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stimuli by insulin in its primary target organs (e.g., skel-
etal muscle, adipose tissue, and the liver), which causes 
insulin to become unable to maintain appropriate lipid 
and glucose balance. As a result, insulin concentrations 
that are higher than normal levels are required to main-
tain normoglycemia [4–6]. Clinically, IR is often accom-
panied by obesity [7]. Chronic obesity causes systemic 
chronic low-grade inflammation and reduces insulin sen-
sitivity, which is the main etiology of IR [1].

In addition to being driven by an array of proinflam-
matory mediators, inflammation is a crucial defensive 
mechanism of the host that is regulated by a set of self-
limiting inflammatory mechanisms. As a result of these 
self-limiting mechanisms, inflammatory mediators, 
endothelial cells, and immune cells are recruited to elimi-
nate proinflammatory mediators and inflammatory cells, 
restore harmed tissues, and promptly end the inflam-
matory response once inflammation has reached the 
proper stage. This process is referred to as inflammatory 

Introduction
Nowadays, obesity is considered an epidemic and has 
become a global health problem [1]. By 2030, 51% of 
Americans are predicted to be fat [2]. Metabolic abnor-
malities associated with obesity include a range of 
conditions such as dyslipidemia, diabetes, and cardiovas-
cular disease, which have affected more than 650 million 
people worldwide [3]. Insulin resistance (IR) underlies 
the pathophysiology of these diseases. IR is a common 
pathological state characterized as a reduced reaction to 
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Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin 
resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many 
diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously 
threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been 
found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are 
novel lipid mediators that both function as “stop signals” for inflammatory reaction and promote inflammation to 
subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the 
classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in 
order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
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regression [8–12]. The regression of inflammation is 
an active process that accompanies the initiation of the 
inflammatory process [8]. However, the resolution pro-
cess fails when inflammatory damage is severe and/or 
persistent, leading to excessive tissue injury and, eventu-
ally, chronic and self-promoting inflammation [11, 12].

Recently, when acute inflammation is in its regressive 
phase, anti-inflammatory and pro-lipolytic lipid media-
tors have been discovered that are produced endoge-
nously from polyunsaturated fatty acids (PUFAs) derived 
from membrane phospholipids. These molecules, which 
are known as specialized pro-resolving mediators (SPMs), 
serve as both agents of the prompt resolution of inflam-
mation and “stop signals” for the inflammatory response 
[13, 14]. SPMs can be derived from omega-3 PUFAs, 
which act by binding to G protein-coupled receptors [15]. 
SPMs control tissue homeostasis and inflammation via 
restricting neutrophils invasion into inflammatory foci, 
enhancing the cytotoxicity of apoptotic cells, decreasing 
inflammatory cytokines production, and promoting M2 
macrophages polarization [16–19]. SPMs prevent the 
transition of inflammation to chronicity by stimulating 
neutrophil apoptosis and providing a mechanism medi-
ated by endogenous agonists, which may remove the 
side effects caused by conventional anti-inflammatory 
agents [15]. SPMs provide an alternate method of treat-
ing inflammatory illnesses. SPMs have been tested in 
humans, as well as in animal models of inflammation 
[20]. Studies have shown that SPMs can alter neutrophil 
dysregulation and activation of phagocytic/lytic signaling 
in type 2 diabetes [21], reduce cardiometabolic risk fac-
tors such as inflammation and oxidative damage [22], and 
alter vascular function and thrombosis to prevent cardio-
vascular events [15].

Research indicates that SPMs generation in adipose 
tissue that is obese is inadequate and that supplementa-
tion with SPMs or omega-3 PUFAs, which produce these 
mediators, can reduce inflammation in obese adipose 
tissue [23–26]. Unlike conventional anti-inflammatory 
therapies, SPMs modulate macrophages, promote uptake 
and clearance of apoptotic cells, and improve inflamma-
tion resolution and tissue healing [25, 27]. SPMs act as 
endogenous lipid mediators that regulate inflammation 
and thus represent a unique strategy for treating inflam-
mation. In recent times, there has been a surge in study 
on the roles and advantages of SPMs in diseases with 
chronic inflammatory (e.g., obesity, diabetes mellitus, 
and atherosclerosis) [28]. The aim of this paper is to sum-
marize the potential mechanisms of action of SPMs in 
obesity-associated IR with a view to providing new thera-
peutic ideas and pathways for treating metabolic diseases 
associated with obesity-associated IR.

Pathogenesis of obesity-associated IR
The etiology of IR includes genetic factors and environ-
mental factors (e.g., aging, reduced physical activity, food 
intake, and smoking) [29–31]. As a risk factor, obesity 
significantly influences IR development [32]. Endoplas-
mic reticulum (ER) stress, oxidative stress, lipid deposi-
tion, inflammation, and mitochondrial dysfunction are all 
involved in the pathogenesis of obesity-induced IR [33].

Chronic obesity causes adipose tissue to become 
enlarged and dysfunctional, which recruits macrophages 
and polarizes them into a proinflammatory state [1]. One 
of the pathological features of obesity is the increased 
number of macrophages infiltrating adipose tissue [26]. 
Macrophages are considered to be a major source of pro-
inflammatory mediators [34], and levels of proinflamma-
tory adipokines including interleukin-6 (IL-6), monocyte 
chemotactic protein-1 (MCP-1), and tumor necrosis 
factor-α (TNF-α) are elevated in obesity and are con-
nected with IR directly [35]. Conversely, the level of adi-
ponectin with anti-inflammatory and insulin-sensitizing 
properties decreases [36, 37]. Overexpression of 5-lipox-
ygenase-activating protein is frequently observed in adi-
pose tissue from patients and animals with obesity and 
IR [38, 39]. Leukotriene B4 (LTB4), a primary product of 
5-lipoxygenase (5-LOX), activates nuclear factor-κB (NF-
κB), thus increasing MCP-1 and IL-6 release [39].

Elevated plasma levels of free fatty acids (FFAs) are a 
major factor in IR in obesity [40]. In the setting of high 
FFA levels, stress sensors activate the inhibitor of NF-κB 
kinase (IKK) and c-Jun N-terminal kinase (JNK) path-
ways and their responses to downstream signaling cas-
cade via classical receptor-mediated mechanisms [41]. 
By promoting insulin receptor substrate-1 (IRS-1) ser-
ine phosphorylation, activation of JNK and IKK in turn 
causes IR [41]. The downstream effector of these inflam-
matory pathways, namely, inducible nitric oxide synthase 
(iNOS), has been acknowledged as a crucial element 
in the feedforward mechanism that results in IR [33]. 
Obesity increases reactive oxygen species (ROS) pro-
duction and induces lipid peroxidation in human adipo-
cytes, liver, and skeletal muscle [42–44]. The equilibrium 
between antioxidant defense mechanisms and ROS is 
also affected by stress signaling pathways activation, such 
as the JNK [45] and NF-κB [46] pathways. ER stress is 
brought on by excessive unfolded/misfolded protein and 
lipids loads that build up in the ER during obesity and 
overnutrition [47, 48]. ER stress arises in the liver and 
adipose tissue via activation of JNK and inhibition of 
IRS-1 phosphorylation [48] and induces IR in endothe-
lial cells. ROS and overloaded Ca2+ are the messengers of 
inflammation generated by ER stress, and the inflamma-
tory state dictates when IR begins [1]. Excess fatty acids 
are deposited as ectopic fat in nonfatty organs including 
the pancreas, muscle, and liver. This produces lipotoxicity 
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and dysregulation of organelles such as mitochondria and 
the ER, which releases excess ROS and proinflammatory 
factors. Moreover, insulin cannot function in insulin sig-
naling pathways when there is persistent low-grade sys-
temic inflammation, which also interferes with glucose 
homeostasis [1, 49]. In obese populations, mitochondrial 
fission in skeletal muscle increases, which leads to reduc-
tions in mitochondrial function and mass and thus to 
mitochondrial dysfunction and IR [50–52].

In addition, when the intestinal microbiota are dysbi-
otic, an increase in Gram-negative bacteria in the intes-
tinal microenvironment produces large amounts of 
lipopolysaccharides (LPSs). High plasma levels of LPSs 
can induce a series of proinflammatory responses by acti-
vating toll-like receptor-2 (TLR2), TLR4, and TLR5 [53], 
which ultimately trigger obesity-associated IR. Exosomes 
derived from adipocytes are involved in macrophage 
activation by promoting M1 macrophages polarization 
and preventing M2 macrophages polarization, which in 
turn stimulates IR [54, 55]. The exosomes microRNA-27a 
[56], microRNA-29a [57], and microRNA-155 [58] can 
regulate insulin sensitivity through activating peroxisome 
proliferator-activated receptor-δ (PPARδ) or PPARγ.

Treatments
Exercise-based lifestyle interventions can significantly 
reduce the chance of diabetes mellitus in obese insulin-
resistant patients by promoting insulin secretion, increas-
ing the sensitivity of tissues to insulin [59], and regulating 
lipid metabolism [60] to reverse the glycemic abnormali-
ties associated with obesity-associated IR [61].

Biguanides inhibit gluconeogenesis by promoting the 
uptake of glucose by peripheral tissues [62]. Among 
these, metformin is most widely used in the clinical 
management of metabolic diseases. Metformin reduces 
obesity, decreases adipogenesis and gluconeogenesis, 
and increases glucose absorption in the liver, skeletal 
muscle, and adipose tissue [63]. Sodium-glucose cotrans-
porter-2 (SGLT-2) inhibitors enhance the excretion of 
glucose in urine via blocking glucose reabsorption in the 
kidneys, which results in weight loss and antihypergly-
cemic effects [64]. Among these, by improving fat utili-
zation and browning, empagliflozin inhibits weight gain. 
It also alleviates inflammation and IR induced by obe-
sity by polarizing white adipose tissue (WAT) and M2 
macrophages in the liver [65]. Glucagon-like peptide-1 
(GLP-1) is an important enteric insulinotropic hormone 
that increases glucose-dependent insulin secretion, sup-
presses hepatic gluconeogenesis, and inhibits glucagon 
release [66]. Additionally, it results in decreased energy 
intake and appetite, as well as delayed stomach emptying 
[67, 68]. Various GLP-1 receptor agonists, including lira-
glutide and exenatide, may reduce body weight by reduc-
ing energy intake [69]. One of these, namely, semaglutide, 

also enhanced sensitivity to insulin, which may be due to 
overall weight loss [70]. Dipeptidyl peptidase-4 (DPP-4) 
is an essential incretin system regulator. It can be found 
in both soluble forms (sDPP-4) and membrane-bound 
forms. Studies have shown that adipokine sDPP-4 is 
related to metabolic inflammation [71]. DPP-4 inhibitors 
maintain blood glucose levels by preventing breakdown 
of the insulinotropic polypeptide that is glucose-depen-
dent and GLP-1 [72]. By modulating the state of M1/
M2 macrophage, DPP-4 inhibition by ligliptin reduces 
obesity-associated inflammation and IR [73]. Research in 
human and animal models reveals that the activation of 
NF-κB and IKKβ was considerably inhibited by nonste-
roidal anti-inflammatory medications like salicylates and 
aspirin, which are cyclooxygenase (COX) inhibitors [74, 
75]. Salicylates reduce levels of proinflammatory cyto-
kines, decrease IR, and restore glucose homeostasis in 
type 2 diabetes by inhibiting IKKβ and NF-κB [76]. High-
dose aspirin (6.77 ± 0.34  g) reduced fasting glucose lev-
els, increased peripheral insulin sensitivity and glucose 
uptake in type 2 diabetes, probably by inhibiting IKKβ 
activity [77]. In addition, a salicylic acid derivative (600 
and 900 mg triflusal) reduced levels of C-reactive protein 
in obese humans, increased insulin secretion induced by 
its action on β-cells, reduced fasting blood glucose levels, 
and improved glucose metabolism [78]. Salicylate (3  g/
kg) suppressed systemic inflammation, decreased levels 
of insulin and fasting blood glucose, and alleviated IR by 
decreasing the amounts of leukocytes, neutrophils, and 
lymphocyte antigen 6 complex (Ly6C) in obese mice [79].

Although desired, changing one’s lifestyle has proven 
to be challenging [80]. There are also some side effects 
associated with medication. For example, SGLT-2 inhibi-
tors can cause genital infections [81], and serious gastro-
intestinal events like nausea, vomiting, and diarrhea may 
become more common when GLP-1 receptor agonists 
are used [81, 82]. Although salicylates have been shown 
to be useful [77], complications associated with salicy-
lates require attention, especially given the high dosages 
that are advised to treat diabetes. These include problems 
with the kidneys, excessive bleeding, gastric ulcers [33]. 
Despite the promise of anti-inflammatory approaches 
as adjunctive therapies, conventional anti-inflammatory 
treatments may cause adverse reactions and weaken the 
host’s defenses [25]. There is still a need to consider mod-
ulating inflammation while keeping the innate immune 
system active, which lowers the risk of infection. As a 
result, it’s imperative to continuously create novel thera-
peutic approaches.

Synthesis and classification of SPMs
Omega-3 and omega-6 PUFAs are essential for SPMs bio-
synthesis, which include resolvins, protectins, and mares-
ins produced from the omega-3 PUFAs eicosapentaenoic 
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acid (EPA) and docosahexaenoic acid (DHA), as well as 
lipoxins (LXs) produced from the omega-6 PUFA arachi-
donic acid [13]. SPMs have an enzyme-dependent syn-
thesis from PUFAs and exhibit picogram to nanogram 
activity [83]. The biosynthetic pathways of these novel 
lipid mediator molecules involve certain intermediates 
and the enzymes COX and LOX (Fig. 1) [13, 22, 28].

LXs were the first SPMs to be studied and described 
[84] and are formed by transcellular biosynthesis in the 
presence of multiple lipoxygenases [27, 83]. LXs include 

lipoxin A4 (LXA4), lipoxin B4 (LXB4), and their aspirin-
triggered (AT) isoforms [22]. A classical pathway for the 
production of LXs is initiated by 15-LOX [85]. Arachi-
donic acid is transformed into (15S)-hydroxyeicosatet-
raenoic acid by 15-LOX and 5-LOX rapidly converts it 
into LXA4 [86]. Moreover, interactions between platelets 
and leukocytes can result in the biosynthesis of LXs. The 
enzyme 5-LOX in leukocytes forms the epoxide inter-
mediate leukotriene A4, which is then transformed into 
LXA4 and LXB4 by platelet-derived 12-LOX [87].

Fig. 1 Biosynthesis of SPMs from omega-3 and omega-6 PUFAs. AA: arachidonic acid; ASA: aspirin acetylation; AT: aspirin-triggered; COX: cyclooxy-
genase; CYP450: cytochrome P450; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; LOX: lipoxygenase; LTA4: leukotriene A4; LXA4: lipoxin A4; 
LXB4: lipoxin B4; MaR1: maresin 1; MaR2: maresin 2; PD1: protectin D1; RvD1: resolvin D1; RvD2: resolvin D2; RvD3: resolvin D3; RvD4: resolvin D4; RvD5: 
resolvin D5; RvD6: resolvin D6; RvE1: resolvin E1; RvE2: resolvin E2; RvE3: resolvin E3; 14S-HpDHA: (14S)-hydroperoxydocosahexaenoic acid; 15R-HETE: 
(15R)-hydroxyeicosatetraenoic acid; 15S-HETE: (15S)-hydroxyeicosatetraenoic acid; 17R-HpDHA: (17R)-hydroperoxydocosahexaenoic acid; 17S-HDHA: 
(17S)-hydroxydocosahexaenoic acid; 17S-HpDHA: (17S)-hydroperoxydocosahexaenoic acid; 18R-HpEPE: (18R)-hydroperoxyeicosapentaenoic acid; 18R-
HEPE: (18R)-hydroxyeicosapentaenoic acid; 18S-HEPE: (18S)-hydroxyeicosapentaenoic acid
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Resolvins are divided into the D series produced by 
DHA and the E series activated by EPA [88]. The pro-
duction of D-series resolvins is started by 15-LOX 
by converting DHA into (17S)-hydroperoxydocosa-
hexaenoic acid (17S-HpDHA). This is rapidly reduced 
to (17S)-hydroxydocosahexaenoic acid (17S-HDHA), 
which 5-LOX then transforms into two hydroperox-
ide intermediates (7-hydroperoxy-17S-HDHA and 
4-hydroperoxy-17S-HDHA) [13, 22, 25]. Of these, 
7-hydroperoxy-17S-HDHA is either reduced by per-
oxidases to resolvin D5 (RvD5) or hydrolyzed to (7S,8S)-
epoxides, which are subsequently converted into RvD1 
or RvD2 [83]. In contrast, 4-hydroperoxy-17S-HDHA 
is involved in the synthesis of RvD6 or is reduced to the 
4,5-epoxide to generate RvD3 and RvD4 upon enzymatic 
digestion [89]. The oxidation of EPA is the initial stage in 
producing the E series of resolvins. Aspirin acetylation 
of COX-2 or cytochrome P450 converts EPA into (18R)-
hydroperoxyeicosapentaenoic acid (18R-HpEPE). Rapid 
reduction of oxygenated 18R-HpEPE to (18R)-hydroxye-
icosapentaenoic acid (18R-HEPE) by 5-LOX can generate 
hydrogen peroxide, and 18R-HEPE is then converted into 
RvE1/RvE2 [90, 91]. Moreover, 18R-HEPE can also gener-
ate RvE3 via the action of 15-LOX [83, 90].

Protectin D1 (PD1) is a dihydroxyl-containing deriva-
tive of DHA that is generated by 15-LOX or aspirin acet-
ylation of COX-2 [88, 92]. Firstly, 15-LOX transforms 
DHA into 17S-HpDHA [93]. This is then epoxidized to 
the (16S,17S)-epoxide, which is enzymatically hydrolyzed 
to produce PD1 [93].

Molecules of the maresin family are biosynthesized 
from DHA in macrophages [23]. In macrophages, DHA 
produces 14S-HpDHA via the action of 12-LOX, and 
14S-HpDHA is hydrolyzed to produce maresin 1 (MaR1) 
and MaR2 after being enzymatically changed into the 
(13S,14S)-epoxide [94–96].

Aspirin-acetylated COX-2 that is generated as a result 
of the inhibition of prostaglandin synthesis by aspirin in 
cytokine-induced COX-2-containing cells transforms 
arachidonic acid into (15R)-hydroxyeicosatetraenoic acid. 
This is further converted by 5-LOX into 15-epimeric LXs 
(AT-LXA4 or AT-LXB4), which are also known as “aspi-
rin-triggered” LXs [97]. DHA can also be changed into 
17R-HpDHA through acetylation of COX-2 by aspirin, 
and 17R-HpDHA is then converted into the correspond-
ing AT resolvins [83, 89] and AT PD1 by 5-LOX [23, 89]. 
Alternatively, EPA can be converted by aspirin acetyla-
tion of COX-2 into 18S-HEPE, which leads to producing 
18S-RvE1 and 18S-RvE2 by 5-LOX [91].

Mechanisms of SPMs in the treatment of obesity-
associated IR
SPMs can modulate adipokines/cytokines, reduce 
inflammation, and regulate glucolipid metabolism
Currently, it is commonly recognized that one of the 
main underlying mechanisms connecting obesity to sys-
temic IR is persistent and uncontrolled inflammation 
[98]. One organ thought to be crucial in the formation 
of peripheral IR is WAT [99]. Lipids, enzymes, chemo-
kines, cytokines, adipokines, microRNAs, and mRNAs 
are a variety of soluble bioactive molecules released by 
WAT, which have a critical effect on systemic immune 
responses, insulin sensitivity, and metabolism [100–102]. 
Proinflammatory adipokines (TNF-α, MCP-1, IL-6, and 
DPP-4) secreted by adipose tissue mediate the develop-
ment of IR [103, 104]. Among these, by autocrine and 
paracrine mechanisms, the new adipokine DPP-4 can 
impair insulin sensitivity [105]. The expression of DPP-4 
is increased in overweight and obese individuals’ visceral 
adipose tissue [106]. In addition, adiponectin and leptin 
are crucial for lipid and glucose metabolism. Both adi-
ponectin and leptin can mediate different components 
of metabolic syndrome like diabetes, hypertension, and 
obesity, via various pathways such as regulation of sys-
temic inflammation [107]. Central control of food intake 
and weight maintenance depend on leptin [108], and the 
literature also suggests that leptin exhibits proinflam-
matory properties via upregulating cytokines (e.g., IL-6) 
[109]. Adiponectin activation causes a decrease in IR and 
the control of many biological processes, such as immu-
nity and inflammation [110].

Studies have shown that in obese mice (leptin receptor-
deficient mice, mice with diet-induced obesity [DIO], 
and genetically obese mice) or in adipose explants, RvD1 
(2 µg/kg for 8/16 days, 300 ng/mouse for 3 weeks, 10 nM) 
[98, 111–113], RvD2 (10 nM) [112], 17S-HDHA (a pre-
cursor of RvD1) (50 ng/g for 8 days) [114], MaR1 (2 µg/kg 
for 10/20 days, 50 µg/kg for 10 days, 1–10 nM) [115, 116], 
RvE1 (2 ng/g for 4 weeks, 1.2 ng/g for 4 days) [117, 118], 
PD1 (100/250 nM) [118], and LXA4 (1 nM) [119] either 
increased adiponectin expression or decreased inflam-
matory cytokines levels (e.g., MCP-1, TNF-α, and IL-6) 
and thus alleviated inflammation of adipose tissue. MaR1 
(1–200 nM) reversed a TNF-α-induced increase in leptin 
levels in adipocytes derived from human subcutaneous 
preadipocytes [116]. RvD2 (10 nM) downregulated leptin 
secretion in WAT exosomes from obese mice [112]. 
SPMs can also regulate glucose and lipid metabolism. 
RvD1 (2 µg/kg for 8/16 days) reduced the levels of fasting 
blood glucose in leptin receptor-deficient (db/db) mice 
and had a tendency to lower levels of glycated hemoglo-
bin [98]. RvD1 (300 ng/mouse for 3 weeks) reduced insu-
lin and glucose levels, body weight, and cholesterol in 
DIO mice [111]. RvD3 (10 µg/kg for 8 weeks) decreased 
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the weight in both body and liver of DIO mice, reduced 
hepatic accumulation of triglycerides, and lowered the 
homeostatic model assessment of insulin resistance 
(HOMA-IR) index and serum insulin levels [120]. MaR1 
(2  µg/kg for 10 days) decreased the HOMA-IR index, 
insulin and fasting blood glucose levels, and the weight 
of subcutaneous fat in DIO mice [115]. MaR1 (0–10 µM) 
reduced palmitate-induced accumulation of triglycerides 
[121]. However, it is important to note that SPMs may 
act in a dose-dependent or a tissue-dependent manner. 
For example, the levels of adiponectin were elevated in 
epididymal white adipose tissue (eWAT) from DIO mice 
(2  µg/kg for 10 days) and leptin-deficient (ob/ob) mice 
(2  µg/kg for 20 days) [115], as were circulating adipo-
nectin levels in DIO mice (35  µg/kg for 8 weeks) [121], 
after MaR1 treatment. This suggests that levels of this 
adipokine may be systemically affected by a high dose 
of MaR1 and/or a longer duration of MaR1 treatment. 
However, MaR1 (50  µg/kg for 10 days) had no signifi-
cant impact on adiponectin levels in muscle and the liver 
[116]. Intraperitoneal injection of RvD1 (2 µg/kg for 8/16 
days) decreased IL-6 expression in db/db mice’s adipose 
tissue [98], but RvD1 (10 nM) did not alter IL-6 levels in 
obese mice’s adipose explants [112]. In WAT explants 
from obese mice, RvD1 (10 nM) had no effect on leptin 
secretion, whereas RvD2 downregulated leptin [112]. 
The proinflammatory factor TNF-α upregulated DPP-4, 
whereas MaR1 (1–200 nM) blocked the upregulation of 
DPP-4 caused by TNF-α but increased DPP-4 expres-
sion in subcutaneous adipocytes of obese or overweight 
humans. This indicated that MaR1 would function better 
in an environment that promotes inflammation around 
adipocytes [116]. In summary, SPMs may be affected by 
the tissue, environment, dose, or other factors in vivo, 
which lead to differences in metabolic effects.

An important member of the fibroblast growth factor 
(FGF) family, namely, FGF-21, acts as an endocrine factor 
that is primarily expressed in the liver, although it is also 
present in the pancreas, muscle, and adipose tissue [122]. 
It is known that this peptide increases insulin sensitivity 
by decreasing gluconeogenesis in the liver and promot-
ing absorption of glucose in adipocytes [123]. Protec-
tin DX (PDX) (1 µM) generated a dose-dependent rise 
in FGF-21 expression. The inhibitory effects of PDX on 
phosphorylation of NF-κB and inhibitor of NF-κB caused 
by palmitate, as well as damage to insulin signaling, were 
eliminated by siRNA-mediated inhibition of FGF-21. 
PDX alleviated palmitate-induced hepatic inflammation 
and IR via FGF-21-mediated pathways [124]. However, 
MaR1 exhibited contrasting regulatory effects in another 
study. A study in DIO mice showed increased hepatic 
and circulating levels of FGF-21, and MaR1 (50 µg/kg for 
10 days) reduced FGF-21 expression [125]. This decrease 
may have been secondary to a notable decline in liver fat 

content following treatment. It has been demonstrated 
that elevated FGF-21 levels are linked to fatty liver dis-
ease [126]. This increase is thought to occur in situations 
when there is increased carbohydrate and hepatic lipid 
signaling. In contrast, in mice lacking hepatic IRS-1 and 
IRS-2, strong hepatic IR reduced obesity and circulating 
levels of FGF-21 [127]. Furthermore, it is believed that 
obesity and IR contribute to the FGF-21-resistant state in 
rodents and humans [128, 129]. Therefore, the pathways 
by which SPMs regulate FGF-21-mediated obesity and IR 
may be an interesting object of study.

SPMs can modulate macrophages and exert anti-
inflammatory and pro-resolving effects
Reduction in macrophage recruitment and promotion of 
switching of macrophages to M2 phenotype
Adipose tissue in obesity has more infiltrating macro-
phages, and these form characteristic “crown-like struc-
tures” around necrotic adipocytes [130]. A vicious cycle 
comprising increased synthesis of proinflammatory 
mediators and massive recruitment of macrophages is 
sustained by infiltrating macrophages in inflamed adipose 
tissue [131–135]. The macrophages that are recruited 
function as classically activated macrophages (M1-like 
phenotype) expressing CD11b, CD11c and F4/80 as well 
as iNOS. These cells cause an abnormal release of proin-
flammatory adipokines (MCP-1, IL-6, IL-1β, TNF-α) that 
results in IR, along with adipocyte hypertrophy and/or 
hyperplasia [26]. As Lumeng et al. [136–138] suggested, 
the activation pattern of macrophages in adipose tissue 
recruited in obesity is comparable to that of M1-polar-
ized macrophages. It was shown that both the number of 
CD11c-expressing M1-like adipose tissue macrophages 
and the ratio of M1 macrophages to M2 macrophages 
were associated with IR [133, 139]. Increased expres-
sion of M2 macrophage marker proteins such as chitin-
ase-3-like protein (Ym1), arginase 1 (Arg1), IL-10, and 
CD206 indicates that macrophages polarization has 
shifted toward an M2-like phenotype, which is critical for 
adipose tissue homeostasis and inflammation regression 
[113].

SPMs can reduce macrophage counts in adipose tis-
sue and alter their phenotype, which has been dem-
onstrated in obesity-induced IR. In db/db mice, RvD1 
(2 µg/kg for 8/16 days) in a nanogram dose reduced the 
formation of inflammatory macrophage-rich crowns in 
adipose tissue [98]. RvD1 (10 nM) and RvD2 (10 nM) 
reduced transadipose migration of monocytes and their 
adhesion to adipocytes driven by MCP-1 and LTB4 in 
human monocyte–adipocyte cocultures. This is a key 
process for recruiting macrophages and monocytes to 
inflamed adipose tissue [112]. Moreover, RvE1 (1.2 ng/g 
for 4 days) was demonstrated to decrease immunostain-
ing of hepatic F4/80 in obese ob/ob mice [118]. Elevated 
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LXA4 levels and reduced mRNA expression of IL-6 and 
F4/80 (two markers of inflammation) in eWAT were seen 
in transgenic mice that overexpressed arachidonic acid 
5-lipoxygenase-activating protein (ALOX5AP) [140].

In addition to reducing macrophage recruitment, RvD1 
(10 nM) upregulated a number of M2 macrophage indi-
cators, such as Ym1, resistin-like molecule α, CD206, and 
IL-10, and greatly elevated Arg1 expression, a well-recog-
nized M2 macrophage marker, while reducing the secre-
tion of T helper cell cytokines generated by interferon γ/
LPS. This resulted in a shift in macrophages polarization 
in adipose tissue from the M1 phenotype, which repre-
sents classically activated inflammatory features, to an 
anti-inflammatory state similar to M2 [113]. These out-
comes agree with what Hellmann et al. reported [98], 
who found that RvD1 (2  µg/kg for 8/16 days) was able 
to alleviate IR in obese diabetic mice by raising the pro-
portion of F4/80+ cells and decreasing the concentra-
tion of F4/80+CD11c+ macrophages in adipose tissues 
that expressed macrophage galactose-type lectin-1 (an 
M2 macrophage marker). An anti-inflammatory and 
pro-resolving effect was attributed to the recruited mac-
rophages transition to the M2 phenotype [141]. Simi-
larly, MaR1 (2  µg/kg for 10 days) decreased CD11c and 
F4/80+ cells expression in the WAT of DIO mice. MaR1 
(2 µg/kg for 20 days) failed to alter macrophage recruit-
ment but increased IL-10 and CD163 expression in ob/ob 
mice, two markers of M2 macrophages [115]. Activation 
of RvE1 receptor (ERV1) has shown potential to induce 
inflammatory regression by activating monocytes and 
macrophages to an M2-like phenotype. RvE1 binds to 
ERV1 (also known as ChemR23) on monocytes and mac-
rophages and has a direct effect on immune cells [117].

Enhancement of phagocytic activity of macrophages
When leukocytes leave the site of inflammation or exude, 
they cross the peritoneal adipose tissue to reach the local 
lymph nodes [142]. Inflammation of WAT can be caused 
by excessive and persistent inflammation or by leuko-
cytes that are activated in fat but are unable to reach the 
lymphatics during delivery of fat [13]. SPMs are consid-
ered to be potent modulators that inhibit the release of 
proinflammatory cytokines, block the activation and 
recruitment of neutrophils, and induce macrophages to 
activate their phagocytosis in a noninflammatory (anti-
inflammatory) manner [22]. Macrophage phagocytosis 
of dead or apoptotic cells and cellular debris followed by 
exocytosis to the lymph nodes is a crucial additional step 
in reducing inflammation [8].

Within hours after inflammatory stimulation, SPMs 
act on leukocytes, endothelial cells, and epithelial cells 
through G protein-coupled receptors [143]. In polymor-
phonuclear neutrophils (PMNs), the expression of block 
lipid transport-1 and ERV1 is changed in type 2 diabetes 

patients [144]. Studies have shown that ERV1 activa-
tion [145, 146] reduces levels of inflammatory cytokines, 
enhances macrophage phagocytosis of apoptotic neutro-
phils [91], and inhibits neutrophil migration [147]. For 
example, PMN infiltration is decreased and uptake of 
PMNs by resolution-phase macrophages is restored in 
db/db diabetic mice when human ERV1 is overexpressed 
in transgenic (ERV1tg) mice [148, 149]. The human 
receptor ERV1 (CD11b promoter ligand-expressed) is 
overexpressed in ERV1tg mice in mature medullary-like 
cells, especially in response to proinflammatory stimuli 
[144]. The response to RvE1 was markedly enhanced in 
phagocytosis and cell killing by overexpression of ERV1 
[148]. As Herrera et al. observed, phagocytosis, killing, 
and clearance of neutrophils in db/db mice were dam-
aged in vivo and in vitro. After administration of RvE1 
(10 and 100 ng/mL for 2  h), phagocytosis was stronger 
in db/ERV1 and ERV1 mice than in db/db and wild-type 
mice. Thus, RvE1 more effectively modulated the phago-
cyte phenotype of mice with overexpressed ERV1 (ERV1, 
db/ERV1), which resulted in inhibition of the accumula-
tion of neutrophils and more effective elimination of bac-
teria [148]. RvD1 (10 nM) in nanomolar concentrations 
induced noninflammatory phagocytosis by macrophages 
in vitro, which is a critical stage in the process of inflam-
mation resolution. In adipose tissue interstitial vascular 
cells, RvD1 also increases macrophages phagocytic activ-
ity [113].

There are also many reports of SPMs associated with 
macrophage phagocytosis, but these are not yet avail-
able in the case of obesity-associated IR, which still needs 
to be further explored. For example, MaR1 (100 nM) 
prompted phagocytosis and excretion by macrophages, 
which involved phagocytosis by macrophages to clear 
dead or apoptotic cells [150]. Apoptosis of PMNs is regu-
lated by SPMs such as PD1 and LXA4 via upregulation of 
the expression of C-C chemokine receptor on T cells and 
apoptotic PMNs and stimulation of clearance of chemo-
kines during lysis [151].

SPMs can modulate inflammatory signaling pathways
AMP-activated protein kinase (AMPK) is an energy-
sensing enzyme, and activation of AMPK inhibits 
obesity-induced inflammation via multiple molecular 
pathways [124]. It has been discovered that activating this 
kinase prevents proinflammatory cytokines from being 
produced, and it is considered to be a key regulator of the 
inflammatory response [152]. AMPK is well known to be 
a possible target for treating metabolic conditions includ-
ing IR, type 2 diabetes, and nonalcoholic fatty liver dis-
ease [153]. AMPK was activated in adipose tissues from 
MaR1-treated (2 µg/kg for 20 days) ob/ob mice [115], and 
activated AMPK levels were elevated in adipose tissues 
from RvD1-treated (2  µg/kg for 8/16 days) db/db mice 
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[98]. AMPK may be involved in mechanisms underly-
ing the insulin-sensitizing or anti-inflammatory effects 
of RvD1 and MaR1. It has also been described how PDX 
promotes AMPK activation. AMPK is activated by PDX 
in an IL-6-independent manner. Expression of the hepatic 
factors selenoprotein P (SeP) and fetuin A is involved in 
hepatocyte insulin signaling. Treatment with PDX (1 µM) 
enhanced AMPK phosphorylation and silent information 
regulator 1 (SIRT1) expression and decreased palmitate-
induced SeP and fetuin A expression (via AMPK/SIRT1-
mediated forkhead box O1 and NF-κB, respectively), as 
well as IR in hepatocytes, via a pathway dependent on 
AMPK/SIRT1 [124].

The etiology of IR involves the activation of inflamma-
tory signaling molecules (e.g., JNK and iNOS) [154]. PDX 
(1  µg) prevented lipid-mediated induction of iNOS in 
muscle and the liver, as well as hepatic activation of JNK 
via phosphorylation at Thr183/Tyr185 (phospho-JNK) 
[155].

Signal transducers and activators of transcription 
(STATs) are classical transcription factors that transduce 
signals triggered by cytokine receptors of type I and type 
II [156]. In the classical Janus kinase (JAK)-mediated 
pathway, phosphorylated JAK triggers the recruitment 
and phosphorylation of a STAT when an extracellular 
cytokine binds to its receptor. The STAT is then translo-
cated to the nucleus after this activation, where it binds 
DNA elements and controls related genes transcrip-
tion [157]. During type I interferon-induced reactions, 
hyperactivation of the IL-10 signaling pathway may inad-
vertently activate STAT1 and the inflammatory genes it 
targets (i.e., C-X-C motif chemokine ligand 9 [CXCL9] 
and CXCL10) [158]. When inflammatory human mac-
rophages and obese visceral adipose tissue were treated 
with RvD1, the IL-10 pathway was prevented from being 
overactivated by decreasing STAT phosphorylation. 
RvD1 (1, 10, 50 nM) did not affect the anti-inflamma-
tory response of IL-10 but inhibited STAT1, its target 
inflammatory genes such as CXCL9, and the activation of 
STAT3 [159].

An important regulator of the inflammatory reaction 
is the classical NF-κB pathway, which, when it exhibits 
unusual activation, increases downstream inflamma-
tory factors expression including IL-1β, IL-6, and TNF-α 
[160], which is correlated with IR [161, 162]. PDX has 
been shown to reduce IR in skeletal muscle (0–1 µM, 
1  µg/mouse for 8 weeks) [163] and adipocytes (2 µM) 
[164] via the NF-κB signaling pathway. PDX decreased 
the nuclear translocation of NF-κB, phosphorylation of 
inhibitor kBα, and proinflammatory cytokines expression 
(e.g., TNF-α and MCP-1) [163, 164].

The mitogen-activated protein kinase (MAPK) signal-
ing pathway is essential to inflammation [165]. Because 
of its participation in controlling the production of 

inflammatory mediators through transcription and 
translation, MAPK has been recognized as a possible 
anti-inflammatory therapeutic target. It has the ability to 
translate extracellular signals, including growth factors 
and stress, into intracellular signaling pathways activa-
tion [166]. RvD1 (1, 10, 50 nM) raised heme oxygenase-1 
(HO-1) expression, which is a target gene of IL-10, via a 
mechanism reliant on p38 MAPK activation and thereby 
contributed to inflammation resolution. The same study 
determined that the p38 MAPK signaling pathway is the 
true mechanism by which RvD1 and IL-10 have addi-
tive anti-inflammatory effects in obese adipose tissue 
[159]. However, in transgenic animals, the role of SPMs 
was shown to be the reverse. It was shown that in ERV1 
and db/ERV1 mice, RvE1 (10 ng/mL, 100 ng/mL for 2 h) 
reduced MAPK phosphorylation in transgenic animals 
[148].

The NOD-like receptor thermal protein domain-associ-
ated protein 3 (NLRP3) inflammasome is a crucial medi-
ator that links inflammation of adipose tissue brought on 
by obesity to IR [167]. The assembly of the inflammasome 
leads to autoactivation of caspase-1, which hydrolyzes 
the proinflammatory cytokines IL-18 and IL-1β to release 
their mature forms [168]. The “danger signals” linked to 
endogenous and external metabolic stress, such as FFAs 
and their derivatives [169], adenosine triphosphate, and 
ROS, are sensed by NRLP3 inflammatory vesicles. A lack 
of inflammasome components is related to the preven-
tion of obesity-associated IR in several animal models 
[170–172]. NLRP3 levels in visceral adipose tissue of epi-
didymis were reduced in mice fed a high-fat diet (HFD) 
treated with RvE1 (2 ng/g for 4 weeks) [117].

SPMs can modulate insulin signaling pathways and 
improve insulin sensitivity and glucose uptake
The regulation of several fates of cells, including differ-
entiation, proliferation, and survival, is largely depen-
dent on the phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (Akt) pathway [173]. The PI3K/Akt axis serves 
as a central link in the insulin pathway that regulates 
hepatic glycogen synthesis, gluconeogenesis, and lipid 
synthesis [174, 175]. PI3K mediates the action of insu-
lin by transmitting signals from the insulin receptor to 
downstream targets [176]. When obesity occurs, IRS-
1-induced PI3K-mediated signaling is impaired due to 
phosphorylation of serine residues in IRS-1 [177] and 
inhibition of IRS-1-mediated activation of Akt [178, 
179]. Insulin-induced glucose uptake by muscle and fat 
is mediated by the translocation of glucose transporter 
type 4 (GLUT-4) from intracellular compartments to 
the plasma membrane [180, 181]. GLUT-4 translocation 
induced by insulin and subsequent uptake of glucose 
rely on the activation of PI3K/Akt [182, 183]. PPAR is a 
member of the nuclear ligand-activated transcription 
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factor superfamily. PPAR regulates gene transcription 
that govern the uptake and storage of lipids, as well as the 
metabolism of lipoproteins, the differentiation of adipo-
cytes, and the action of insulin [184]. Changes in PPARγ 
expression are often observed in IR [185], and activation 
of PPARγ leads to insulin sensitization [118]. It has been 
demonstrated that SPMs improve glucose homeostasis 
and insulin sensitivity in skeletal muscle, adipose tissue, 
and the liver via PI3K/Akt, GLUT-4, and PPARγ.

RvE3 (1.2 ng/g for 11 weeks) regulated the Akt phos-
phorylation in DIO mice’s adipose tissue while enhancing 
insulin-stimulated PI3K activity, GLUT-4 translocation, 
Akt phosphorylation, and absorption of glucose in 3T3L1 
adipocytes and improving insulin sensitivity [186]. Simi-
larly, MaR1 (2 µg/kg for 10/20 days, 50 µg/kg for 10 days, 
0.1 nM) [115, 183], RvD1 (2  µg/kg for 8/16 days) [98], 
and LXA4 (1 nM) [119] were capable of increasing Akt 
phosphorylation stimulated by insulin in adipocytes or 
adipose tissue. Akt phosphorylation in db/db mice was 
slightly elevated by RvE1 (10 ng/mL for 2  h), whereas 
in db/ERV1 mice there was a notable decrease in Akt 
phosphorylation (Ser478). Akt phosphorylation (Ser473, 
Thr308) was significantly reduced in ERV1 and db/ERV1 
mice upon treatment with 100 ng/mL RvE1 [148]. It can 
be seen that Akt phosphorylation is inhibited by RvE1 in 
mice that overexpress ERV1. On the other hand, RvE1 
(1.2 ng/g for 4 days) achieved significant insulin sensitiza-
tion by upregulating GLUT-4, IRS-1, PPARγ, and adipo-
nectin in adipose tissues [118]. LXA4 (1 nM) upregulated 
GLUT-4 and IRS-1 and also exhibited the same effect 
[119].

Similarly, skeletal muscle is crucial in the development 
of IR [187]. MaR1 partially returns the skeletal muscle 
of DIO mice to its normal state of insulin-stimulated 
Akt phosphorylation [183]. But it must be noted that 
MaR1 (50 µg/kg for 3 h, intraperitoneal injection) did not 
increase the inhibitory effect of insulin on the activation 
of Akt in lean mice’s WAT and skeletal muscle. In con-
trast, MaR1 administered intragastrically for 10 days at 
a dose of 50 µg/kg enhanced systemic insulin sensitivity 
and reduced hyperglycemia induced by HFD in DIO mice 
[183]. PDX (0–1 µM, 1 µg/mouse for 8 weeks) alleviated 
impairment of IRS-1/Akt-mediated insulin signaling 
in the soleus muscle of HFD-fed mice and palmitate-
treated differentiated C2C12 cells (myoblasts) [163]. In 
addition, White et al. showed that PDX (1 µg) prevented 
lipid-induced IR and enhanced skeletal muscle Akt phos-
phorylation at Ser473 [155]. RvD3 (10 µg/kg for 8 weeks, 
0–200 nM) protected to some extent against the harmful 
effects of an HFD and palmitate on insulin signaling in 
skeletal muscle (increased Akt and IRS-1 phosphoryla-
tion expression) [120].

SPMs can modulate ER stress
The unfolded protein response is triggered by ER stress 
and allows cells to accommodate environmental changes 
and sustain ER homeostasis [188]. However, a proapop-
totic signaling cascade causes apoptosis when ER stress 
is elevated [189]. Various chronic diseases begin and 
progress as a result of prolonged ER stress [190]. In obese 
liver and adipose tissue, there is increased ER stress 
[48], which causes IR via various pathways [120]. AMPK 
reduces ER stress, in addition to maintaining energy 
homeostasis [191], and is essential for insulin signaling 
in skeletal muscle [192] and hepatic de novo lipogenesis 
[193]. AMPK directly regulates the activation of autoph-
agy, which reduces ER stress [194]. It has been shown that 
RvD3 (10 µg/kg for 8 weeks, 0–200 nM) increases AMPK 
phosphorylation and alleviates ER stress via a mechanism 
that depends on autophagy, which leads to reductions in 
IR in skeletal muscle and hepatic steatosis [120].

It is known that one of the first and most critical steps 
in apoptosis mediated by ER stress is calcium imbalance 
in the ER [195]. Regulating calcium movement across 
the ER membrane requires sarco/endoplasmic reticulum 
Ca2+ ATPase (SERCA). SERCA activation in the ER dur-
ing ER stress alleviates unbalanced calcium homeostasis 
and thereby reduces lipid accumulation and ER stress-
induced hepatocyte apoptosis [196]. Activation of AMPK 
increases the activity of SERCA [197]. There are three dif-
ferent isoforms of SERCA (SERCA1–3), and in the liver, 
SERCA2b is the major isoform of SERCA2 [198, 199]. It 
was shown that MaR1 (35 µg/kg for 8 weeks, 0–10 µM) 
stimulated AMPK and reduced hepatic ER stress induced 
by lipids in both in vivo (DIO mice) and in vitro model 
via AMPK-mediated SERCA2b activation and thus 
improved lipid metabolism and alleviated hepatic steato-
sis [121].

In the setting of obesity and diabetes, hepatic gluco-
neogenesis is increased by ER stress in the liver [200]. 
Research has indicated that AMPK is crucial for main-
taining glucose homeostasis in skeletal muscles and the 
liver [201, 202] by phosphorylating many transcription 
factors and enzymes that participate in metabolism. 
AMPK activation stimulates HO-1 expression in renal 
cells, endothelial cells, and macrophages [203, 204]. 
Heme is degraded by HO-1 into biliverdin, iron, and car-
bon monoxide, which are cytoprotective against various 
stresses, including oxidative stress [205]. HO-1 has been 
suggested as a therapeutic target for metabolic disor-
ders mediated by ER stress [206]. Moreover, liver dam-
age and diseases linked to ER stress can be prevented by 
overexpressing HO-1 [207, 208]. PDX (1 µg/DIO mouse 
for 8 weeks, 1 µM) inhibited hepatic gluconeogenesis by 
AMPK-dependently enhancing HO-1 expression, which 
in turn inhibited ER stress [188].
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Recent advances
Dietary supplementation
Omega-3 PUFAs (DHA and EPA) are used to biosynthe-
size SPMs, and endogenous SPMs can be formed more 
easily when dietary supplements enriched in omega-3 
PUFAs are taken [209, 210]. It has been shown that 
Omega-3 PUFAs alleviate obesity-associated inflamma-
tion and/or IR in animal models, in vitro, and in clinical 
trials.

Omega-3 PUFAs-restored fat-1 transgenic mice are 
rich in SPMs, and IL-6 and IL-1β levels, in addition to 
proinflammatory chemokines, were lower in HFD-fed 
fat-1 mice [211]. Furthermore, long-chain n-3 PUFA 
levels restoration prevented obesity-associated IR by 
reducing JNK and iNOS activation induced by lipids in 
the liver and muscle [211]. By enhancing insulin-stim-
ulated expression of ³H-glucose transport, GLUT-4 
translocation, and IRS-1, coculturing DHA-enriched 
(50 µM) macrophages with adipocytes was able to pre-
serve insulin sensitivity [212]. Intraperitoneal injection 
of 17-HDHA (derived from DHA) (50 ng/g for 8 days) 
improved glucose tolerance (increased expression of adi-
ponectin, PPARγ, and GLUT-4) and reduced inflamma-
tion by decreasing NF-κB activation in adipose tissues 
from DIO mice [114].

In a four-week randomized controlled study, the body 
mass index of obese female patients supplemented with 
omega-3 PUFAs (760  mg DHA + 920  mg EPA) did not 
change in comparison with the low-calorie diet group. 
The inflammatory state of subcutaneous, mesenteric, 
and omental fat was improved by supplementing with 
omega-3 PUFAs. Despite a greater improvement in the 
proinflammatory profile of the omentum, inflammatory 
factors, glucose, insulin, or the HOMA-IR index did not 
significantly change [213]. Treatment of obese patients 
with calanus oil (2  g/day) for 12 weeks decreased the 
HOMA-IR index and fasting insulin levels, but no dif-
ference in glycosylated hemoglobin levels was observed 
[214]. Abdominally obese adults supplemented with 2 g 
fish oil (120 mg EPA + 860 mg DHA) daily for 12 weeks 
significantly reduced the levels of glycogen synthase 
kinase-3β, which may be a potential mechanism for 
reducing IR. In addition, the higher was the systemic 
inflammation status, the more significant were the reduc-
tions in insulin levels and the HOMA-IR index [215]. 
Supplementation with fish oil (4.0 g/day) for eight weeks 
in type 2 diabetics who are obese and 1.6 g DHA + 3.2 g 
EPA daily for 3 months in obese women reduced the 
levels of TNF-α, triglyceride/high-density lipopro-
tein ratio, and HOMA-IR index. Nothing changed in 
body weight or body composition [216, 217]. Women 
and men were supplemented with 3  g and 4  g fish oil 
(DHA + EPA), respectively, in a two 7-week randomized, 
double-blind study. It was found that high-dose omega-3 

PUFAs supplementation resulted in lower insulin resis-
tance index values and insulin and blood glucose levels 
in women [218]. Interestingly, in another trial, obese 
nondiabetic men and women given 2 g fish oil (120 mg 
EPA + 860  mg DHA) for 12 weeks exhibited markedly 
decreased HOMA-IR index values and fasting insulin 
levels without gender variability [219]. It is evident that 
the role played by supplementation with omega-3 PUFAs 
is related to treatment duration and dose, patient group, 
and gender and still needs to be explored.

SPM analogs
Many endogenous SPMs are unstable either biologically 
or chemically, which makes them inappropriate for use 
as medications. This problem can be solved by designing 
synthetic analogs or mimetics, i.e., exogenously adminis-
tered sets of functional SPMs. Although there have been 
fewer studies of SPM analogs or mimetics for the treat-
ment of obesity-associated IR, their use in related dis-
eases has been reported and has thus demonstrated great 
therapeutic potential.

Benzo-LXA4 (a benzo-fused (15R)-stereoisomer 
analog), which is an analog of LXA4, has been shown 
to reduce obesity-induced liver and kidney damage. 
Benzo-LXA4 (10 pM) significantly increased macro-
phage expression of CD206. Benzo-LXA4 (1.7 ng/g) 
downregulated p62 and LC3-II levels (autophagy mark-
ers) in HFD-fed mice’s adipose tissue, lowered alanine 
aminotransferase level, and reduced hepatic deposition 
of triglycerides, glomerular dilatation, and tubulointer-
stitial deposition of collagen [220]. LXA4 analogs have 
protective effects in animal models of diabetes-related 
nephropathy and atherosclerosis. Benzo-LXA4 (1.7  µg/
kg) alleviated inflammation and monocyte adhesion in 
the aorta of diabetic ApoE−/− mice, significantly reduced 
plaque formation in the aortic arch, reduced creati-
nine clearance and levels of kidney injury markers (e.g., 
TNF-α and MCP-1), and alleviated glomerular dilata-
tion and dilatation of the adherent stroma. Benzo-LXA4 
(1 nmol/L) decreased the TNF-α-mediated activity of 
NF-κB [221, 222]. Benzo-diethynyl-(17R)-RvD1 methyl 
ester (BDA-RvD1, a synthetic analog of RvD1) decreased 
neutrophil infiltration in the lungs (1  µg/mouse), short-
ened resolution intervals in Escherichia coli peritonitis 
(100 ng/mouse), and stimulated phagocytosis in human 
macrophages (0.1 pM–10.0 nM) [223].

Clinical studies of SPM analogs are now in the early 
stages. In a randomized controlled trial, inhalation of 
the LXA4 analog (5S,6R)-LXA4 methyl ester (50  µg/2 
mL normal saline) improved lung function in asthmatic 
children [224]. Administration of 0.1% (15R/S)-methyl-
LXA4 (LXA4 analog) cream (5 g/each infant) to infants 
with eczema significantly reduced the severity of eczema, 
with no clinical adverse events [225]. Clinical trials of 
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synthetic analogs of RvE1 for the treatment of dry eye are 
under way [226].

Modification of natural compounds to form more met-
abolically stable analogs or mimetics is a direction for 
future research, and it is expected that more therapeu-
tic strategies targeting the associated pathways will be 
developed.

SPM synthase genes
Because the synthesis of SPMs is regulated by enzymatic 
pathways (e.g., those involving LOX enzymes), defects 
in synthases may lead to failure of inflammatory regres-
sion. Therefore, research targeting synthases is worth 
undertaking, and gene therapy targeting SPM synthases 
is a promising strategy. The ALOX5AP gene encodes the 
protein 5-LOX [38]. Overexpression of ALOX5AP results 
in increased production of LXA4, decreased obesity, and 
prevention of HFD-induced inflammation and IR [140]. 
The arachidonate 5-lipoxygenase (ALOX5) gene encodes 
the 5-LOX enzyme, which catalyzes the conversion of 
EPA into 5-HEPE, enhances the induction of regulatory 
T cells by macrophages, and alleviates inflammation of 
adipose tissue [227]. The arachidonate 12-lipoxygenase 
(ALOX12) and arachidonate 15-lipoxygenase (ALOX15) 
genes have been shown to be connected to obesity phe-
notypes and possess the capacity to treat obesity (e.g., 
inflammation and IR) [228].

Other relevant studies
One potential new source of lipid mediators for SPMs 
could be brown adipose tissue. Cold exposure increased 
levels of brown fat-derived PUFAs such as DHA, docosa-
pentaenoic acid, and 12-HEPE [229]. Cold exposure was 
found to reduce IR and inflammation in DIO mice, pri-
marily via stimulating MaR2 production from brown fat 
and targeting it to hepatic macrophages [230]. Similarly, 
cold stimulation promotes the production of the omega-3 
PUFA 12-HEPE by 12-LOX in brown fat, which promotes 
glucose uptake in adipose tissue and skeletal muscle via 
activation of the insulin signaling pathway [231].

Bariatric surgery is an effective way to alleviate diabe-
tes. One clinical study included morbidly obese (n = 29) 
and mildly obese nondiabetic (n = 15) subjects. Preoper-
atively, levels of SPMs derived from DHA (RvD3, RvD4, 
PD1) in morbidly obese subjects were significantly higher 
than that in slightly obese individuals, possibly as an 
attempt to counteract inflammation. SPMs levels did not 
significantly differ between morbidly obese nondiabetic 
patients (n = 16) and diabetic patients (n = 13). At 1 year 
after surgery, morbidly obese individuals exhibited signif-
icant weight loss. Nondiabetic patients’ 17-HDHA, PD1, 
and RvD3 levels were notably lower compared to pre-
surgery levels, but levels of these SPMs were unchanged 
in post-surgery diabetic patients. After surgery, although 

the level of 14-HDHA was reduced in diabetic patients 
in remission, 14-HpDHA could be converted into MaR1, 
whereas it was not converted into MaR1 in patients not 
in remission. It is evident that whether diabetes is in 
remission after bariatric surgery is related to the ability to 
produce MaR1 [232].

Potential drawbacks of SPMs in studies of obesity-
associated IR
According to previous studies, SPMs are crucial to the 
treatment of obesity-associated IR. However, there 
are still some shortcomings. (1) Exosomes have been a 
research hotspot in recent years among the medical com-
munity, and their significant role in obesity-associated 
IR has been summarized [233], but current research on 
the effects of SPMs on exosomes in this disease has not 
been addressed. (2) There are a wide variety of SPMs, 
but many studies have emphasized the function of RvD1, 
RvE1, MaR1, LXA4, and PDX, and there have been few 
studies on other SPMs. (3) Some studies of SPMs have 
shown significant anti-inflammatory effects, but not in 
obesity-associated IR, which needs further validation. (4) 
SPMs act in a dose-dependent way that is tissue-specific, 
and their capacity to reduce inflammation and increase 
insulin sensitivity varies between SPMs. This therefore 
needs to be further explored.

Summary and prospects
Chronic inflammation is the primary mechanism of 
obesity-associated IR, and, because SPMs inhibit inflam-
mation in a manner that does not compromise the 
defenses of the host, they may be promising and safe 
alternative treatments. There are a wide variety of SPMs, 
and there is still something to be added to the study of 
potential mechanisms of obesity-associated IR, in addi-
tion to those summarized above (Fig.  2). It is necessary 
to translate the results of research on rodent models of 
obesity to people, and further elucidation of the poten-
tial mechanisms of SPMs in obesity-associated IR may be 
important. Omega-3 PUFAs are substrates that produce 
SPMs, and omega-3 PUFA supplements have been clini-
cally demonstrated to alleviate inflammation and/or IR 
associated with obesity. However, the doses of omega-3 
PUFAs required for SPMs to achieve therapeutic effects 
and the duration of treatment are not yet standardized. 
On the other hand, the potential risks of using omega-3 
PUFA supplements need to be noted, such as increased 
low-density lipoprotein levels [234]. Due to the instability 
of SPMs, SPM analogs have great potential. In the future, 
the dosage and treatment duration of dietary supple-
ments, the development of SPM analogs, and more ways 
in which the utilization of SPMs can be increased deserve 
further research and exploration.
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