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Introduction
Cancer is defined by the unbridled proliferation and dis-
semination of aberrant cells. These anomalous cells can 
coalesce to form tumors, which manifest as abnormal 
tissue masses. Tumors may exhibit either malignancy 
or benignity. Malignant tumors can infiltrate neigh-
boring tissues and metastasize to distant sites via the 
circulatory and lymphatic systems [1]. Cancer poses a 
significant threat to global public health. In 2022, nearly 
20  million new cases of cancer and close to 10  million 
cancer-related deaths occurred worldwide. Demographic 
projections suggest that by 2050, the annual incidence of 
new cancer cases will soar to 35 million, marking a 77% 
surge from 2022 [2]. One major contributing factor to 
the high mortality rate is late-stage diagnosis. Despite 
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Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical 
challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and 
therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-
induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal 
complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a 
wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be 
present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role 
in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the 
role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling 
may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient 
prognosis and quality of life.
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efforts, early detection of cancer remains challenging, as 
cancers are typically asymptomatic in their initial stages, 
complicating timely diagnosis. Additionally, accurate and 
precise diagnosis is imperative for mitigating biases and 
addressing challenges associated with rare and complex 
conditions [3]. Current cancer treatment faces several 
challenges, including drug resistance, side effects, and 
obstacles in immunotherapy. Improving patient survival 
rates and extending survival time necessitate concerted 
efforts and further research to validate interventions. 
Factors such as tumor heterogeneity, individual patient 
differences, treatment accessibility, and economic bur-
den also influence treatment outcomes. In summary, 
personalized and precise treatments tailored to individ-
ual patients are imperative [4]. Bone tumors specifically 
originate from abnormal cell growth within bone tissue. 
Malignant bone tumors, including primary bone cancer 
and bone metastasis, are prevalent and malignant tumors 
with a poor prognosis [5]. Primary bone cancers, such as 
osteosarcoma, Ewing sarcoma, and chondrosarcoma, are 
relatively rare. The skeleton is a common site of metasta-
sis for most human cancers, including lung cancer, breast 
cancer and prostate cancer [5]. Bone cancer is often 
accompanied by skeletal complications, such as patho-
logical pain and other skeletal-related events [6], which 
can significantly impact patients’ quality of life and sur-
vival rate. Therefore, effective treatments and therapies 
for bone cancer patients are needed.

Tumor progression is typically associated with the dys-
regulation of various biological pathways and mecha-
nisms. Dysregulated activities can fuel malignant cell 
growth and differentiation, initiating tumor formation. 
For instance, autophagy, a process vital for intracel-
lular homeostasis, has a dual role in cancer. In early 
tumorigenesis, autophagy serves as a tumor suppres-
sor. However, in established tumors, its dysregulation 
can promote cancer cell survival amid metabolic stress 
and adverse microenvironments [7]. Furthermore, aber-
rant signaling pathways can lead to diverse physiologi-
cal dysfunctions, with effects contingent on the specific 
pathway and context. Dysregulation of immunologic and 
oncogenic signaling pathways, for instance, can facilitate 
immune evasion, bolster tumor growth and hasten pro-
gression [8]. Clinical intervention often involves surgical 
resection, but when this is not feasible, pharmacological 
therapies are employed, albeit with the risk of develop-
ing drug resistance. The emergence of drug resistance 
is multifactorial. Apoptosis is a form of regulated cell 
death, which plays a vital role in the resistance of cancer 
cells to chemotherapy. Chemoresistance can stem from 
impaired cell cycle arrest, but certain drugs can syner-
gize with chemotherapy by directly inducing apoptosis. 
Modulating these processes holds promise for reducing 
drug resistance and enhancing treatment efficacy. For 

instance, exosomes have been implicated in diminishing 
cancer cell susceptibility to chemotherapy-induced apop-
tosis. Additionally, increased cancer cell invasiveness 
likely contributes to drug resistance [9, 10]. Importantly, 
drug resistance is a primary driver of therapeutic failure 
in cancer treatment. Therefore, developing strategies to 
overcome this obstacle is paramount in oncology [11].

LPA is a bioactive glycerol phospholipid distributed 
in most tissues and body fluids. In recent decades, the 
significance of LPA in tumor progression has gradually 
been recognized since the first discovery of the upregula-
tion of its metabolic precursor in the serum of patients 
with gynecological cancer [12]. LPA exerts its biologi-
cal functions primarily by binding to LPARs, which are 
G protein-coupled receptors (GPCRs) that activate 
downstream signaling pathways by coupling to four Gα 
proteins (Gs, Gi/o, Gq/11 and G12/13). LPARs can be 
classified into two types: the endothelial cell differentia-
tion gene (Edg) family of GPCRs and purinergic recep-
tors. These genes were named LPAR1-6 according to the 
order in which they were first reported in the literature. 
The Edg family comprises LPAR1 (also known as Edg2), 
LPAR2 (also known as Edg4) and LPAR3 (also known 
as Edg7), while LPAR4 (also known as GPR23 or P2Y9), 
LPAR5 (also known as GPR9) and LPAR6 (also known as 
GPR87 or P2Y5) belong to the non-Edg family [13, 14]. 
Upon binding to appropriate receptors, LPA can activate 
mitogen-activated protein kinase (MAPK), phospholi-
pase C (PLC), phosphoinositide 3-kinase (PI3K) and Ras 
homolog family member A (RhoA) pathways, which par-
ticipate in various cellular processes [15], including the 
progression of bone cancer and related events.

Currently, a comprehensive review of the participa-
tion of LPA signaling in bone tumors is notably absent 
from the literature. In addition to primary bone tumors, 
the advent of bone metastasis represents a critical stage 
in which numerous malignant neoplasms infiltrate the 
body. As malignancies progress within osseous tissues, 
they precipitate diverse complications, such as bone 
cancer pain and fractures [5]. This review fills a critical 
gap by not only consolidating the multifaceted roles of 
LPA in the progression of primary bone cancer but also 
shedding light on its significance in bone metastasis and 
associated skeletal events in bone cancer. Furthermore, it 
meticulously explores the clinical implications of LPARs 
in these processes, encompassing the targeted modula-
tion of LPARs and the exploitation of LPA signaling in 
combating cancer drug resistance and advancing disease 
treatment.

The roles of LPA signaling in tumor progression
LPA has been identified in multiple cancer cell types, 
ascites fluid and tumor effusates cancer patients [16]. As 
a growth factor-like lipid mediator, LPA can stimulate the 
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migration of cancer cells. Additionally, LPA production 
induced by autotaxin (ATX) transcription, LPA meta-
bolic degradation and the expression of multiple LPARs 
can be changed in cancer cells, thereby affecting tumor 
growth [16]. LPA influences the development of tumor 
cells through specific signaling pathways, directly acting 
on cells and/or indirectly promoting the production of 
signaling molecules. Clarifying the role and mechanism 
of LPA in bone cancer may provide a proper therapeutic 
treatment for bone cancer.

Impact of LPARs expression on tumor development
LPARs are expressed in tumor cells as well as tumor-
associated cells, serving as biomarkers for cancer, such 
as ovarian cancer [17], breast cancer [18], prostate cancer 
[19] and liver cancer [20]. Reinartz et al. isolated tumor 
cell spheroids, tumor-associated T cells and tumor-
associated macrophages from the ascites of patients 
with high-grade serous ovarian carcinoma. Ascites is 
the form of late peritoneal fluid, contains a substantial 
number of tumor and immune cells that can interact 
with each other, generating and responding to media-
tors with properties that promote metastasis and sup-
press the immune system. LPAR1, LPAR2 and LPAR3 
are expressed mainly in high-grade serous ovarian car-
cinoma cells, whereas LPAR5 and LPAR6 are predomi-
nantly expressed in tumor-associated tumor-associated T 
cells and macrophages [21]. These results suggested that 
LPA triggers different signaling pathways in ovarian car-
cinoma cells, tumor-associated T cells and tumor-associ-
ated macrophages.

The expression levels of LPARs in tumor cells can be 
upregulated or downregulated and may be involved 
in various cellular processes. Knockdown of LPAR1, 
LPAR3, LPAR4 or LPAR5 inhibited motility and invasion 
in human pancreatic carcinoma cells, whereas knock-
down of LPAR6 had the opposite effect [22]. Okabe et al. 
detected increased expression of LPAR5 genes in hepa-
toma RH7777 cells derived from rat liver and adenocarci-
noma RLCNR cells originating from the lung. Increased 
expression of the LPAR5 gene in hepatoma and adeno-
carcinoma cells correlates with its lack of methylation 
in the 5’ upstream region. Studies on the LPA’s effect on 
cell growth, LPA boosted the growth and movement of 
RLCNR and RH7777 cells. These findings indicate that 
heightened LPAR5 expression due to abnormal deoxy-
ribonucleic acid (DNA) methylation could contribute to 
the growth advantage seen in tumor cells [23]. Tao et al. 
Noted significant lower expression of LPAR6 in clinical 
breast cancer tissues compared to paracancerous tissues. 
Knockdown of LPAR6 notably accelerated cell prolif-
eration and migration in the ZR-75-1 cell line. Clinical 
parameter analysis revealed that patients with higher 

LPAR6 expression level had more favorable prognoses 
[24].

Interactions between LPA signaling and cancer-associated 
genes
Several genes play pivotal roles in cancer biology, orches-
trating a myriad of cellular processes. Among these pro-
teins, Ras, Myc, p53, Fas, and Fos are key players. Ras 
and Myc function as oncogenes, driving cell growth and 
survival, while p53 serves as a tumor suppressor. Addi-
tionally, Fas and Fos are involved in apoptosis and cellular 
signaling, respectively. Dysregulation of the expression 
and transcription of these genes is intricately linked to 
the occurrence and progression of tumors [25–28].

Despite their significance, there is limited research 
investigating the interactions between these genes and 
LPA signaling. Studies suggest that LPA signaling may 
counteract p53-dependent apoptosis by modulating p53 
homeostasis via the activation of Akt, extracellular reg-
ulated protein kinase (ERK), or protein kinase A (PKA) 
in cancer cells or stromal cells within the tumor micro-
environment [29]. For instance, in ovarian cancer cells, 
treatment with LPA led to a swift decrease in Fas expres-
sion on the cell surface, shielding these cells from apop-
tosis triggered by anti-Fas stimuli [30]. LPA also hindered 
the apoptosis enhanced by actin depolymerization, sug-
gesting a protective role against immune cell attack and 
apoptosis induced by cytoskeleton-disrupting agents in 
epithelial ovarian cancer [31]. Moreover, in LPA-stimu-
lated Rat-2 fibroblasts, cyclic adenosine monophosphate 
(cAMP) response element-binding protein (CREB) has 
been shown to upregulate Fos messenger ribonucleic acid 
(mRNA) levels [32]. However, experimental validations 
in cancer models are currently lacking.

LPA signaling pathways in tumor progression
The important role of LPA, a bioactive lipid mediator, in 
cell regulation has been recognized for years [33]. LPA 
binds to LPARs to activate downstream signaling path-
ways, playing functional roles in tumor progression. 
One such pathway is the PI3K/Akt pathway, known for 
enhancing cancer cell survival, motility, and prolifera-
tion [34]. For instance, LPA-LPAR1 signaling has been 
demonstrated to boost the proliferation and migration 
of esophageal squamous cell carcinoma (ESCC) cell lines 
through the PI3K/Akt pathway [35]. This finding sug-
gested that targeting LPA-LPAR1 signaling could inhibit 
ESCC progression. In addition, LPA can influence the 
expression of tyrosine kinase receptors. By binding to the 
corresponding receptor, LPA can induce the upregula-
tion of tyrosine kinase receptor expression through the 
MAPK, activator protein 1 (AP-1), early growth response 
protein 1 (Egr-1), as well as nuclear factor kappa-B (NF-
κB) signaling axes. This, in turn, promotes the invasion 
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of bladder cancer cells [36]. In addition, LPA serves as a 
critical mediator of cancer cell migration. Hao et al. have 
shown that LPA facilitates the migration of prostate can-
cer PC3 cells through LPAR1 activation and the subse-
quent engagement of downstream signaling pathways, 
including ERK and p38α MAPKs [37]. Bian et al. found 
that inhibiting mitogen-activated protein kinase kinase 
1 (MEKK1) downstream pathways does not significantly 
affect LPA-induced ovarian cancer cell migration. LPA 
also triggers the translocation of focal adhesion kinase 
(FAK) to focal contact sites on the plasma membrane, a 
process that can be disrupted by pertussis toxin, domi-
nant-negative H-Ras, or dominant-negative MEKK1. 
These findings suggest that the G(i)-Ras-MEKK1 sig-
naling pathway plays a crucial role in LPA-induced 
migration of ovarian cancer cells by facilitating FAK 
redistribution [38]. Furthermore, LPA modulates intra-
cellular signaling to promote ovarian cancer cell migra-
tion. By activating Rho-GTPases and their downstream 
effectors, such as Rho kinase and Rho-associated protein 
kinase (ROCK), LPA induces cytoskeletal rearrangement 
and cell morphology changes that promote cell migra-
tion. Additionally, LPA influences cell migration by regu-
lating intracellular calcium ion levels and the expression 
of tight junction proteins [39]. These results highlight the 
complex network of signaling pathways activated by LPA 
and their collective role in promoting tumor progression.

Furthermore, LPA can affect cancer progression by pro-
moting the production of signaling molecules. For exam-
ple, LPA enhances the expression of vascular endothelial 
growth factor (VEGF)-C, supporting lymph angiogen-
esis in prostate cancer cells. They further demonstrated 
that calreticulin, a multifunctional chaperone protein, is 
critical for prostate cancer progression through mediat-
ing LPA-induced VEGF-C expression [40]. This find-
ing suggests that LPA signaling is potentially involved 
in prostate cancer metastasis. Interestingly, LPAR5 has 
been shown to increase the level of intracellular cAMP, 
resulting in cancer suppression [41, 42]. These find-
ings indicate that different LPARs can play distinct and 
sometimes opposing roles in cancer progression, further 
underscoring the complexity of LPA signaling in cancer. 
Moreover, evidence suggests that LPA may contribute to 
in breast cancer initiation, progression, and invasion by 
triggering the release of interleukin 6 (IL-6) and tumor 
necrosis factor (TNF)-α cytokines in MDA-MB-468 cells 
[43]. In summary, LPA enhances the invasive and migra-
tory capabilities of cancer cells through various signaling 
pathways and molecular factors, endowing them with an 
elevated potential for metastasis. Metastasis represents 
the advanced stage of cancer progression, posing a sig-
nificant challenge in developing strategies to impede can-
cer advancement. Further study is essential to fully grasp 

these mechanisms and their potential as therapeutic tar-
gets in cancer treatment.

LPA signaling in primary malignant bone tumors
Bone tumors refer to the development of tumors within 
bone tissue, characterized by abnormal cell growth. In 
the context of cancer biology, somatic mutations in DNA 
result in altered cellular instructions, prompting cancer 
cells to undergo rapid proliferation, overriding normal 
regulatory mechanisms that would typically induce cell 
death. Consequently, an excessive accumulation of can-
cer cells occurs, potentially culminating in the formation 
of a tumor mass [44]. The occurrence of tumors involves 
a complex interplay between the tumor cells, the micro-
environment, and immune cells. The genesis of bone 
tumors involves aberrant cell growth within bone tis-
sue, originating from bone-forming cells (osteoblasts), 
cartilage-forming cells (chondrocytes), or other cell 
types [45]. The latest World Health Organization (WHO) 
summarized the classification of bone tumors [46]. The 
primary malignant bone tumors often include bone sar-
comas like Ewing’s sarcoma, osteosarcoma, and chon-
drosarcoma [47]. Despite their rarity and high mortality 
rates, these diseases receive limited attention. Current 
studies predominantly explore the correlation between 
LPARs and cancer progression. However, the specific 
mechanism underlying the pathogenesis of primary 
bone cancer remains unclear. Current treatments for 
cancer include multiagent induction chemotherapy, sur-
gical resection, and radiotherapy [48]. Despite advance-
ments in surgical techniques and chemotherapy in recent 
decades, the prognosis of patients is still unsatisfactory. 
The recurrence and prognosis of this disease still depend 
on the occurrence of metastases. Therefore, targeting 
the factors involved in tumor progression, invasion and 
migration may be essential for curing this disease. Iden-
tifying new therapeutic targets and developing more 
effective treatment strategies could enhance the progno-
sis and life quality of patients with primary bone tumors. 
Here, we reviewed the impact of LPA signaling on the 
two most prevalent primary bone cancers: osteosarcoma 
and Ewing’s sarcoma.

Osteosarcoma
Osteosarcoma, a primary malignant tumor which origi-
nates from mesenchymal tissue, commonly affects chil-
dren and adolescents. The function of LPARs in tumor 
cells has been studied in different cell lines in recent 
years. Okabe et al. noted mutations in both LPAR1 and 
LPAR3 in human osteosarcoma cells (MG-63 cells), sug-
gesting their involvement in the pathogenesis of human 
osteosarcoma cells [49]. Their team further investigated 
the motility and invasion of LPAR3-knockdown HOS 
osteosarcoma cells. They observed a significant inhibition 
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of cell motility compared to control groups, suggesting 
that LPAR3 positively regulates the cell motility in osteo-
sarcoma cells [50]. LPAR1, LPAR2 and LPAR3 signaling 
were demonstrated to promote motility and invasion in 
osteosarcoma cells. Takagi et al. confirmed the high level 
of LPAR1 expression in 6 osteosarcoma cell lines and 
determined that LPA-induced invasion was impeded in 
LPAR1 knockout cell lines, emphasizing the essential 
role of the LPA-LPAR1 axis in osteosarcoma cell inva-
sion [51]. In addition, LPAR2 has been implicated in the 
acquisition of malignant characteristics during MG-63 
osteosarcoma cell progression [52]. Endothelial cells, cru-
cial elements of the tumor microenvironment, modulate 
MG-63 cell motility through the activation of LPAR2 and 
LPAR3 signaling [53]. Further investigation is warranted 
to fully comprehend these mechanisms.

However, LPAR5 may have a negative effect on osteo-
sarcoma [53, 54]. Cisplatin (CDDP), which is used for 
anticancer treatment, can cause damage to the DNA of 
cancer cells. Minami et al. reported that endothelial cells 
activating LPAR5 signaling in osteosarcoma cells led 
to reduced cell survival in response to CDDP [53]. The 

activation of matrix metalloproteinases (MMPs) can 
promote the invasion and migration of tumor cells [55]. 
Studies have shown that the expression of MMP-2 is 
increased in LPAR5-knockdown osteosarcoma cells and 
that both motility and invasion are promoted, suggest-
ing that the motility and invasion of osteosarcoma cells 
are related to LPAR5 [53, 54]. Kurisu et al. conducted a 
study evaluating the effect of LPA signaling on osteosar-
coma cells with reduced adenosine triphosphate (ATP) 
levels, which can result in necrosis and apoptosis. They 
used ethidium bromide to reduce the intracellular ATP 
level and found that LPA increased invasive activities 
in the treated cells, and LPAR4 and LPAR6 knockdown 
enhanced the survival of MG-63 cells treated with CDDP. 
These results suggest that LPAR4 and LPAR6 negatively 
regulate the osteosarcoma cell motility [56]. Therefore, 
the dysregulation of LPARs could significantly impact the 
advancement of osteosarcoma by regulating cell migra-
tion, invasion and metastasis (Fig. 1).

Fig. 1 Positive and negative effects of LPARs in osteosarcoma. The specific mechanisms of LPARs in the pathogenesis of osteosarcoma are not yet fully 
understood. Current research on the relationship between LPARs and osteosarcoma progression primarily focuses on the regulation of cell functions, 
such as invasion and motility. LPAR1, LPAR2, and LPAR3 promote the invasion and migration of osteosarcoma cells. Under specific conditions, other LPARs 
have also shown some effects. For example, when CDDP, an anticancer drug known to cause DNA damage, was administered to osteosarcoma cells, it 
activated LPAR5 signaling, which led to a decrease in cell survival. Moreover, the knockdown of LPAR5 in osteosarcoma cells resulted in an increase in 
both motility and invasion, suggesting a negative correlation between these activities and LPAR5. When the intracellular ATP concentration was down-
regulated, the survival of osteosarcoma cells treated with CDDP was improved by LPAR4 and LPAR6 knockdown. This result suggested that LPAR4 and 
LPAR6 may act as negative regulators of osteosarcoma cell motility
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Ewing’s sarcoma
Ewing’s sarcoma, an aggressive bone and soft tissue 
cancer affecting children and young adults, constitutes 
approximately 2% of childhood cancers and ranks as 
the second most frequent bone cancer in children [57]. 
Although it was initially diagnosed as osteosarcoma, its 
unique properties make it generally considered a sepa-
rate bone tumor [57]. There are few studies concerning 
Ewing’s sarcoma. Early studies have shown that Ewing 
family tumor cell lines express high levels of LPARs 
[58]. Nevertheless, Willier et al. reported that the LPA-
generating enzyme lipase member 1 is almost exclusively 
overexpressed in Ewing’s sarcoma, which is a malignant 
neoplasm with high invasiveness, suggesting that LPA 
might be involved in the induction of invasive activities 
in primary bone tumors [59].

Other primary bone cancers
Limited research currently exists on the role of LPA 
in other primary bone cancers. For instance, studies 
on chondrosarcoma are scarce. Research has focused 
on elucidating the impact of 2-carba-cyclic phospha-
tidic acid on inflammatory and catabolic responses in 
human osteoarthritis synoviocytes and chondrosar-
coma SW1353 cells in vitro [60]. Notably, the inhibitory 
effects of 2-carba-cyclic phosphatidic acid on MMP-1 
and MMP-3 production in synoviocytes and MMP-13 
production in chondrosarcoma SW1353 cells were not 
mediated by LPAR1 [60]. In the case of chordoma, a rare 
bone tumor with malignant potential, no studies have 
yet established a connection between LPA and its patho-
physiology. Further research is required to investigate 
this potential association.

LPA signaling in metastatic bone tumors
Metastasis is a complex process involving multiple steps 
and begins with increased invasiveness of tumor cells and 
detachment from the primary site. Subsequently, tumor 
cells can invade surrounding tissues and blood vessels, 
leading to distant organ dissemination and adaptation to 
foreign microenvironments [61]. Cancer cells migrate to 
the osseous tissue via the bloodstream or the lymphatic 
system, where they interact with bone cells and the bone 
microenvironment, resulting in the development of new 
tumor sites within the bone marrow cavity. The process 
of bone metastasis is characterized by several stages: 
tumor cell intravasation, circulation survival, extravasa-
tion at secondary sites, and subsequent tumorigenesis 
coupled with angiogenesis. This progression entails com-
plex interactions with osteoclasts, promotion of angio-
genesis, and modulation by a spectrum of cytokines 
and growth factors [62, 63]. Bone metastasis commonly 
occurs in late-stage cancer [64], and once it occurs, 
it becomes difficult to cure. However, the underlying 

mechanisms of bone metastasis remain unclear [65]. The 
“vicious cycle” theory is a widely accepted mechanism 
for bone metastasis that involves the interaction between 
tumor cells and bone cells, leading to the disruption of 
normal bone homeostasis and the promotion of tumor 
growth. LPA can influence this cycle, thereby affecting 
bone metastasis.

Communication between the bone microenvironment and 
tumor cells in bone metastasis
The microenvironment plays a crucial role in the pro-
cess of tumor metastasis. At the onset of metastasis, the 
microenvironment of the target organ undergoes adap-
tive changes to create a favorable environment for the 
colonization and growth of metastatic tumor cells [66, 
67]. Tumor-derived factors within the microenviron-
ment have been shown to contribute to skeletal metasta-
sis. Prior to reaching the target organ, tumor cells release 
various factors that directly act on the target organ, alter-
ing the microenvironment to facilitate the survival and 
growth of metastatic tumor cells. These factors induce 
the stromal cells of the target organ to release a spectrum 
of molecules, including cytokines, metabolites, growth 
factors, glycoproteins and glycan-binding proteins that 
guide tumor cell colonization. Notably, cytokines derived 
from tumor cells and microenvironmental cells, such as 
C-X-C motif chemokine (CXCL-1), CXCL-2, IL-6, IL-1b 
and TNF-α, have been identified as stimulators of bone 
absorption and metastasis [68–71].

The bone microenvironment, which includes the 
extracellular matrix, blood vessels, and other bone cells, 
plays a crucial role in regulating bone growth and repair. 
Osteoblasts and osteoclasts are essential components of 
the bone microenvironment and work together to regu-
late bone remodeling and maintain bone homeostasis 
[72]. In the context of bone metastasis, however, this 
balance is disrupted, resulting in various phenotypes, 
including osteolytic, osteogenic and mixed patterns. 
Osteolytic bone metastasis is characterized by increased 
differentiation and function of osteoclasts and decreased 
osteoblast function. Conversely, osteoblastic metastasis 
involves increased osteoblast function and differentia-
tion but decreased osteoclast activity [73, 74]. Therefore, 
excessively active osteoblasts or osteoclasts may be a 
characteristic of bone metastasis. In the early phases of 
bone metastasis, tumor cells secrete various factors like 
fibroblast growth factors, platelet-derived growth factor, 
VEGF and endothelin-1 (ET-1), stimulating the activ-
ity of osteoblasts [75]. In addition, osteoblasts can regu-
late osteoclast activity through direct cell-to-cell contact 
or through secretory proteins [72]. Receptor activator 
nuclear factor-κB (RANK) belongs to the TNF fam-
ily and has been demonstrated to be a vital factor that 
drives cancer cell migration to bone. The differentiation 
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and maturation of osteoclasts are induced by RANK and 
RANK ligand (RANK-L), thus promoting bone resorp-
tion [76, 77]. Osteoprotegerin (OPG), a decoy receptor 
of RANK-L, can prevent this process and inhibit the acti-
vation of osteoclasts [77–79]. OPG and RANKL bidirec-
tionally regulate the activity of osteoclasts. The relative 
content of the two determines the activity of osteoclasts. 
For instance, in the case of osteolytic metastasis, follow-
ing bone metastasis, cancer cells can secrete cytokines 
to increase the expression of RANKL while decreasing 
the expression of OPG in osteoblasts and other tumor-
related cells, such as fibroblasts and immune cells. The 
balance between RANK-L and OPG is crucial for main-
taining bone homeostasis. Disruptions to this balance 
can lead to increased osteoclast activity and bone resorp-
tion, contributing to conditions such as osteoporosis and 
bone metastasis. Increased RANK-L and decreased OPG 
enhance the effect of osteoclasts, which can increase 
bone destruction and cytokine release. Hyperactivation 
of osteoclasts exacerbates this effect and ultimately pro-
motes bone metastasis [80, 81] (Fig. 2).

Involvement of LPA signaling in bone metastasis
LPA has been identified as a significant contributor to 
bone metastasis [82]. Several decades ago, research-
ers recognized a potential relationship between LPA 
and tumor metastasis. They discovered that metastatic 
tumor cells can activate platelets to release LPA and sub-
sequently enhance tumor growth and bone destruction 
[83, 84]. Platelet-derived LPA acts on LPAR1-expressing 
tumor cells. LPAR1 can promote the release of cytokines 
such as granulocyte-macrophage colony-stimulating 
factor (GM-CSF), IL-6, IL-8, growth-regulated onco-
gene (Gro), and monocyte chemoattractant protein-1 
(MCP-1) from MDA-BO2 breast cancer cells, which 
mediate osteoclast activation [85]. Nam et al. demon-
strated that the enhanced expression of IL-8 by LPA 
may occur via the ROCK, protein kinase Cµ (PKCµ), 
PI3K, and NF-κB signaling pathways, while the enhanced 
expression of IL-11 might involve the protein kinase Cδ 
(PKCδ) signaling pathway in breast cancer [86]. In addi-
tion to similar findings in prostate cells, LPA was also 
reported to enhance osteoclastogenic cytokines, thereby 

Fig. 2 Communication between tumor cells and the bone microenvironment in bone metastasis. Tumor cells release diverse factors that directly influ-
ence the bone microenvironment, thereby altering the microenvironment to facilitate the survival and growth of metastatic tumor cells. This alteration 
enhances the colonization and proliferation of metastatic tumor cells. Once tumor cells colonize the bone matrix, they influence bone homeostasis 
through several processes. In the early stage of bone metastasis, tumor cells secrete various factors, such as VEGF and ET-1, stimulating the activity of 
osteoblasts. In addition, tumor-derived cytokines promote the RANKL/RANK/OPG axis, which enhances the differentiation and activation of osteoclasts. 
These processes disrupt bone homeostasis by affecting bone remodeling, which in turn promotes tumor growth and colonization in the bone microen-
vironment. Consequently, a vicious cycle is created
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increasing tumor growth and bone destruction. Condi-
tioned medium from LPA-stimulated PC-3 prostate cells, 
enriched with osteoclastogenic cytokines, facilitated the 
formation of osteoclast. In particular, the levels of IL-6, 
GM-CSF, MCP-1, macrophage colony-stimulating factor 
(M-CSF), MCP-2, and insulin-like growth factor-binding 
protein (IGFBP) were greatly enhanced upon LPA stimu-
lation [87].

ATX, also known as lysophosphatidylase D, can cata-
lyze the conversion of lysophosphatidylcholine to LPA. 
Stromal ATX, which is also secreted by platelets, is highly 
expressed in bone metastases. These nontumor-derived 
ATXs are released due to tumor cell-induced platelet 
aggregation, leading to LPA production. Both in vitro and 
in vivo studies showed that ATX promoted the coloni-
zation of human breast cancer cells in the skeleton dur-
ing bone metastasis [88]. In addition, in a clinical study, 
Shim et al. conducted immunohistochemical staining for 
ATX-LPA signaling-related proteins. They discovered 
that stromal ATX was highly expressed in bone metas-
tases [89]. On the other hand, tumor-derived ATX con-
trols bone metastasis through LPA-mediated osteoclasts 
activation. ATX expression enhanced human breast can-
cer MDA-B02 cell osteolytic bone metastasis in both in 
vivo and in vitro settings. The addition of purified LPA 
to lipid-depleted serum stimulated the complete differ-
entiation of osteoclast precursors into osteoclasts with 
M-CSF/RANK-L in vitro [90]. Therefore, activation of 
the ATX/LPA axis in breast cancer cells plays a pivotal 
role in controlling the progression of bone metastasis by 
directly stimulating both cancer cells and osteoclasts.

In addition, David et al. demonstrated that competitive 
inhibitors of LPAR1 and LPAR3 can effectively suppress 
cell invasion and inhibit skeletal metastasis in mouse 
animal models. In particular, the increased antago-
nist activity of Debio 0719 at LPAR1 has been shown to 
greatly reduce the dissemination of tumor cells to bone 
both in vivo and in vitro. By blocking LPAR1 activity, 
the early stages of breast cancer cell bone metastasis to 
are impeded, not through angiogenesis and cell prolif-
eration, but by inhibiting cell motility and invasion [91]. 
Their team further discovered that LPA can induce the 
LPAR signaling axis and activate downstream pathways. 
Through a combination of genetic manipulation and 
pharmacological interventions, they established that 
LPA’s proinvasive impact on triple-negative breast cancer 
cells relies on an LPAR1/PI3K/zinc finger E-box-binding 
homeobox 1 (ZEB1)/microRNA-21 (miR-21) activation 
cascade. LPA, via LPAR1, activates PI3K/AKT, initiat-
ing ZEB1 expression and subsequent miR-21 activation. 
This process suppresses the expression of antimetastatic 
genes (PTEN, PDCD4, and SPRY2), inducing cell migra-
tion, invasion and metastasis [92]. Interestingly, comple-
ment receptor 97 (CD97), an adhesion-linked GPCR, 

can interact in cis with and positively regulate LPAR1, 
enhancing LPA-dependent Rho signaling. The depletion 
of CD97 in PC3 prostate cancer cell lines reduced experi-
mental bone metastasis without affecting subcutaneous 
growth in vitro. In addition, CD97 can heterodimerize 
with LPAR1, leading to LPA-initiated invasion and sig-
naling [93] (Fig. 3).

LPA signaling in cancer-related skeletal complications
Cancer-related bone pain
The complex interactions between bone cells and tumor 
cells not only drive tumor growth in bone but also cause 
pathological pain. Cancer-induced bone pain refers to 
the symptoms resulting from skeletal metastasis and 
pain caused by primary bone tumors, which may affect 
the physical function, quality of life and survival rate of 
patients [94, 95]. Schiwei et al. first reported a femoral 
cancer pain model in mice, in which pathological changes 
such as osteolysis and bone destruction, as well as behav-
ioral changes such as spontaneous and touch-induced 
pain, were observed on the affected side of the model 
[96]. Bone cortex damage caused by bone tumors or inva-
sion of the tumor itself can stimulate nerve endings in the 
periosteum and ultimately cause cancer-induced bone 
pain. Additionally, the secretion of inflammatory fac-
tors caused by an imbalance in the bone microenviron-
ment sensitizes nerve fibers, leading to severe pain [95]. 
Although the mechanism underlying cancer-induced 
bone pain remains unclear, LPA signaling may affect can-
cer-induced bone pain by promoting tumor progression 
or disrupting bone homeostasis. Moreover, LPAR signal-
ing can participate in the process of pain transmission.

Previous studies have indicated that LPARs could be 
potential targets for pain management [97–99]. Notably, 
the expression and activation of LPAR1 in dorsal root 
ganglion (DRG) neurons are associated with sensitiz-
ing C fibers, thereby inducing bone cancer pain [100]. 
LPAR1-mediated pathways have been shown to be cru-
cial for the genesis of bone cancer pain. Inhibition of 
LPAR1 activity has been linked to mitigating bone cancer 
pain, possibly through the blockade of LPAR1/ERK sig-
naling pathway or miR-329/LPAR1/ERK signaling. As a 
pleiotropic mediator, LPAR1 can modulate the ERK sig-
naling cascade significantly, serving as a key regulator in 
bone cancer pain [101]. Other studies have shown that 
LPAR1 also participates in bone cancer pain regulation 
through Rho/ROCK signaling. Activation of the Rho/
ROCK pathway can modulate bone cancer pain through 
P2 × 3 receptors [102].

The interactions between LPA and ion channels are 
important for pain induction [103]. Transient receptor 
potential vanilloid 1 (TRPV1) is a non-selective cation 
receptor that is highly expressed in primary afferent neu-
rons and senses peripheral nociceptive stimuli, leading 
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to abnormal impulses in DRG neurons and resulting in 
hyperalgesia. LPA can enhance the activity of TRPV1 in 
nociceptors via a PKCε-dependent pathway [104]. More-
over, LPA signaling can generate IL-6, which contributes 
to the onset of bone cancer pain in rats through upregu-
lating TRPV1 receptor function and activating the Janus 
kinase (JAK)/PI3K signaling pathway [104]. Pan et al. 
reported that intravenous injection of LPA can directly 
act on neurons and/or upregulate the expression of 
LPAR1 and Nav1.8 in the DRG and that the interaction 
between LPAR1 and Nav1.8 may contribute to the induc-
tion of bone cancer pain [105] (Fig. 4).

Skeletal-related events
Tumor cells exacerbate the imbalance between bone 
formation and bone resorption, promoting skeletal 
destruction and severe pathological manifestations [106]. 
Skeletal-related complications such as hypercalcemia, 
pathological fractures, spinal cord injury and uncon-
trolled pain requiring bone surgery and/or radiotherapy, 

are common complications of bone cancer. These events 
increase in frequency as bone cancer progresses and 
result in increased morbidity, mortality and healthcare 
costs [107].

LPAR1 has been shown to influence osteogenesis and 
bone development in vivo, but its absence may result in 
bone defects and osteoporosis [108]. LPA can partially 
rescue preosteoblast proliferation through the mito-
gen-activated protein kinase kinase 3 (MKK3)/MAPK/
proliferating cell nuclear antigen (PCNA) pathway in 
ectonucleotide pyrophosphatase/phosphodiesterase 1 
(Enpp1) deficiency-associated osteoporosis [109]. More-
over, LPA can stimulate osteoclast differentiation and 
induce the release of IL-6, which enhances bone destruc-
tion [110]. Some studies have reported that LPA can 
induce dendrite outgrowth in osteocytes and the secre-
tion of cytokines that may promote fracture repair [111, 
112]. However, the mechanisms underlying these patho-
logical events remain unclear. Studies on the underly-
ing mechanism by which LPA is involved in these events 

Fig. 3 Involvement of LPA signaling in bone metastasis. LPA released by platelets acts on LPAR1, promoting cytokine production. These cytokines can 
stimulate osteoclast activation. Among the various cytokines secreted by breast cancer cells via LPAR1, the expression of IL-8 may be enhanced by LPA 
through the ROCK, PKCµ, PI3K, and NF-κB signaling pathways. Similarly, the increase in the expression of IL-11 might involve the PKCδ signaling pathway, 
which promotes both tumor growth and bone destruction. Furthermore, LPA could amplify osteoclastogenic cytokines. Stromal ATX is secreted by 
platelets. Nontumor-derived ATX promotes the early stage of bone metastasis and leads to the production of LPA. On the other hand, tumor-derived 
ATX regulates bone metastasis via LPA-dependent osteoclasts activation. In addition, LPAR1 and LPAR3 can facilitate skeletal metastasis. Upon acting on 
LPAR1, LPA can activate PI3K/AKT, leading to ZEB1 expression and downstream activation of miR-21 in breast cancer cells. Consequently, the expression 
of antimetastatic genes is inhibited, leading to metastasis. Interestingly, CD97 can form complexes with LPAR1 in cis, positively regulating LPAR1 and lead-
ing to increased LPA-dependent Rho signaling. Moreover, CD97 can heterodimerize with LPAR1, leading to LPA-initiated invasion and signaling. However, 
studies involving LPAR3 are relatively scarce, leaving the role of LPAR3 in bone metastasis unclear
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are relatively limited. Currently, palliative radiation 
therapy, chemotherapy, and surgery are common thera-
pies for patients with skeletal-related events [113]. Skel-
etal-related events can be devastating complications for 
cancer patients. Once it occurs, it poses a severe threat 
to patients’ survival and quality of life. Further research 
could be performed to investigate the role of LPA in 
these complications, providing a novel strategy for their 
treatment.

Clinical implications of LPA signaling as a therapeutic 
treatment
LPA not only contributes to tumor mechanisms but 
also has significant clinical value. LPA levels and LPAR 
expression may serve as potential diagnostic biomark-
ers for cancer patients [114]. Cao et al. conducted a 
case‒control study to investigate the plasma levels of 
LPA and found that LPA can serve as an biomarker for 
ovarian cancer progression and diagnosis [115]. Further-
more, Yu et al. identified metastatic tumors expressing 
LPAR1, LPAR2, and LPAR3 in the kidney, liver and pan-
creas; LPAR2 and LPAR3 in skeletal muscle; and LPAR2 
in the cervical lymph node and heart [116]. In addition 
to diagnostic applications, therapy for malignant bone 

tumors has always been a focus of research. For primary 
bone tumors, comprehensive treatment with surgery as 
the primary approach has long been recommended in 
clinical practice. However, in recent years, limb-sparing 
therapy has gained popularity, and chemotherapy and 
radiotherapy have become important parts of treatment. 
For bone metastases, surgery is rarely an option. Most 
patients receive palliative care with chemotherapy and 
radiotherapy. Therefore, it is necessary to consider how 
to effectively implement chemotherapy and radiotherapy. 
Additionally, chemotherapy and radiotherapy indiscrimi-
nately attack host cells. The development of novel tar-
geted drugs is also important.

Regulation of chemoresistance to anticancer drugs
In recent decades, researchers have been searching for 
effective and appropriate clinical therapies for cancer. 
Metastasis, a common outcome of malignant tumors, is 
closely related to high mortality rates [117]. To enhance 
patient survival rate and quality of life, chemotherapy 
combined with surgery has been applied to prevent 
complications and decrease patient mortality. CDDP is 
commonly used in chemotherapy for anticancer treat-
ment because it can influence various cellular events and 

Fig. 4 A brief overview of LPA signaling in bone cancer pain. LPA exerts its influence by directly activating LPAR1, which in turn triggers downstream 
cascades such as the ERK and Rho/ROCK signaling pathways, thus contributing to the onset of bone cancer pain. Furthermore, LPA sensitizes the TRPV1 
receptor, subsequently activating either the JAK/PI3K signaling pathway or the PKCε signaling pathway, further fuelling bone cancer pain development. 
Finally, LPA enhances the Nav1.8 receptor, thereby activating the downstream PKCε signaling pathway and adding another layer to the pathogenesis of 
bone cancer pain
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induce tumor cell death. However, when tumor cells are 
resistant to cisplatin, chemotherapy may fail. LPA has 
been found to modulate chemoresistance to anticancer 
drugs and plays a vital role in reversing cisplatin resis-
tance. Ueda et al. reported that LPAR2 and LPAR3 ago-
nists significantly increase the survival rate of lung cancer 
cells in response to CDDP [118]. Minami et al. reported 
that LPA treatment reduced osteosarcoma cell survival 
in combination with CDDP. Knockdown of LPAR5 in 
osteosarcoma cells resulted in a high cell survival rate 
in response to CDDP [53]. In addition, LPA exhibits 
promising potential for long-term CDDP treatment in 
cancer therapy. Ueda et al. also reported that the long-
term survival rate of lung cancer cells treated with CDDP 
was elevated by an LPAR2 agonist [118]. Takahashi et al. 
reported that LPA treatment stimulated cell motility and 
invasive behaviors in fibrosarcoma cells exposed to long-
term CDDP treatment. Knockdown of LPAR2 reduced 
these activities [119]. They also found that CDDP treat-
ment increased LPAR2 and LPAR3 expression in osteo-
sarcoma cells, where LPAR2 signaling played a role in 
enhancing cell motility, invasion, and colony formation 
under prolonged CDDP exposure [52].

Targeting LPA signaling for anticancer therapy
Targeting LPA signaling could serve as a treatment strat-
egy for bone tumors. As early as 2006, it was reported 
that inhibiting the effect of LPA on LPAR1 could be a 
promising approach for treating bone metastasis [85]. 
In a separate study, BrP-LPA, acting as a pan-LPAR 
antagonist and ATX inhibitor, displayed the capability 
to impede the migration of human breast cancer cells 
(MDA-MB-231) in vitro, indicating potential to suppress 
cancer metastasis [120]. The potential value of LPAR 
antagonists for treating cancer has been recognized in 
recent decades. Debio-0719, a potent dual antagonist of 
LPAR1 and LPAR3, was identified for its ability to dimin-
ish pulmonary and bone metastases in murine 4T1 breast 
cancer cells while leaving the primary tumor size unaf-
fected [91]. Additionally, Lin et al. reported that the use 
of an LPAR antagonist reduced lymphatic vessel density 

in prostate tumor cells, leading to decreased lymph node 
metastasis, underscoring the promise of targeting LPA 
signaling in prostate cancer therapy [40]. There have been 
ongoing clinical trials for drugs involving LPA signaling 
in the past decade [121–127] (Table 1). However, despite 
their clinical significance, clinical trials evaluating the 
efficacy LPAR antagonists in cancer treatment have not 
yet been performed. Corte et al. conducted a random-
ized, double-blind, phase 2 trial to test the impact of the 
LPAR1 antagonist BMS-986,278 on fibrotic disease [121]. 
Fibrosis and cancer share many common features and 
mechanisms, including the overproduction of growth 
factors and enhanced cellular senescence [128]. The 
results showed a promising safety profile and potential 
for treatment.

The therapeutic potential of LPA in cancer immunotherapy
Tumor immunotherapy represents a form of cancer 
treatment designed to leverage the immune system’s abil-
ity to recognize and attack cancer cells. This therapeutic 
modality encompasses a spectrum of strategies, such as 
immune checkpoint inhibitors, adoptive cell transfer, 
and cancer vaccines. These approaches typically func-
tion by either activating the immune system or eliminat-
ing obstacles that impede its ability to target cancer cells 
[129]. LPA exerts diverse effects on immune cells and 
the tumor microenvironment, presenting a compelling 
avenue for investigation in immunotherapy. In meta-
static ovarian cancer, tumor-derived LPA suppresses the 
production and signaling of type I interferons (IFNs), 
dampening the immune response against the tumor and 
facilitating tumor immune evasion and progression. The 
ATX-LPA axis serves as a crucial immunoregulatory 
pathway that diminishes protective type I IFN responses. 
Loss of ATX in ovarian cancer cells decreased LPA and 
prostaglandin E2 (PGE2) production at tumor sites, 
enhanced type-I IFN responses in tumor-associated 
dendritic cells, and augmented the efficacy of type I IFN 
inducers. Targeting LPA signaling pathways could poten-
tially enhance type I interferon responses and boost anti-
tumor immunity in ovarian cancer patients [130]. The 

Table 1 Clinical trials and publications on LPAR and ATX targeted drugs in the past Decade
Compound ClinicalTrials.gov ID Disease Phase Publication
BMS-986,278
(LPAR1 antagonist)

NCT04308681 Idiopathic pulmonary fibrosis and progressive fibrotic interstitial lung diseases Phase 2  [121]

BMS-986,020
(LPAR1 antagonist)

NCT01766817 Idiopathic pulmonary fibrosis Phase 2  [122]
 [123]
 [124]

SAR100842
(LPAR1 antagonist)

NCT01651143 Diffuse cutaneous systemic sclerosis Phase 2  [125]

GLPG1690
(selective ATX inhibitor)

NCT03798366 Diffuse cutaneous systemic sclerosis Phase 2  [126]

GLPG1690
(selective ATX inhibitor)

NCT02738801 Idiopathic pulmonary fibrosis Phase 2  [127]
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LPA-LPA5 signaling axis is exploited by various cancers 
to inhibit T cell activation and function, highlighting the 
promise of targeting the LPA/LPAR pathway alongside 
anti- programmed death 1 (PD-1), anti-cytotoxic T-lym-
phocyte-associated antigen 4 (CTLA-4), or similar thera-
pies to enhance immune function within tumors [131]. 
Melanoma-derived ATX repels tumor-infiltrating and 
circulating CD8 T cells via LPAR6, hindering their tumor 
infiltration and compromising anti-tumor immunity 
without affecting systemic T cell responses. Intratumoral 
ATX acts as a T cell repellent, unveiling a novel mecha-
nism of the ATX-LPAR axis in promoting metastasis and 
suppressing CD8 T cell infiltration, offering potential 
therapeutic avenues [132].

LPA promotes the development of vascular networks 
within brain tumors, enhancing the efficacy of anti-PD-1 
therapy. The RhoA/ROCK signaling pathway plays a cru-
cial role in facilitating LPA-induced endothelial cell-cell 
adhesion, consequently regulating the expression of vas-
cular cell adhesion molecule-1 (VCAM-1) and promot-
ing increased lymphocyte infiltration into the tumor. 
Moreover, LPA aids in the delivery of exogenous IgG into 
brain tumors, further augmenting the anticancer effects 
of anti-PD-1 antibody therapy. These findings highlight 
the potential application of LPA-mediated modula-
tion of vascular structure and function in the context 
of immunotherapy [133]. LPAR4 and LPAR6 are selec-
tively expressed on high endothelial venule cells in lymph 
nodes. LPAR4 predominantly aids lymphocyte move-
ment across high endothelial venules, with its absence 
leading to a significant lymphocyte accumulation in the 
endothelial cell layer. LPAR6 serves as a similar role, 
although its absence does not hinder lymphocyte move-
ment to the same extent. While these findings may not 
directly relate to immunotherapy, they offer insights into 
the lymphocyte migration processes. Understanding the 
mechanisms governing the movement of these cells and 
their traversal of lymph node high endothelial venules 
holds significance for investigating the efficacy and 
mechanisms of immunotherapeutic interventions [134].

Strengths and limitations
This review offers a comprehensive overview of the intri-
cate role of LPA signaling in bone tumors. LPA influences 
tumor progression by activating downstream pathways 
and indirectly affecting tumor development through 
the modulation of factors such as cytokines and tumor-
related genes. Notably, osteosarcoma, a prevalent pri-
mary bone tumor, is significantly impacted by the LPA 
signaling pathway, which affects the survival, invasion 
and motility of osteosarcoma cells. Moreover, the inci-
dence of metastatic bone tumors surpasses that of pri-
mary bone tumors, prompting a focused exploration 
within this review on the influence of LPA on metastatic 

bone tumors, encompassing its effects on tumor cells, 
the bone microenvironment, and bone remodeling pro-
cesses. In addition, as bone cancer pain and pathological 
fracture are common complications associated with bone 
tumors, this review also discusses the involvement of the 
LPA signaling pathway in these processes. From a clini-
cal standpoint, LPA signaling has emerged as a potential 
inhibitor of tumor progression and a modulator of tumor 
drug resistance. Encouragingly, ongoing clinical trials 
investigating drugs targeting LPA signaling suggest their 
promise as safe and effective antitumor agents. Eluci-
dating the correlation between LPA and bone cancer is 
highly promising for improving both the prognosis and 
the development of LPA-targeted drugs [135]. It is plau-
sible that future therapeutic strategies harnessing LPA 
signaling could revolutionize cancer management [136].

However, it is imperative to acknowledge several limi-
tations. The existing body of research predominantly 
relies on cell-based experiments, warranting the incorpo-
ration of a broader array of experimental methodologies 
to deepen our understanding of LPA signaling in bone 
tumors. Additionally, there is a pressing need for more 
comprehensive analyses elucidating the mechanisms by 
which LPA signaling contributes to the pathogenesis of 
malignant bone tumors, including a detailed exploration 
of its downstream effects. Despite promising results from 
preclinical models underscoring the therapeutic poten-
tial of LPA signaling, its application in clinical trials for 
tumors remains largely unexplored. Therefore, the initia-
tion of further clinical trials to explore this potential is 
strongly advocated.

Conclusion
In summary, this review illuminates the vital role of LPA 
signaling in primary bone cancer, bone metastasis and 
associated skeletal complications, with a specific empha-
sis on its implications in bone cancer. These findings not 
only enhance our understanding of prognosis but also 
drive the development of LPA-targeted drugs. Addition-
ally, this review emphasizes the critical role of LPA sig-
naling in mediating resistance to chemotherapy drugs, 
laying a robust foundation for innovative therapeutic 
approaches. These advancements offer hope for individu-
als with bone cancer, promising improved management 
and prognosis, ultimately leading to reduced mortality 
rates and a better quality of life.
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