LPL, APOC3, ANGPTL3 and 
CETP, the strength and variance explanation of selected 
IVs proxies for each drug target were displayed in Tables 
S5-6. To ensure the effectiveness of IVs proxy to lipid-
lowering drug targets, the correlations between drug tar-
gets related SNPs and CHD were validated as the positive 
control (Table S7). It showed that there were causal asso-
ciations between 10 drug targets (HMGCR, NPC1L1, 
PCSK9, APOB, ABCG5/ABCG8, LDLR, APOC3, LPL 
and CETP) and CHD. Unfortunately, we did not observe 
a causal relationship between ANGPTL3 inhibition and 
CHD, thus, the target gene of ANGPTL3 was removed 
for further analysis (Table S7).

Genetically proxied HMGCR inhibition equivalent 
to per standard deviation (SD) decrease in LDL-C was 
causally associated with a lower risk of RA in both dis-
covery (OR = 0.45, 95%CI: 0.32, 0.63, P = 6.79 × 10− 06) 
and replicate datasets (OR = 0.37, 95%CI: 0.23, 0.61, 
P = 7.81 × 10− 05) after Bonferroni correction (Fig.  3 & 
Table S14-15 & Supplementary Fig. 3). Nevertheless, we 
did not observe the causal associations of other genetic 
mimicry drug targets (NPC1L1, PCSK5, ABCG5/ABCG8, 

APOB, LDLR, LPL, APOC3 and CETP) and RA, nei-
ther did the genetically proxied drug targets (HMGCR, 
NPC1L1, PCSK5, ABCG5/ABCG8, APOB, LDLR, LPL, 
APOC3 and CETP) inhibition and SLE, MS, CD and UC 
(Table S16-23).

The results of MR Egger regression and MR-PRESSO 
showed no evidence of pleiotropy and underlying outliers 
(all P > 0.05), and sensitivity analyses with the leave-one-
out method demonstrated that the causal estimates were 
stable after excluding any individual SNPs (Table S24).

Gene expression and colocalization analysis
Given the protective effects of genetic variants in 
HMGCR on RA, the summary-level eQTL data in whole 
blood or multi-tissues were used to further validate the 
causality. The results of SMR analysis implied that geneti-
cally proxied HMGCR inhibition was associated with 
a lower risk of RA in whole blood (OR = 0.48, 95%CI: 
0.29, 0.82, P = 6.86 × 10− 03, HEIDI = 0.125) and skeletal 
muscle site (OR = 0.75, 95%CI: 0.56, 0.99, P = 4.48 × 10− 02, 
HEIDI = 0.187) (Table S25).

Colocalization analyses were then performed to deter-
mine the likelihood whether genetic variants associ-
ated with HMGCR expression in relevant tissues shared 
causal loci with RA, and we found that for LDL and RA 
within the HMGCR gene, the respective probabilities of 
H4 were 22.22%; for Apo-B and RA within the HMGCR 
gene, the respective probabilities were 29.64% (Supple-
mentary Fig.  4 & Table S26). These findings indicated 
that these two traits might not be affected by the same 
causal variant.

MVMR analysis
Based on the observed causal association between 
HMGCR and RA, further MVMR was performed to 
evaluate the direct causal effect of HMGCR on RA after 
adjusting for the underlying risk factors. The selected 
common risk factors of blood pressure, BMI, smoking, 
and alcoholic drinks were validated whether there was 
the presence of causality with RA in using TSMR analy-
sis, and results showed that SBP, BMI, and smoking were 
causally associated with RA (Table S27). Hence, these 
factors were incorporated into subsequent MVMR analy-
sis, and the findings indicated that HMGCR suppression 
was causally linked to a lower RA risk after controlling 
for the influence of SBP, BMI, and smoking (OR = 0.33, 
95%CI = 0.40, 0.96, P = 0.042) (Table S28).

Enrichment analysis
To understand the possible interactions between 
HMGCR and the approved drug targets of RA, the 
gene function was evaluated. Go enrich analyses indi-
cated that the function of these genes was closely asso-
ciated with the regulation of nitric oxide biosynthesis 

https://thebiogrid.org/
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Fig. 2  Forest plot of association of lipid traits with risk of ADs. ADs: Autoimmune diseases; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; 
MS: Multiple sclerosis; UC: ulcerative colitis; CD: Crohn’s disease; Apo-A1: apolipoprotein A1; Apo-B: apolipoprotein B; LDL-C: low-density lipoprotein cho-
lesterol; TG: triglyceride (TG); HDL-C: high-density lipoprotein cholesterol; N.SNPs: number of single-nucleotide polymorphisms; OR: odds ratio
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and metabolism, response to lipopolysaccharide in BP, 
membrane raft and microdomain, caveola in CC, and 
serotonin receptor activity, G protein-coupled sero-
tonin receptor activity and cytokine receptor binding in 
MF. KEGG pathway analysis showed that HMGCR and 
the approved drug targets of RA were mainly involved 
in the pathogenesis of type 1 diabetes (T1D), leishmani-
asis, necroptosis, etc. (Fig. 4 & Supplementary Figs. 5–8 
& Table S29-30).

Comparative analysis and PPI networks
The PPI network was constructed with the use of 
HMGCR and the approved drug targets of RA, the results 
discovered 18 potentially interactive genes that were co-
associated with each other. These linkages included co-
expression (78.77%), common protein structural domains 
(25.90%), co-localization (19.70%), and physical interac-
tions (13.34%). The results of the functional analysis of 
the PPI network were in line with the findings of enrich-
ment analysis, suggesting the potential functional corre-
lations of HMGCR with the molecular mechanism of RA 
pathogenesis (Fig. 5).

Discussion
Recent evidence has highlighted the significant roles 
of lipid metabolism disorders in the development and 
progression of ADs [7, 38]. For instance, Zhang et al. 
reported that lipid-lowering therapy with simvastatin 
could reduce interleukin-17  A (IL-17  A) expression in 
CD4+ T cells and inhibit the activation of T cells towards 
to T helper 17 cells (Th17), suggesting the potential anti-
inflammatory and immunomodulatory effects of statins 
[39]. Additionally, active RA patients exhibited rapid 
deterioration in lipid profiles, with decreased HDL-C lev-
els and elevated atherogenic lipoproteins like Apo-B [40, 
41]. It has been revealed that the majority of MS patients 
showed a disturbed systemic lipid metabolism, and the 
changes in total cholesterol (TC) or fatty acid might serve 
as biomarkers of disease activity and progression of this 
disease. Previous studies have demonstrated that SLE 
patients had a high risk of dyslipidemia, and an abnormal 
lipid metabolism was associated with the disease activity. 
The above evidence indicates that the dysfunction of lipid 
metabolism might play a significant role in the develop-
ment and progression of ADs.

Our study was conducted to comprehensively under-
stand the relationships of lipid traits and lipid-lowering 
drug targets with the risks of ADs with the implemen-
tation of various biostatistical approaches, including 
TSMR, SMR, and MVMR analyses. We did not observe 
causal associations between lipid traits and risks of ADs 
in both discovery and replicate datasets. Nevertheless, in 
terms of lipid-lowering drug targets, the genetically prox-
ied HMGCR inhibition equivalent to LDL-C decrease 

Fig. 3  Forest plot of associations of genetically proxied drug targets with 
risk of ADs. HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; PCSK9: 
proprotein convertase subtilisin/kexin type 9; NPC1L1: Niemann-Pick C1-
like intracellular cholesterol transporter 1; ABCG5/ABCG8: ATP binding 
cassette subfamily G member 5/8; LDLR: low-density lipoprotein receptor; 
APOB: apolipoprotein B; LPL: lipoprotein receptor; ANGPTL3: angiopoietin-
like 3; APOC3: apolipoprotein C3; ADs: Autoimmune diseases; RA: Rheu-
matoid arthritis; SLE: Systemic lupus erythematosus; MS: Multiple sclerosis; 
UC: ulcerative colitis; CD: Crohn’s disease; N.SNPs: number of single-nucle-
otide polymorphisms; OR: odds ratio
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was causally associated with a lower risk of RA, SMR 
analysis also supported the presence of an association 
between HMGCR gene suppression and RA. Further-
more, after adjusting for the underlying confounding fac-
tors, MVMR analysis demonstrated a direct causal effect 

of HMGCR inhibition on RA, suggesting that HMGCR-
mediated LDL-C inhibition might play as a protective 
role in the lowering risk of RA. In addition, functional 
enrichment analyses implied that HMGCR was involved 
in the regulation of extracellular signal-regulated kinases 

Fig. 4  Functional interactions between HMGCR gene and the approved RA drug targets. (a) The combination diagram of Sankey and bubbles depicts 
the action mechanism of HMGCR; (b) GO enrichment results for three terms. HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; MF: molecular function; 
CC: cellular components; BP: biological processes
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1/2 (ERK1/2) cascade, ageing, and oxidation-reduc-
tion processes, and PPI network analysis revealed that 
HMGCR was predominantly interlinked with Janus 
kinase 3 (JAK3) [already known drug targets for ADs] 
and insulin-inducible gene 1 (INSIG1) [key regulatory 
factor of lipid metabolism], suggesting that HMGCR 
might serve as a promising therapeutic target for RA.

HMGCR is the rate-limiting enzyme in the cholesterol 
biosynthesis pathway, the inhibitors of HMGCR exert 
a therapeutic effect on lowering LDL-C by suppress-
ing HMG-CoA reductase activity, and are commonly 
used for the treatment of CVD in clinical practice [42]. 
In recent years, emerging evidence has shown the anti-
inflammatory properties beyond the cholesterol-lower-
ing effects of HMGCR inhibitors in the treatment of ADs. 
Statins, as one of the classic HMGCR inhibitors, are not 
only used to lower cholesterol levels in the blood but also 
show an anti-inflammatory effect. Established studies 
have revealed that statins can affect immune cell traffick-
ing (reducing adhesion of immune cells to the endothe-
lium), apoptosis (inducing programmed cell death in 

immune cells), and differentiation (modulating the T 
cells differentiation) through inhibiting the activation 
of nuclear factor-kappa B (NF-кB) and the subsequent 
production of pro-inflammatory factors, such as tumor 
necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and 
interleukin-1 beta (IL-1β) (Fig.  6) [43, 44]. Numerous 
studies have explored the use of statins in the treatment 
of RA. Although some studies have indicated potential 
benefits, such as disease remission and an improvement 
of joint inflammation, the findings have been incon-
sistent, and several studies did not report significant 
improvements. A recent systemic review provided a 
clinical dosing profile of statins in ADs, suggesting prom-
ising therapeutic benefits of lipid-lowering treatment in 
various ADs, especially in RA and SLE [45]. Moreover, 
considering an increased CVD risk in RA patients, it has 
been suggested that statins, with dual effects in lipid-low-
ering and immune-modulating, may be a potential prior-
ity drug for reducing CVD risk in patients with RA [46, 
47].

Fig. 5  PPI network between HMGCR and the approved drug targets of RA. HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; PPI: Protein–protein 
interaction; RA: rheumatoid arthritis
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In our study, we observed that HMGCR inhibition was 
correlated with a lower RA risk, this might be explained 
by the following aspects. First, HMGCR plays a piv-
otal role in the synthesis of cholesterol and fatty acids, 
which are essential components of cell membranes and 
signaling molecules. The inhibition of HMGCR with the 
use of statins could lead to alterations in the metabo-
lism of these lipids, potentially affecting cellular signal-
ing pathways associated with cell growth, survival, and 
apoptosis, such as the PI3K/Akt and MAPK/ERK path-
ways [48, 49]. Second, the alterations in lipid metabo-
lism, due to HMGCR inhibition, could also modulate 
inflammatory and immune responses by reducing the 
recruitment and activation of various immune cells, 
including T cells, B cells and macrophages [50]. In addi-
tion, HMGCR is also involved in the regulation of oxida-
tive stress and the antioxidant defense system. HMGCR 
inhibition could disrupt the balance between oxidative 
stress and antioxidant defense, potentially reducing the 
oxidative stress that contributes to RA pathogenesis [51]. 
Statins, commonly known as HMGCR inhibitors, have 
shown an anti-inflammatory effect beyond lipid-lower-
ing properties in RA patients. It has been revealed that 
treatment with simvastatin could reduce several serum 
inflammatory markers in RA patients [52]. This finding 
was also observed in a recent meta-analysis, where Ren 

et al. showed that the use of statins can reduce inflam-
matory markers of C-reactive protein (CRP) and eryth-
rocyte sedimentation rate (ESR), as well as alleviate the 
disease activity and symptoms of RA patients [53]. Taken 
together, considering the anti-inflammatory and lipid-
lowering properties, statins might be used as a supple-
ment to existing RA treatment regimens, and provide 
additional benefits in controlling disease activity and 
improving patient outcomes.

Currently, emerging evidence has highlighted that bio-
logics are cornerstones of the treatment of RA, such as 
TNF-α and IL-6 receptor inhibitors [47]. There are, how-
ever, as compared to conventional disease-modifying 
anti-rheumatic drugs (DMARDs) and non-steroidal anti-
inflammatory drugs (NSAIDs), the higher annual costs 
and opportunistic infections of biologic therapy might 
pose significant barriers to patient access to necessary 
treatments. Targeting HMGCR with lipid-lowering drugs 
represents a promising therapeutic approach for RA as 
compared with biologics. These classic drugs offer the 
potential for novel applications in RA treatment, as they 
are cost-effective and widely accessible [54].

There were still several limitations that should be 
noticed. First, our study was conducted based on the 
European population due to data availability, while MR 
offers a robust method for estimating causal effects, the 

Fig. 6  The immunoregulatory effects of statins. STAT4: signal transducer and activator of transcription 4; GATA3: GATA binding protein 3; STAT6: signal 
transducer and activator of transcription 6; STAT1: signal transducer and activator of transcription 1; STAT3: signal transducer and activator of transcription 
3; IRF4: interferon regulatory factor 4; SOCS1: suppressor of cytokine signaling 1; SOCS3: suppressor of cytokine signaling 3; SOCS7: suppressor of cytokine 
signaling 7; Smad6: Smad Family Member 6; Smad7: Smad Family Member 7; MMPs: matrix metalloproteinases; PPARs: peroxisome proliferator-activated 
receptors; NF-κB: nuclear transcription factor-kappa B; LFA-1: lymphocyte function-associated antigen 1; VLA-4: very late appearing antigen-4; CD11b: 
CD11 antigen-like family member b; CD18: integrin β2 subunit; VCAM1: vascular cell adhesion molecule 1
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selection of specific ancestry of the populations should 
be taken into account to ensure the generalizability of 
the findings. Second, genetic variation reflects the long-
term effects of changes in lipid levels on the risk of ADs, 
which may not directly translate into the short-term effi-
cacy of lipid-lowering drugs. MR only provides insights 
into causal associations and their direction rather than 
making quantitative estimates. Third, as the association 
between target gene expression and risk of ADs was con-
ducted using cis-eQTL data, it should be acknowledged 
that ADs are influenced by a complex interplay of mul-
tiple factors, and the exclusive focus on cis-eQTL asso-
ciations may not capture the full spectrum of biological 
influences. Furthermore, the enrichment analyses rely 
on predefined sets of valuable genes that may not explain 
whole possible biological mechanisms underlying the 
causes of ADs. It is essential to notice that the colocal-
ization analysis showed a relatively low probability that 
HMGCR-mediated lipid traits and RA share the same 
causal variant, suggesting that the observed association 
between HMGCR lipid-lowering targets and RA may not 
be directly driven by a shared genetic basis.

Conclusions
Our study reveals that HMGCR-mediated LDL-C lower-
ing and HMGCR expression inhibition have causal rela-
tionships with a lower risk of RA, but none of the lipid 
traits and lipid-lowering targets were found to causally 
associate with the risk of SLE, MS, UC, and CD. The 
findings of our study suggest that HMGCR might be a 
promising therapeutic target for RA, and the early modu-
lation of LDL-C may mediate its biological mechanism 
to achieve both lipid-lowering and immune-modulating 
effects in RA. However, further validation across ethnic 
and molecular mechanism exploration is still necessary 
to unveil the therapeutic potential of HMGCR for RA.
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