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Abstract
Background Digestive system cancers represent a significant global health challenge and are attributed to a 
combination of demographic and lifestyle changes. Lipidomics has emerged as a pivotal area in cancer research, 
suggesting that alterations in lipid metabolism are closely linked to cancer development. However, the causal 
relationship between specific lipid profiles and digestive system cancer risk remains unclear.

Methods Using a two-sample Mendelian randomization (MR) approach, we elucidated the causal relationships 
between lipidomic profiles and the risk of five types of digestive system cancer: stomach, liver, esophageal, pancreatic, 
and colorectal cancers. The aim of this study was to investigate the effect impact of developing lipid profiles on the 
risk of digestive system cancers utilizing data from public databases such as the GWAS Catalog and the UK Biobank. 
The inverse‒variance weighted (IVW) method and other strict MR methods were used to evaluate the potential causal 
links. In addition, we performed sensitivity analyses and reverse MR analyses to ensure the robustness of the results.

Results Significant causal relationships were identified between certain lipidomic traits and the risk of developing 
digestive system cancers. Elevated sphingomyelin (d40:1) levels were associated with a reduced risk of developing 
gastric cancer (odds ratio (OR) = 0.68, P < 0.001), while elevated levels of phosphatidylcholine (16:1_20:4) increased 
the risk of developing esophageal cancer (OR = 1.31, P = 0.02). Conversely, phosphatidylcholine (18:2_0:0) had a 
protective effect against colorectal cancer (OR = 0.86, P = 0.036). The bidirectional analysis did not suggest reverse 
causality between cancer risk and lipid levels. Strict MR methods demonstrated the robustness of the above causal 
relationships.

Conclusion Our findings underscore the significant causal relationships between specific lipidomic traits and the 
risk of developing various digestive system cancers, highlighting the potential of lipid profiles in informing cancer 
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Introduction
Digestive system cancers, including stomach, liver, esoph-
ageal, pancreatic, and colorectal cancers, pose a signifi-
cant global health challenge, accounting for more than 
a quarter of all cancer cases [1]. The worldwide increase 
in the incidence of these cancers reflects not only demo-
graphic changes such as population growth and aging but 
also the spread of various risk factors to areas where they 
were not previously prevalent [2]. Among those factors, 
lifestyle factors, particularly dietary habits, have gained 
attention for their role in cancer development [3]. Socio-
economic development, which has led to a shift toward 
less healthy Western diets and increased consumption 
of processed foods, has been linked to an increasing 
prevalence of obesity and related metabolic disorders 
[4], which are associated with the increasing incidence 
of digestive system cancers. This background informed 
our study, the aim of which was to explore the intricate 
relationships between lipidomic profiles and the risk 
of developing digestive system cancers using Mende-
lian randomization (MR), offering a new perspective on 
potential prevention and treatment pathways.

Lipidomics has emerged as a significant area in cancer 
research, revealing that alterations in lipid metabolism 
are closely linked to cancer development and progression 
[5, 6]. Cancer cells exhibit changes in lipid synthesis, stor-
age, and uptake, which are critical for membrane biogen-
esis and function and contribute to cancer cell survival in 
a changing microenvironment [7, 8]. The study of lipido-
mics offers insights into identifying novel biomarkers and 
therapeutic targets and developing lipid-inspired thera-
pies. However, despite these advancements, the causal 
relationship between specific lipid profiles and cancer 
risk is not fully understood due to the inherent limita-
tions associated with observational studies. This gap 
highlights the need for further research utilizing methods 
such as MR to clarify these relationships and explore the 
full potential of lipidomics in oncology.

Observational epidemiological studies, while invalu-
able for identifying potential risk factors for disease, 
are often limited by confounding and reverse causation. 
These limitations can compromise the reliability of stud-
ies investigatingthe causal effects of modifiable exposures 
on disease outcomes. MR has emerged as a powerful 
method to overcome these challenges, utilizing genetic 
variants as instrumental variables (IVs) [9]. By leverag-
ing genetic variants that influence exposures of interest, 
MR enables researchers to generate evidence that is less 
prone to the biases that frequently affect the reliability of 

the results of observational studies [10]. This approach 
not only enhances the validity of causal inferences drawn 
from epidemiological data but also provides new paths 
for identifying interventions that could yield substantial 
health benefits [11]. The development of MR, includ-
ing innovative variations such as bidirectional MR, has 
resulted in substantial expansion of its applicability and 
potential to inform public health and clinical practice.

Despite the acknowledged association between lipid 
profiles and digestive system cancers, existing research, 
which is primarily observational in nature, has yielded 
inconsistent findings regarding the causal nature of 
these relationships. Therefore, the aim of this study was 
to employ MR to investigate the causal relationships 
between lipidomic profiles and the risk of developing 
major digestive system cancers, including gastric, esoph-
ageal, colorectal, liver, and pancreatic cancers. Addition-
ally, we sought to obtaina deeper understanding of the 
lipid–cancer nexus, paving the way for subsequent meth-
odological discussions and analyses.

Methods
Study design
Our study employed a two-sample MR approach to 
investigate the causal relationship between lipidomic 
profiles and the risk of developing digestive system can-
cers. This design leverages genetic variants, specifically 
single-nucleotide polymorphisms (SNPs), associated with 
lipidomic traits as IVs. These SNPs were sourced from 
large-scale genome-wide association studies (GWASs) 
available in public databases such as the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/). We utilized summary-
level data, ensuring that the IVs were strongly associated 
with the exposure (lipidomic traits) but not directly asso-
ciated with the outcome (digestive system cancer risk), 
thereby minimizing confounding. MR studies rely on 
three critical assumptions to ensure the validity of their 
causal inferences (Fig.  1). These assumptions are as fol-
lows: (1) Relevance assumption: This assumption states 
that the genetic variants must be robustly associated with 
the exposure of interest. (2) Independence assumption: 
This assumption posits that the genetic variants serv-
ing as IVs should be independent of confounders that 
affect both the exposure and the outcome. (3) Exclusion 
restriction assumption: This assumption states that the 
IVs affect the outcome only through the exposure and 
not through any alternative pathways. Meeting these 
assumptions is essential for the validity of MR studies.

prevention and treatment strategies. These results reinforce the value of MR in unraveling complex lipid-cancer 
interactions, offering new avenues for research and clinical application.
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Data sources
In this MR analysis, we utilized two distinct data sources: 
genetic variants associated with lipidomic profiles and 
genetic variants associated with digestive system cancer 
outcomes. For lipidomic traits, we leveraged data from 
a GWAS of the plasma lipidome from the GWAS Cata-
log [12], which was published on October 31, 2023. This 
dataset provides comprehensive data on genetic variants 
associated with 179 kinds of lipid species (belonging to 
13 lipid classes and 4 categories) in 7,174 Finnish indi-
viduals. Digestive system cancer outcome data, including 
data on gastric cancer, esophageal cancer, colorectal can-
cer, liver and intrahepatic bile duct cancer, and pancreatic 
cancer, were obtained from the UK Biobank SAIGE, a 
vast biomedical database and research resource compris-
ing comprehensive, anonymized health and genetic data 
from 500,000 participants in the UK (https://pheweb.org/
UKB-SAIGE/phenotypes). Detailed phenotypic informa-
tion and genotypic data are shown in Table 1.

Selection of IVs
We employed a multistep algorithm to select genetic 
variants from GWASs of the plasma lipidome in the 
GWAS Catalog. Initially, we identified SNPs significantly 
associated with key lipidomic traits (179 kinds of lipid 

species) using a threshold of P < 1 × 10− 5. This stringent 
significance level ensures a strong genetic instrument–
exposure association. To mitigate the risk of pleiotropy, 
we excluded SNPs associated with confounding factors, 
which were identified using PhenoScanner V2 [13]. Fur-
thermore, we calculated the F-statistics for each SNP 
to exclude weak IVs, setting a minimum threshold of 
10 to ensure robustness [14]. The remaining SNPs were 
assessed for linkage disequilibrium (LD), combining 
those in high LD (r2 > 0.001) within a 10,000 kb window, 
ensuring independence among the IVs. In the bidirec-
tional MR analysis, we designated digestive system can-
cers as the exposure variables, while lipidomic traits were 
treated as outcomes. The IVs were selected based on a 
significance threshold of P < 5 × 10− 5.

Statistical analysis
We used the TwoSampleMR (v0.5.7) and MendelianRan-
domization (v0.9.0) R packages for our primary analysis. 
Initially, we used the inverse–variance weighted (IVW) 
[15] method as our primary analytic tool to estimate 
causal effects. Weighted median [16], MR–Egger [17], 
and weighted mode [18] methods were also used. In this 
study, several strict MR methods, including constrained 
maximum likelihood and model averaging-based MR 
(cML–MA) [19], contamination mixture (ConMix) [20], 
robust adjusted profile score (MR–RAPS), and the debi-
ased inverse-variance weighted (dIVW) method, were 
used to estimate the direct effects of lipidomic traits on 
digestive system cancers. To assess potential pleiotropy 
and validate our findings, we conducted sensitivity analy-
ses using the MR‒Egger and weighted median methods. 
The MR‒Egger approach tests for and corrects pleiotro-
pic bias, providing an intercept term that indicates the 
presence of directional pleiotropy. We further used the 
Mendelian Randomization Pleiotropy RESidual Sum and 
Outlier (MR–PRESSO) [21] test to detect and correct 

Table 1 Detailed phenotypic information and genotypic data of 
digestive system cancers
GWASID Traits SampleSize Cases Controls
ukb-saige-151 Cancer of 

stomach
393,926 554 393,372

ukb-saige-150 Cancer of 
esophagus

394,092 720 393,372

ukb-saige-153 Colorectal cancer 387,318 4562 382,756
ukb-saige-157 Pancreatic cancer 393,961 589 393,372
ukb-saige-155 Cancer of liver 

and intrahepatic 
bile duct

393,716 344 393,372

Fig. 1 Diagram illustrating the conducted analyses
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for outliers, thereby ensuring that our results were not 
driven by individual SNPs with disproportionate influ-
ence. Finally, to assess the heterogeneity in our IV analy-
sis, we used Cochran’s Q statistic [15]. We used an online 
website to perform the power calculation (https://sb452.
shinyapps.io/power/), an online sample size and power 
calculator for MR with a binary outcome. To mitigate 
potential confounding effects stemming from the broader 
genetic association between lipids and digestive system 
cancers, we employed a linkage disequilibrium score 
regression (LDSC) analysis specifically focused on can-
didate lipids within our MR investigation [22, 23]. For 
multivariate MR (MVMR) analyses, we simultaneously 
assessed the effects of multiple significant lipids using the 
IVW method. All the statistical analyses were performed 
using R software (version 4.2.1), ensuring rigorous and 
reproducible results. All the statistical analyses were rig-
orously performed by employing two‒tailed tests, where 
a threshold of P < 0.05 was considered to indicate statisti-
cal significance.

Results
Causal effects of lipidomic traits on gastric cancer risk
MR analysis revealed five significant causal relation-
ships between lipidomic traits and the risk of devel-
oping gastric cancer (Fig.  2A). First, we identified a 
relationship between elevated levels of sphingomyelin 
(d40:1) and a decreased risk of developing gastric can-
cer (odds ratio (OR) = 0.68, 95% confidence interval 
(CI): 0.55–0.85, IVW_P < 0.001). In contrast, a lower 

phosphatidylethanolamine (O-18:1_20:4) level was asso-
ciated with an increased risk of developing gastric cancer 
(OR = 1.36, 95% CI: 1.06–1.76; IVW_P = 0.02). Addition-
ally, increased levels of phosphatidylcholine (16:0_16:1), 
phosphatidylcholine (O-18:0_20:4), and phosphatidyl-
choline (O-18:1_18:2) were associated with an increased 
risk of developing gastric cancer (OR = 1.70, 1.40, and 
1.55, respectively; Supplementary Table 1). We adopted 
strict MR analysis algorithms, including cML–MA, Con-
Mix, MR–RAPS, and dIVW, to estimate the direct effects 
of lipidomic traits on digestive system cancers. As shown 
in Table  2, all five causal effects of lipidomic traits on 
gastric cancer risk were strong. The robustness of our 
findings was confirmed through various sensitivity anal-
yses, including Cochran’s Q test, MR-Egger regression, 
weighted median, and the leave-one-out approach.

Our bidirectional MR analysis did not reveal any evi-
dence suggesting that gastric cancer risk causally influ-
ences the above lipidomic traits (Supplementary Table 1). 
This finding indicates that while lipid levels may influence 
the risk of developing gastric cancer, the presence of gas-
tric cancer does not appear to causally alter lipid profiles 
within the studied population. A comprehensive MVMR 
analysis was utilized to examine the interrelationships 
among the five lipid traits. However, no significant asso-
ciations were detected between the levels of these lipids 
and the risk of developing gastric cancer (P > 0.05, Sup-
plementary Table 1).

Fig. 2 Forest plots of causal effect estimates of lipidomic traits on the risk of developing each type of digestive system cancer. (A) Gastric cancer. (B) 
Esophageal cancer. (C) Colorectal cancer
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Causal effects of lipidomic traits on esophageal cancer risk
We observed a total of four significant causal effects of 
lipidomic traits on the risk of developing esophageal can-
cer (Fig.  2B). Increased phosphatidylcholine (16:1_20:4) 
levels were associated with a 30% increase in the risk 
of developing esophageal cancer (OR = 1.31, 95% CI: 
1.04–1.65, P = 0.02). Higher levels of phosphatidylcho-
line (O-16:1_20:4) were also associated with an increased 
risk of developing esophageal cancer (OR = 1.23, 95% 
CI: 1.02–1.47; P = 0.03). In addition, both the phos-
phatidylinositol (18:0_18:1) and phosphatidylinositol 
(18:1_18:2) levels had positive causal effects on the risk 
of developing esophageal cancer (OR = 1.25 and 1.27, 
respectively, Supplementary Table 2). According to the 
results of strict MR analysis, most of the above four lipi-
domic traits still had direct effects on the risk of devel-
oping esophageal cancer (Supplementary Table 2). The 
application of Cochran’s Q test (P > 0.05), MR‒Egger 
intercept test (P > 0.05), and leave-one-out analysis 
(P > 0.05) revealed no signs of heterogeneity, directional 
pleiotropy, or issues with robustness in our MR analyses.

According to our bidirectional MR analysis, we did not 
find any evidence suggesting that esophageal cancer risk 
causally influences the above lipidomic traits (Supple-
mentary Table 2). In addition, according to the LDSC and 
MVMR analyses, the levels of the above four lipids did 

not have significant causal relationships with the risk of 
developing esophageal cancer (P > 0.05, Supplementary 
Table 2).

Causal effects of lipidomic traits on colorectal cancer risk
Utilizing genetic variants as IVs, we investigated seven 
potential causal relationships between lipid traits and the 
risk of developing colorectal cancer (Fig.  2C). Interest-
ingly, the levels of phosphatidylcholine (18:2_0:0), phos-
phatidylcholine (16:0_20:1) and triacylglycerol (51:4) 
showed inverse relationships with colorectal cancer 
risk (Supplementary Table 3). An increase of 1 standard 
deviation in the phosphatidylcholine (18:2_0:0) level was 
associated with a 14% decrease in colorectal cancer risk 
(OR = 0.86, 95% CI: 0.74–0.99, P = 0.036). Higher phos-
phatidylcholine (16:0_20:1) levels were associated with a 
16% reduction in the risk of developing colorectal cancer 
(OR = 0.84, 95% CI: 0.71–0.98, P = 0.029). Additionally, 
there was a slight negative correlation between triacyl-
glycerol (51:4) levels and the risk of developing colorec-
tal cancer (OR = 0.91, 95% CI: 0.84–0.99, P = 0.03). In 
contrast, the analysis indicated that two lipid traits were 
associated with an increased risk of developing colorec-
tal cancer (OR = 1.13, P = 0.036 for sterol ester (27:1/17:1), 
OR = 1.11, P = 0.023 for sterol ester (27:1/20:3)). Higher 
levels of phosphatidylcholine (18:0_20:5) were associated 

Table 2 The results of strict MR analysis
Exposure Outcome Method nSNP Beta SE pval OR
Phosphatidylcholine 
(16:0_16:1) levels || id: 
ebi-PL179-GCST90277278

Cancer of 
stomach || id: 
ukb-saige-151

Inverse variance weighted 19 0.530 0.186 0.004 1.699
Contamination mixture method 19 0.896 0.268 0.004 2.449
Robust adjusted profile score (RAPS) 19 0.604 0.194 0.002 1.829
Debiased inverse-variance weighted method 19 0.555 0.191 0.004 1.742
Constrained maximum likelihood 19 0.555 0.237 0.019 1.742

Phosphatidylcholine 
(O-18:0_20:4) levels || id: 
ebi-PL179-GCST90277336

Cancer of 
stomach || id: 
ukb-saige-151

Inverse variance weighted 21 0.333 0.130 0.010 1.396
Contamination mixture method 21 0.285 0.148 0.066 1.330
Robust adjusted profile score (RAPS) 21 0.318 0.138 0.021 1.374
Debiased inverse-variance weighted method 21 0.343 0.134 0.010 1.409
Constrained maximum likelihood 21 0.313 0.140 0.026 1.368

Phosphatidylcholine 
(O-18:1_18:2) levels || id: 
ebi-PL179-GCST90277338

Cancer of 
stomach || id: 
ukb-saige-151

Inverse variance weighted 22 0.438 0.147 0.003 1.550
Contamination mixture method 22 0.638 0.186 0.001 1.893
Robust adjusted profile score (RAPS) 22 0.457 0.163 0.005 1.580
Debiased inverse-variance weighted method 22 0.459 0.156 0.003 1.583
Constrained maximum likelihood 22 0.452 0.158 0.004 1.571

Phosphatidylethanolamine 
(O-18:1_20:4) levels || id: 
ebi-PL179-GCST90277354

Cancer of 
stomach || id: 
ukb-saige-151

Inverse variance weighted 25 0.310 0.129 0.016 1.363
Contamination mixture method 25 0.402 0.184 0.088 1.495
Robust adjusted profile score (RAPS) 25 0.310 0.139 0.025 1.364
Debiased inverse-variance weighted method 25 0.321 0.134 0.017 1.378
Constrained maximum likelihood 25 0.304 0.153 0.047 1.356

Sphingomyelin 
(d40:1) levels || id: 
ebi-PL179-GCST90277376

Cancer of 
stomach || id: 
ukb-saige-151

Inverse variance weighted 40 -0.383 0.111 0.001 0.682
Contamination mixture method 40 -0.699 0.163 0.000 0.497
Robust adjusted profile score (RAPS) 40 -0.437 0.120 0.000 0.646
Debiased inverse-variance weighted method 40 -0.397 0.116 0.001 0.672
Constrained maximum likelihood 40 -0.412 0.140 0.003 0.662

* SNP, single nucleotide polymorphism; SE, standard error; OR, odds ratio
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with a slight (10%) increase in the risk of develop-
ing colorectal cancer (OR = 1.10, 95% CI: 1.03–1.19; 
P = 0.007). In the sensitivity analyses of all seven lipids, 
no heterogeneity or horizontal pleiotropy was detected 
(both Cochran’s Q and MR‒Egger test, P > 0.05). The 
leave-one-out analysis indicated that omitting any single 
SNP did not alter the our MR outcomes.Under a rigor-
ous MR framework, the majority of the above seven 
lipid traits continued to demonstrate a direct impact on 
the risk of developing colorectal cancer (Supplementary 
Table 3). Conversely, there was no discernible evidence 
to suggest that the risk of developing colorectal cancer 
causally affects these lipidomic traits (Supplementary 
Table 3). LDSC revealed no significant genetic correla-
tions between the above lipids and the risk of developing 
colorectal cancer (Supplementary Table 3). The results 
of the MVMR analysis showed that there were no poten-
tial causal relationships between the seven lipids and 
colorectal cancer (P > 0.05, Supplementary Table 3).

Causal effects of lipidomic traits on liver and intrahepatic 
bile duct cancer risk
Notably, increased levels of ceramide (d42:2) and phos-
phatidylinositol (18:0_20:4) and decreased levels of phos-
phatidylcholine (O-16:0_22:5) had protective effects 
against liver and intrahepatic bile duct cancer risk, as 
detailed in Table  3. An increase of one standard devia-
tion in the level of ceramide (d42:2) was linked to a 
28% decrease in the risk of developing colorectal cancer 
(OR = 0.72, 95% CI: 0.54–0.96, P = 0.027). Elevated levels 
of phosphatidylinositol (18:0_20:4) were correlated with a 
31% lower risk of developing colorectal cancer (OR = 0.69, 
95% CI: 0.54–0.89, P = 0.004). Additionally, a significant 
inverse relationship was observed between the level of 
phosphatidylcholine (O-16:0_22:5) and liver cancer risk 
(OR = 0.60, 95% CI: 0.40–0.90, P = 0.015). Conversely, our 
findings indicated that increased liver cancer risk was 
associated with two lipid traits (OR = 1.65, P = 0.005 for 
phosphatidylcholine (O-16:1_18:1), OR = 1.55, P = 0.01 for 
triacylglycerol (58:8); Fig.  3A). When performing sensi-
tivity analyses, neither Cochran’s Q test or the MR–Egger 

Table 3 Causal effect of lipidomic traits on liver and intrahepatic bile duct cancer risks using various MR methods
Exposure Method nSNP Beta SE pvalue OR OR_lci95 OR_uci95 p_FDR
Ceramide (d42:2) 
levels || id: 
ebi-PL179-GCST90277256

Inverse variance weighted 30 -0.324 0.147 0.027 0.723 0.542 0.964 0.027
Contamination mixture method 30 -0.658 0.265 0.061 0.518 0.308 0.871 0.061
Robust adjusted profile score (RAPS) 30 -0.348 0.157 0.027 0.706 0.519 0.961 0.027
Debiased inverse-variance weighted 
method

30 -0.334 0.152 0.028 0.716 0.532 0.964 0.028

Constrained maximum likelihood 30 -0.338 0.193 0.079 0.713 0.489 1.040 0.079
Phosphatidylcholine 
(O-16:0_22:5) levels || id: 
ebi-PL179-GCST90277324

Inverse variance weighted 15 -0.506 0.207 0.015 0.603 0.402 0.905 0.015
Contamination mixture method 15 -1.174 0.602 0.705 0.309 0.095 1.006 0.705
Robust adjusted profile score (RAPS) 15 -0.741 0.276 0.007 0.477 0.277 0.819 0.007
Debiased inverse-variance weighted 
method

15 -0.528 0.210 0.012 0.590 0.391 0.889 0.012

Constrained maximum likelihood 15 -0.436 0.260 0.093 0.646 0.389 1.075 0.093
Phosphatidylcholine 
(O-16:1_18:1) levels || id: 
ebi-PL179-GCST90277327

Inverse variance weighted 24 0.502 0.179 0.005 1.652 1.164 2.345 0.005
Contamination mixture method 24 0.786 0.273 0.019 2.194 1.285 3.746 0.019
Robust adjusted profile score (RAPS) 24 0.526 0.192 0.006 1.693 1.161 2.468 0.006
Debiased inverse-variance weighted 
method

24 0.524 0.189 0.005 1.689 1.167 2.444 0.005

Constrained maximum likelihood 24 0.474 0.219 0.030 1.606 1.046 2.465 0.030
Phosphatidylinositol 
(18:0_20:4) levels || id: 
ebi-PL179-GCST90277364

Inverse variance weighted 30 -0.366 0.126 0.004 0.693 0.542 0.887 0.004
Contamination mixture method 30 -0.581 0.186 0.003 0.559 0.388 0.805 0.003
Robust adjusted profile score (RAPS) 30 -0.382 0.133 0.004 0.682 0.526 0.885 0.004
Debiased inverse-variance weighted 
method

30 -0.375 0.129 0.004 0.688 0.534 0.886 0.004

Constrained maximum likelihood 30 -0.375 0.144 0.009 0.687 0.518 0.910 0.009
Triacylglycerol 
(58:8) levels || id: 
ebi-PL179-GCST90277416

Inverse variance weighted 29 0.439 0.170 0.010 1.552 1.112 2.166 0.010
Contamination mixture method 29 0.966 0.309 0.011 2.627 1.434 4.810 0.011
Robust adjusted profile score (RAPS) 29 0.447 0.240 0.063 1.563 0.976 2.505 0.063
Debiased inverse-variance weighted 
method

29 0.460 0.175 0.008 1.584 1.125 2.230 0.008

Constrained maximum likelihood 29 0.437 0.209 0.036 1.548 1.028 2.331 0.036
* SNP, single nucleotide polymorphism; SE, standard error; OR, odds ratio; CI, confidence interval; FDR, false discovery rate
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test indicated any heterogeneity and horizontal pleiot-
ropy. Additionally, the MR–PRESSO test revealed no evi-
dence of pleiotropy, validating the accuracy of our results.

Using multiple stringent MR methods, most of the five 
lipid traits studied were shown to have a consistent influ-
ence on liver cancer risk, as reported in Table 3. Impor-
tantly, there was no reverse-causal effect of liver cancer 
on these lipidomic profiles, as shown in Supplementary 
Table 4. LDSC analysis revealed no significant genetic 
correlations between the levels of the above lipids and 
the risk of developing liver cancer (Supplementary Table 
4). In the MVMR analysis, we only explored the causal 
relationship between phosphatidylinositol (18:0_20:4) 
levels and liver and intrahepatic bile duct cancer risk 
(OR = 0.64, 95% CI: 0.42–0.96, P = 0.03; Supplementary 
Table 4).

Causal effects of Lipidomic traits on Pancreatic Cancer Risk
Similarly, a total of 14 causal relationships were observed 
between lipidomic traits and the risk of developing 
pancreatic cancer based on the IVW method (Fig.  3B, 
Supplementary Table 5). Among these lipidomic traits, 
increased levels of phosphatidylcholine (O-18:1_20:3) 
were associated with an increased risk of developing pan-
creatic cancer (OR = 1.46, 95% CI: 1.06–2.02; P = 0.02). 
In contrast, sterol ester (27:1/18:1) levels were found to 
have an inverse association with the risk of developing 
pancreatic cancer. Higher sterol ester (27:1/18:1) levels 
were associated with a 29% reduction in the risk of devel-
oping esophageal cancer (OR = 0.71, 95% CI: 0.56–0.90, 

P = 0.005). Our use of Cochran’s Q test and MR‒Egger 
test indicated that our MR analyses were free from het-
erogeneity and directional pleiotropy, indicating robust-
ness of the results. Furthermore, the leave-one-out 
analysis revealed that no individual SNP significantly 
influenced the MR estimates.

According to strict MR analysis algorithms, including 
cML‒MA, ConMix, MR‒RAPS, and dIVW, most of the 
above lipidomic traits still had direct effects on the risk 
of developing pancreatic cancer (Supplementary Table 5). 
However, the levels of phosphatidylcholine (18:0_18:3), 
phosphatidylcholine (18:1_0:0), and triacylglycerol (54:7) 
were not significantly different. Finally, the investigation 
of pancreatic cancer revealed no reverse‒causal effect of 
pancreatic cancer risk on the above lipidomic traits (Sup-
plementary Table 5). In Fig. 4, we pooled all the positive 
results among digestive system cancers. LDSC revealed 
no significant genetic correlations apart from sterol ester 
(27:1/18:1) levels (rg = 0.936, P = 0.02, Supplementary 
Table 5). According to the MVMR analysis, sterol ester 
(27:1/18:1) levels and phosphatidylcholine (16:0_20:5) 
levels remained causally related to pancreatic cancer risk 
(Supplementary Table 5).

Discussion
In our study, we sought to elucidate the causal relation-
ships between lipidomic profiles and the risk of develop-
ing various digestive system cancers using MR. This body 
of work highlights the diverse effects of lipid traits on 
cancer risk, underscoring the complexity of lipid-cancer 

Fig. 3 Forest plots of causal effect estimates of lipidomic traits on the risk of developing each type of digestive system cancer. (A) Liver and intrahepatic 
bile duct cancer. (B) Pancreatic cancer
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interactions and the potential for targeted preventive 
strategies.

Cancer cells are known to alter their metabolic path-
ways to sustain their malignancy. Aberrant lipid metab-
olism is closely associated with various cancers. Cancer 
cells utilize lipid metabolism for energy, membrane com-
ponents, and signaling molecules [24]. An abundance of 
lipids may enhance the ability of tumor cells to develop, 
colonize, and spread [25]. These adjustments include 
modifications to the composition of the lipid membrane 

to facilitate invasion into different environments and to 
navigate mechanisms of cell death, in addition to enhanc-
ing lipid breakdown and synthesis for the generation of 
energy and protection against oxidative stress. Addition-
ally, key genes and proteins associated with fat metabo-
lism are considered potential markers for predicting 
outcomes in different cancers and are related to patient 
survival or the likelihood of cancer recurrence [26].

Notably, in our study, we found an association between 
elevated levels of sphingomyelin (d40:1) and reduced 

Fig. 4 Pooled positive results among five digestive system cancers
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gastric cancer risk (OR = 0.682). The relationship between 
sphingomyelin and the risk of developing gastric cancer 
has been explored in various studies, revealing signifi-
cant insights into the potential role of sphingomyelin in 
cancer development and progression. Compared with 
adjacent noncancerous tissues, gastric cancer samples 
exhibited higher levels of sphingomyelin [27]. One study 
revealed that sphingomyelin (d18:0/18:1(9Z)) was more 
abundant in patients with early gastric cancer than in 
healthy control participants, suggesting its potential as a 
biomarker for the early diagnosis of gastric cancer [28]. 
Three subclasses of phosphatidylcholine were positively 
associated with the risk of developing gastric cancer. A 
study revealed that serum phospholipids, including phos-
phatidylcholine, were more abundant in patients with 
early gastric cancer than in healthy controls, suggesting 
a role for these phospholipids in cancer development and 
as indicators for early detection [29] .

We also observed that increased phosphatidylcholine 
and phosphatidylinositol levels were associated with 
increased esophageal cancer risk. A study using liquid 
chromatography-quadrupole time-of-flight mass spec-
trometry revealed dysregulation of phosphatidylcholines, 
indicating potential perturbations in phosphocholine 
metabolism specific to esophageal cancer [30]. How-
ever, there have been no studies on the role of phospha-
tidylinositol in the development of esophageal cancer. In 
colorectal cancer, higher sterol ester and phosphatidyl-
choline levels were associated with a slight increase in 
risk. Sterol metabolism plays a significant role in cellular 
processes, and alterations in this metabolic pathway have 
been associated with various types of cancer [31].

Notably, we identified a total of 14 different lipid phe-
notypes associated with the risk of developing pancre-
atic cancer. Recent studies have proven the crucial role 
of lipid metabolism in pancreatic cancer development 
[32]. Mounting research indicates that the progression 
and treatment resistance of pancreatic cancer can be 
fueled by lipid metabolism via the augmentation of lipid 
synthesis, accumulation, and breakdown [33]. According 
to our results, a total of four subclasses of phosphatidyl-
choline were positively related to the risk of developing 
pancreatic cancer. However, six subclasses of phosphati-
dylcholine were inversely related to risk, suggesting bidi-
rectional roles.

The MR approach employed in our study is distin-
guished by its usefulness for assessing causal relation-
ships, circumventing many of the limitations inherent in 
observational studies, such as confounding and reverse 
causality. This method leverages genetic variants as IVs to 
infer causation, assuming that these variants are associ-
ated with the exposure but not with any confounders of 
the outcome, making it a powerful tool for causal infer-
ence in epidemiology [34]. However, there are potential 

limitations to the MR approach that must be acknowl-
edged. One significant limitation is the reliance on sum-
mary-level data from different sources, which might not 
always accurately capture individual-level variability and 
interactions. Meanwhile, the sample size of the GWAS 
data is one of our limitations. We need to further increase 
the sample size to enhance the reliability of the results. 
In our study, when selecting P < 5 × 10− 8 did not include 
enough SNPs for analysis, it may lead to low statistical 
power and issues with weak instrument variables. Thus, 
we chose P < 1 × 10− 5 as the threshold because we wanted 
to include more SNPs potentially related to lipid metab-
olism. So our results need to be interpreted with more 
caution. Additionally, while the use of MR can signifi-
cantly reduce the confounding observed with the use of 
other methods, it cannot eliminate it entirely, particularly 
if there are unmeasured confounders that affect both the 
genetic instruments and the outcome. Another challenge 
is the generalizability of the results across different pop-
ulations, as the genetic variants used as IVs might have 
different effects on different ethnic groups, especially the 
East Asian population, potentially limiting the applicabil-
ity of the findings to broader populations.

Thus, when comparing and contrasting the findings 
of this study with those of previous studies in the field 
of lipidomics and cancer, we not only used conventional 
MR analysis methods (IVW, weighted median, MR‒
Egger, and weighted mode) but also used a variety of 
rigorous MR algorithms, including cML–MA, ConMix, 
MR–RAPS, and dIVW. ConMix helps identify groups 
of genetic variants with similar causal estimates, which 
may represent different mechanisms through which 
risk factors influence outcomes. Additionally, it per-
forms robustly and effectively in the presence of invalid 
IVs, achieving the lowest mean squared error compared 
to other robust methods across a range of realistic sce-
narios [20]. However, because of negative heritability, the 
results of LDSC analysis for certain lipids and cancer may 
exhibit instability. This may lead to weak causal relation-
ships and requires validation in a larger cohort [35, 36].

The findings from our study underscore the critical role 
of lipidomic profiles in understanding cancer risk, par-
ticularly in digestive system cancers. This necessitates 
further exploration into how specific lipid species con-
tribute to cancer development. First, we should perform 
lipidomics, including the use of peripheral blood and tis-
sue samples from patients, to validate the above results. 
Future research should also focus on functional studies 
and experimental validation to elucidate the underly-
ing mechanisms involved. Moreover, we will also focus 
on the impact of lipidomic profiles on specific subtypes 
of digestive system cancers, including molecular subtyp-
ing, pathological subtyping, or immunological subtyp-
ing. Different subtypes of cancer, such as lung cancer, 
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may exhibit distinct lipidomic metabolic characteristics 
[37, 38]. The potential of integrating lipidomic profiles 
into clinical practice is promising. By incorporating these 
profiles into cancer risk assessment and prevention strat-
egies, we can move toward more personalized and tar-
geted therapeutic approaches, opening new pathways in 
the fight against cancer.

Conclusion
In conclusion, our study significantly advances the 
understanding of the complex relationship between 
lipid metabolism and the development of digestive sys-
tem cancers. By highlighting specific lipidomic traits 
associated with increased or decreased cancer risk, we 
highlight the potential of lipidomic modulation as a pio-
neering approach for cancer prevention and treatment. 
These findings emphasize the critical need for continued 
research in this promising field, suggesting that target-
ing lipid metabolism could open new avenues in the fight 
against cancer.
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