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Abstract
Background Diabetes mellitus is generally accompanied by dyslipidaemia, but inconsistent relationships between 
lipid profiles and diabetes are noted. Moreover, genetic variations in insertion/deletion (I/D) polymorphisms at 
angiotensin-converting enzyme gene (ACE) and T/C polymorphisms in the angiotensin type 1 receptor gene (AGTR1) 
are related to diabetes and lipid levels, but the associations are controversial. Thus, the current research aimed to 
explore the effects of ACE I/D, AGTR1 rs5182 and diabetes mellitus on serum lipid profiles in 385 Chinese participants 
with an average age of 75.01 years.

Methods The ACE I/D variant was identified using the polymerase chain reaction (PCR) method, whereas the 
AGTR1 rs5182 polymorphism was identified using the PCR-based restriction fragment length polymorphism (PCR-
RFLP) method and verified with DNA sequencing. Total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), 
apolipoprotein B (ApoB), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) 
levels were measured using routine methods, and the lipid ratios were calculated.

Results ACE I/D, but not AGTR1 rs5182, was a predictor of TG/HDL-C for the whole study population. Both ACE I/D and 
AGTR1 rs5182 were predictors of HDL-C and LDL-C levels in females but not in males. Moreover, in females, diabetes 
mellitus and ACE I/D were identified as predictors of TG and TG/HDL-C, whereas AGTR1 rs5182 and diabetes mellitus 
were predictors of TG/HDL-C. Moreover, diabetes mellitus and the combination of ACE I/D and AGTR1 rs5182 variations 
were predictors of TG and TG/HDL-C exclusively in females.

Conclusions The results demonstrated the potential for gender-dependent interactions of ACE I/D, AGTR1 rs5182, 
and diabetes on lipid profiles. These findings may serve as an additional explanation for the inconsistent changes of 
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Background
Diabetes mellitus has become an expanding public 
health concern globally, affecting more than 37% of 
individuals aged 65 years and older [1]. Moreover, dia-
betes mellitus is generally accompanied by dyslipidae-
mia [2], the typical features of which include elevated 
triglyceride (TG) and low-density lipoprotein choles-
terol (LDL-C) levels as well as decreased high-density 
lipoprotein cholesterol (HDL-C) levels [3]. Elevated 
TG levels and reduced HDL-C levels are often accom-
panied by diabetes mellitus [4]. In addition, as a sen-
sitive parameter reflecting blood lipid profiles, the 
TG-to-HDL-C ratio (TG/HDL-C) is significantly posi-
tively associated with diabetes mellitus [5]. However, 
inconsistent relationships between serum lipids and 
diabetes mellitus have also been reported. For exam-
ple, TG is associated with a reduced risk of diabetes 
mellitus in patients who exhibit genetic susceptibil-
ity to elevated TG levels [6]. Similarly, the protective 
effect of HDL for diabetes was found only in Iranian 
women but not in Iranian men [7]. Thus, the critical 
effects of genetic background should be considered in 
the context of the complex relationship between lipid 
fractions and diabetes mellitus.

The renin‒angiotensin system (RAS), a complex hor-
monal regulatory system, is associated with not only 
blood pressure but also dyslipidaemia [8]. Interfering 
with the RAS using drugs has become a type of diabe-
tes treatment [9]. In the RAS, angiotensin-converting 
enzyme (ACE) can convert angiotensin I to angioten-
sin II through the removal of carboxy-terminal dipep-
tides [8]. The significant effects of ACE on glycaemic 
disturbances suggest a correlation between ACE and 
diabetes mellitus [10], which was further confirmed by 
the utilization of ACE inhibitors to prevent diabetes 
mellitus [11]. The ACE gene (ACE), which is located 
on the long arm of chromosome 17 (17q23), is 21  kb 
long and consists of 26 exons and 25 introns [12]. The 
ACE I/D polymorphism is distinguished by a distinc-
tive 287-base pair repetitive element located within 
intron 16, which gives rise to the variation of either 
an insertion or a deletion (I/D) within the genetic 
sequence [13]. This variation leads to 3 possible geno-
types, including II, ID and DD [13], as well as a change 
in ACE concentration [14]. Previous studies have 
shown that ACE I/D is associated with diabetes mel-
litus [15], and II homozygotes had higher HDL-C lev-
els than did subjects with the D allele [13, 16]. On the 

other hand, other studies noted that the association 
between the ACE I/D polymorphism and dyslipidae-
mia was insignificant in Chinese diabetic patients [17, 
18]. Obviously, other factors should be considered to 
explain the conflicting findings regarding the influence 
of ACE I/D on lipid profiles in diabetic patients.

As the major biologically active hormone generated 
by the RAS system, angiotensin II regulates blood pres-
sure via angiotensin type 1 receptor (AGTR1) [8, 19]. 
The human AGTR1 gene (AGTR1), which contains 5 
exons and 4 introns, is located on the long arm of chro-
mosome 3 (3q21-25) [20]. The rs5182 polymorphism 
(C573T) of AGTR1 alters AGTR1 expression [21] and 
is related to the presence of diabetes combined with 
hypertension in the Han population of Inner Mongolia 
[20]. The AGTR1 rs5182 variant is related to nonalco-
holic fatty liver disease, which is often characterized by 
dyslipidaemia [22, 23]. However, a study conducted in 
another Chinese population failed to observe a signifi-
cant association between AGTR1 rs5182 and dyslipi-
daemia [21]. Thus, the effects of ACE I/D and AGTR1 
rs5182 on lipid profiles, as well as their interaction 
with diabetes mellitus, should be studied to obtain a 
better understanding about the influence of diabetes 
and genetic polymorphisms on lipids.

This study seeks to explore possible explanations for 
the controversial findings concerning the relationship 
between diabetes and dyslipidaemia reported in pre-
vious studies and to evaluate the cumulative effect of 
ACE I/D and AGTR1 rs5182 on lipid levels, which has 
not yet been reported. It is hypothesized that interac-
tions potentially occur among ACE I/D variation, the 
AGTR1 rs5182 polymorphism and diabetes mellitus 
to impact serum lipid profiles in the current study. 
Therefore, ACE I/D variation, the AGTR1 rs5182 
polymorphism and serum lipid levels were measured 
in 385 Chinese subjects with an average age of 75.01 
years. The interactions between genetic backgrounds 
and diabetes mellitus, as well as their contributions 
to lipid profiles, were analysed. The investigation of 
the combined effects of ACE I/D and AGTR1 rs5182 
on lipid profiles, as well as their interactions with dia-
betes mellitus in the current study, may contribute to 
preventing and managing dyslipidaemia in individuals 
with diabetes mellitus.

blood lipids in individuals with diabetes mellitus, thereby offering a novel perspective for the clinical management of 
blood lipid levels in diabetic patients.

Keywords Diabetes mellitus, ACE I/D polymorphism, AGTR1 rs5182 polymorphism, Dyslipidaemia, Combination 
analysis
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Methods
Study population
One thousand one hundred nineteen volunteers were 
enrolled, and the inclusion criteria for the partici-
pants were as follows: (1) understood the procedures 
involved and provided written consent; (2) had a his-
tory of diabetes; (3) provided current medication use 
status for antidiabetic and/or lipid-lowering drugs; 
(4) provided complete serum lipid and glucose mea-
surements; (5) provided blood samples; and (6) were 
aged ≥ 50 years. In total, 385 of the participants (aver-
age age = 75.01 ± 24.90 years) who met the above crite-
ria were involved in the present study. The study was 
approved by the Human Research Ethics Committee 
of Chongqing Orthopedic Hospital of Traditional Chi-
nese Medicine.

Biochemical measurements
Venous blood samples were collected from the par-
ticipants in the morning after a 12-hour fast. Serum 
was isolated via centrifugation (3000  rpm, 20  min) at 
4 °C and stored at -80 °C for further analyses. Glucose 
levels were measured using the glucose oxidase‒per-
oxidase (GOD‒POD) method [24]. Serum TG levels 
were determined using the glycerol phosphate oxi-
dase-p-aminophenazone (GPO-PAP) method [25]. 
TC, HDL-C and LDL-C levels were measured using 
the cholesterol oxidase-peroxidase and 4-aminoan-
tipyrine phenol (CHOD-PAP) method [25]. Apolipo-
protein A (ApoA) and apolipoprotein B (ApoB) levels 
were determined via immunoturbidimetry [26]. Ratios 
of TG/HDL-C, TC/HDL-C and LDL-C/HDL-C were 
calculated.

DNA extraction and genotyping
Genomic DNA was extracted using a DNA extraction 
kit per the manufacturer’s instructions (Kuang Yuan, 
Suzhou, China). The ACE I/D genotype was detected 
via the polymerase chain reaction (PCR) method, and 
the AGTR1 rs5182 variant was identified via the poly-
merase chain reaction-restriction fragment length 
polymorphism (PCR-RFLP) method followed by con-
firmation using DNA sequencing. Briefly, for ACE I/D 
genotype detection, the target DNA fragments were 
amplified with the primers 5’- C T G G A G A C C A C T C C 
C A T C C T T T C T-3’ (forward) and 5’- G A T G T G G C C A 
T C A C A T T C G T C A G A T-3’ (reverse) [13]. The sam-
ples were denatured at 94 °C for 4 min, followed by 32 
cycles, which consisted of denaturation at 94  °C for 
1  min, annealing at 56  °C for 1  min and extension at 
72 °C for 90 s, with a final extension at 72 °C for 5 min. 
A 190-bp PCR fragment was produced in the absence 
of the insertion (D), and a 490-bp fragment was pro-
duced in the presence of the insertion (I). In the 

absence of the insertion (D), a PCR product of 190 bp 
was generated, whereas the presence of the insertion 
(I) resulted in the amplification of a 490-bp fragment. 
Moreover, for AGTR1 rs5182 genotype identification, 
two oligonucleotide primers, 5’- G G C T T T G C T T T G 
T C T T G T T G-3’ (forward) and 5’- A A T G C T T G T A G C 
C A A A G T C A C C T-3’ (reverse), were used for amplifi-
cation [27]. The PCR procedure consisted of 3 min at 
94 °C for denaturation; 40 cycles of 30 s at 94 °C, 30 s at 
60 °C, and 90 s at 72 °C; and a final elongation step of 
5 min at 72 °C [27]. The PCR-amplified products were 
digested overnight with the restriction endonuclease 
MnII, which cuts at position 580, when the C allele 
is present instead of the T allele at 573, and at posi-
tions 905, 1032, 1062, and 1147. The PCR-amplified 
products of ACE I/D and the restriction endonuclease 
MnII-digested products of AGTR1 rs5182 were identi-
fied using 1.5% agarose gel electrophoresis and verified 
with DNA sequencing.

Dummy variable coding
Owing to the limited number, the minor allele homo-
zygotes were combined with their heterozygotes and 
defined as D allele carriers of ACE I/D and C allele car-
riers of AGTR1 rs5182 for further analysis. To further 
clarify the cumulative effects of ACE I/D and AGTR1 
rs5182 on lipid levels, the combined genotypes of ACE 
I/D and AGTR1 rs5182 were used as dummy variables:

 Dummy variable 1 = ACEII +AGTR1 rs5182 TT

 Dummy variable 2 = ACEII +AGTR1 rs5182 C allele

 Dummy variable 3 = ACED allele+ AGTR1 rs5182 TT

 Dummy variable 4 = ACED allele + AGTR1 rs5182 C allele

Statistical analyses
The data are expressed as the means ± standard devia-
tions (SDs) unless otherwise specified. The sample size 
calculation was conducted using the G*Power software 
program (version 3.1.9.7, Germany) [28], and the cur-
rent sample size was sufficient for a minimum power 
of 80%. The deviation from Hardy‒Weinberg equilib-
rium [29], which can estimate the number of homozy-
gous and heterozygous variant vectors in an unevolved 
population [30], was analysed with the χ2 goodness-of-
fit test. The chi-square test was used to determine the 
distribution of genotypes and alleles, the prevalence 
of diabetes and the percentage of drug use between 
subjects of different genders. The normal distribu-
tion of each variable was initially analysed using the 
Kolmogorov-Smirnov test. Because of the abnormal 
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distribution, logarithmic transformations were applied 
to TG and the TG/HDL-C ratio to reduce skewness 
before performing the statistical analyses. Indepen-
dent sample t tests were conducted to compare the 
differences in blood lipid levels between the males and 
the females. Potential factors associated with blood 
lipid and blood glucose levels were analysed using the 
stepwise multiple linear regression analysis. Statistical 
significance was defined as P < 0.05.

Results
Characteristics of the study population
Table  1 shows the characteristics of the metabolic vari-
ables, prevalence of diabetes, and drug usage in the 
current study population. As displayed in Table  1, TG, 
TC, HDL-C, ApoA, LDL-C, and ApoB levels as well 
as the prevalence of diabetes were significantly greater 
in females than in males (P = 0.017, p = 0.016, P = 0.049, 
P = 0.002, P = 0.021, P = 0.022, and P = 0.045, respectively). 
However, no statistically significant differences in age or 
glucose were noted between the genders. When consid-
ering the use of lipid-lowering drugs and treatment with 
antidiabetic drugs, no significant difference was found 
between male and female subjects.

Genotypes and alleles of ACE I/D and AGTR1 rs5182 in the 
participants
The identification of ACE I/D and AGTR1 rs5182 using 
gel electrophoresis, followed by confirmation via DNA 

sequencing, is shown in Fig. 1. The frequencies of gen-
otypes and alleles are presented in Fig. 2. The genotype 
frequencies of either ACE I/D or AGTR1 rs5182 were 
in Hardy‒Weinberg equilibrium in the current study 
(P = 0.820 and P = 0.480, respectively). No statistically 
significant differences in the genotype frequencies of 
the ACE I/D genotype and AGTR1 rs5182 genotype 
were noted between male and female subjects. How-
ever, the D allele of ACE I/D and C allele of AGTR1 
rs5182 exhibited significantly greater frequencies in 
males compared with females. Owing to the limited 
numbers of samples, the minor allele homozygotes 
were combined with their heterozygotes and defined 
as D allele carriers of ACE I/D and C allele carriers of 
AGTR1 rs5182, respectively, for further analysis.

Predictors of lipid levels in the subjects
To further explore the predictors of lipid profiles in 
the current study population, stepwise multiple linear 
regression analyses were performed. The ACE I/D gen-
otype (Model A) or AGTR1 rs5182 genotype (Model B) 
was used as an independent variable separately or in 
combination with age, gender, diabetes mellitus, and 
the use of antidiabetic drugs or lipid-lowering drugs as 
other independent variables.

As shown in Table 2, gender was the only predictor of 
TG, TC, and ApoB levels, explaining 1.2%, 1.5%, and 1.4% 
of the total variance, respectively. Gender, antidiabetic 
drug use, and lipid-lowering drug use were predictors of 

Table 1 Characteristics of the study population
Variables All Males Females
N 385 229 156
Agea, year 75.01 ± 24.90 77.00 ± 31.00 72.00 ± 10.00
TGa, mmol/L 1.68 ± 1.20 1.61 ± 1.22 1.78 ± 1.16*

TCa, mmol/L 3.48 ± 1.55 3.32 ± 1.60 3.70 ± 1.44*

HDL-Ca, mmol/L 0.91 ± 0.40 0.88 ± 0.38 0.96 ± 0.41*

ApoAa, mmol/L 1.08 ± 0.36 1.03 ± 0.36 1.14 ± 0.36**

LDL-Ca, mmol/L 1.86 ± 1.00 1.76 ± 1.10 2.00 ± 0.83*

ApoBa, mmol/L 0.71 ± 0.30 0.68 ± 0.32 0.75 ± 0.28*

Glucosea, mmol/L 7.18 ± 3.06 7.32 ± 3.13 6.97 ± 2.95
Diabetes mellitusb, n (%)
With 114(30.0) 59(25.8) 55(35.3) &

Without 271(70.0) 170(74.2) 101(64.7)
Lipid-lowering drugsb, n (%)
Yes 81(21.0) 49(21.4) 32(20.5)
No 304(79.0) 180(78.6) 124(79.5)
Antidiabetic drugsb, n (%)
Yes 138(36.0) 82(35.8) 56(35.9)
No 247(64.0) 147(64.2) 100(64.1)
aData are expressed as mean ± SD or median; bData are presented as n (%)

TG, triglycerides; TC, total cholesterol, HDL-C, high-density lipoprotein cholesterol; ApoA: apolipoprotein A; LDL-C, low-density lipoprotein cholesterol; ApoB: 
apolipoprotein B
*P < 0.05, and **P ≤ 0.01, comparisons between the male subjects and the female subjects (independent-samples t test); &P < 0.05, comparisons between the male 
subjects and the female subjects (Chi-square tests)
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HDL-C levels, accounting for 2.7%, 1.1% and 0.8% of the 
total variance, respectively. In addition, gender, the use 
of antidiabetic drugs, lipid-lowering drugs and diabetes 
mellitus were predictors of ApoA levels, accounting for 

2.3%, 3.2%, 2.3%, and 0.9% of the total variance, respec-
tively. Moreover, gender, the use of antidiabetic drugs, 
and diabetes mellitus were predictors of LDL-C levels, 
accounting for 0.9%, 1.3% and 1.2% of the total variance, 

Fig. 1 Gel images of ACE I/D and AGTR1 rs5182 genotyping and sequencing results. (A) Gel images of ACE I/D and rs5182 genotyping: (1) gel images of 
ACE I/D genotyping, M: DNA ladder, 1: blank, 2/3: DD, 4/5: II, 6/7: ID; (2) gel images of AGTR1 rs5182 genotyping, M: DNA ladder, 1: blank, 2/3: TT, 4/5: CC, 6/7: 
TC. (B) Sequencing results of the ACE I/D (1) DD genotype, (2) ID genotype, and (3) II genotype. (C) Sequencing results for AGTR1 rs5182: (1) TT genotype, 
(2) TC genotype, (3) CC genotype
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respectively. The use of antidiabetic drugs, diabetes mel-
litus status and age were predictors of glucose levels, 
accounting for 12.3%, 2.8% and 2.3% of the total variance, 
respectively. Notably, ACE I/D and the use of antidiabetic 
drugs were predictors of the TG/HDL-C ratio, account-
ing for 1.0% and 1.6% of the total variance, respectively. 
However, AGTR1 rs5182 was not a predictor of TG/
HDL-C.

When gender was taken into consideration in the 
ACE I/D analysis, as displayed in Table  3, the use of 
antidiabetic drugs, the use of lipid-lowering drugs and 
diabetes mellitus were predictors of HDL-C (account-
ing for 2.4%, 2% and 2.8% of the total variance, respec-
tively) and ApoA (accounting for 4.3%, 3.4%, and 3.6% 
of the total variance, respectively) levels in males. The 
use of antidiabetic drugs and diabetes mellitus were 
predictors of LDL-C levels, contributing 2.7% and 
1.6% of the total variance, respectively, whereas the 
use of antidiabetic drug was a predictor of ApoB lev-
els in males, contributing 2.4% of the total variance. 
Furthermore, the use of antidiabetic drugs, diabetes 
mellitus, and age were predictors of glucose levels in 
males, contributing to 12.3%, 2.1% and 2.3% of the 
total variance, respectively. Although ACE I/D was 

not a predictor of any lipid profile in males, notably, 
in female subjects, ACE I/D and diabetes mellitus were 
predictors of TG (accounting for 3.7% and 3.5% of the 
total variance, respectively) and TG/HDL-C (account-
ing for 4.3% and 3.9% of the total variance, respec-
tively). Moreover, age was the only predictor of ApoA 
levels, and ACE I/D was the only predictor of LDL-C 
levels in females, accounting for 3.6% and 4.4% of the 
total variance, respectively. In terms of HDL-C levels 
in females, ACE I/D, age and the use of antidiabetic 
drugs were predictors, accounting for 2.9%, 2.7% and 
2.3% of the total variance, respectively. The predictors 
of glucose in females were the same as those in identi-
fied males, including the use of antidiabetic drugs, dia-
betes mellitus, and age, contributing to 2.8%, 14% and 
1.9% of the total variance, respectively.

The results of the analysis of the effects of AGTR1 
rs5182 in males and females are shown in Table 4. The 
predictors of HDL-C, ApoA, LDL-C, ApoB, and glu-
cose levels, as well as the contribution of each factor 
to the total variance in males, were the same as those 
identified in the ACE I/D analysis (Table 3). Similarly, 
the predictors of glucose levels and their contribu-
tions to the total variance in females were the same 

Fig. 2 Frequencies of genotypes and alleles of ACE I/D and AGTR1 rs5182 in the study population. (A) genotype frequence of ACE I/D. (B) genotype fre-
quence of AGTR1 rs5182. (C) Allele frequence of ACE I/D; (D) Allele frequence of AGTR1 rs5182. **P ≤ 0.01, ***P < 0.001
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as those identified in the ACE I/D analysis (Table  3). 
Nevertheless, in female subjects, diabetes mellitus was 
the only predictor of TG levels, whereas age was the 
only predictor of ApoA levels, accounting for 3.5% and 
3.6%, respectively, of the total variance. Interestingly, 
AGTR1 rs5182, age and the use of antidiabetic drugs 
were predictors of HDL-C levels in females, account-
ing for 2.9%, 2.3%, and 2.2%, of the total variance, 
respectively. The AGTR1 rs5182 was the only predictor 
of LDL-C levels in females, accounting for 2.0% of the 
total variance. Furthermore, AGTR1 rs5182 and diabe-
tes mellitus were predictors of TG/HDL-C, accounting 
for 2.4% and 3.9% of the total variance, respectively.

ACE I/D and AGTR1 rs5182 combination analysis in the 
subjects
To further investigate the combined influence of the ACE 
I/D polymorphism and the AGTR1 rs5182 variant on 
lipid profiles, stepwise multiple linear regression analyses 
were performed. Dummy variables 1 (ACE II + AGTR1 
rs5182 TT), 2 (ACE II + AGTR1 rs5182 C allele), and 4 
(ACE D allele + AGTR1 rs5182 C allele) were incorpo-
rated as independent variables, whereas dummy variable 
3 (ACE D allele + AGTR1 rs5182 TT) served as the refer-
ence category. Additionally, age, gender, the prevalence 

of diabetes mellitus, and the use of antidiabetic drugs or 
lipid-lowering drugs were included as other independent 
variables to estimate their individual predictive value for 
lipid levels, lipid ratios and glucose levels.

In the whole study population, as shown in Table  5, 
although the predictors of TG, TC, HDL-C, ApoA, ApoB, 
LDL-C, and glucose levels, as well as the contribution of 
each factor to the total variance, were the same as those 
in Table 2, it is interesting to note that dummy variable 
1 and the use of antidiabetic drugs, accounting for 0.8% 
and 1.6% of the total variance, respectively, were predic-
tors of TG/HDL-C.

When gender was taken into consideration, as dis-
played in Table  6, dummy variable 4 was the only 
predictor of TG levels in males, accounting for 3.8% 
of the total variance. Dummy variable 4 and diabetes 
mellitus were identified as predictors of TG levels in 
females, accounting for 3.8% and 3.7% of the total vari-
ance, respectively. None of the dummy variables were 
predictors of TC, HDL-C, ApoA, LDL-C, ApoB, TG/
HDL-C, TC/HDL-C, LDL-C/HDL-C or glucose levels 
in males. In contrast, dummy variable 1 was the only 
predictor of TC (accounting for 5.8%), ApoB (account-
ing for 2.4%) and LDL-C (accounting for 7.7%) levels, 
whereas dummy variable 1 and age were predictors of 

Table 2 Predictor of lipid profiles in the whole subjects
Dependent Variables Independent Variables Model Aa Model Bb

β Partial correlation β Partial correlation
TG Gender 0.122* 0.122 0.122* 0.122
TC Gender 0.122* 0.122 0.122* 0.122
HDL-C Gender 0.102* 0.104 0.102* 0.104

Antidiabetic drugs -0.180*** -0.182 -0.180*** -0.182
Lipid-lowering drugs 0.117* 0.119 0.117* 0.119

ApoA Gender 0.145** 0.150 0.145** 0.150
Antidiabetic drugs -0.244*** -0.230 -0.244*** -0.230
Lipid-lowering drugs 0.159** 0.165 0.159** 0.165
Diabetes mellitus 0.119* 0.114 0.119* 0.114

LDL-C Gender 0.106* 0.107 0.106* 0.107
Antidiabetic drugs -0.170** -0.159 -0.170** -0.159
Diabetes mellitus 0.118* 0.110 0.118* 0.110

ApoB Gender 0.117* 0.117 0.117* 0.117
TG/HDL-C Genotype -0.111* -0.112 - -

Antidiabetic drugs 0.136** 0.137 0.135** 0.135
TC/HDL-C - - - - -
LDL-C/HDL-C - - - - -
Glucose Antidiabetic drugs 0.268*** 0.263 0.268*** 0.263

Diabetes mellitus 0.203*** 0.202 0.203*** 0.202
Age 0.159** 0.172 0.159** 0.172

aGender, age, antidiabetic drugs, lipid-lowering drugs, diabetes mellitus, and the ACE I/D genotypes were included as independent variables. bAGTR1 rs5182 
genotypes, not ACE I/D genotypes were included as independent variables, and all the other independent variables were the same as Model A. TG, TC, ApoA, ApoB, 
HDL-C, LDL-C, TG/HDL-C, TC/HDL-C, LDL-C/HDL-C and glucose were included as dependent variable

β, Standardized regression coefficient; -, variable not entered in the stepwise multiple linear regression model

TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA, apolipoprotein A; LDL-C; low-density lipoprotein cholesterol; ApoB, 
apolipoprotein B
*P < 0.05, **P ≤ 0.01, and ***P < 0.001
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ApoA (accounting for 3.3% and 3.6%, respectively) in 
females. Moreover, the predictors of HDL-C in females 
included dummy variable 1, age, and the use of anti-
diabetic drugs, accounting for 8.4%, 3.2%, and 2.4% 
of the total variance, respectively. Dummy variable 1, 
dummy variable 4, and diabetes mellitus were predic-
tors of TG/HDL-C in female subjects and accounted 
for 5%, 1.9%, and 4% of the total variance, respectively.

Discussion
Diabetes mellitus is often accompanied by dyslipidae-
mia [5]. However, inconsistencies in the relationship 
between diabetes mellitus and dyslipidaemia have been 
reported [6, 31], and the mechanism of the observed 
discrepancy remains unclear. Moreover, the RAS has 
been reported as a critical system in controlling blood 
pressure. For example, ACE activity has been reported 
to be involved in changes in the retinoic acid receptor 
(RAR)/retinoid X receptor (RXR)-peroxisome prolif-
erator-activated receptor (PPAR) signalling pathway 
and the suppression of cellular retinol-binding protein 
1 (CRBP1), ultimately affecting adipocyte homeostasis 
and blood lipids [32, 33]. Moreover, AGTR1 activation 
is related to lipid accumulation in both the livers of 
C57BL/6 mice and in HepG2 cells [34, 35]. Thus, ACE 

and AGTR1 could be involved in diabetes and dys-
lipidaemia. The ACE I/D polymorphism and AGTR1 
rs5182 polymorphism are associated with lipid levels, 
but the findings are also contradictory [21, 22]. There-
fore, investigating the effects of the interactions of 
the ACE I/D and AGTR1 rs5182 polymorphisms with 
diabetes and the subsequent effects on lipid profiles 
has the potential to elucidate the possible mechanism 
underlying the inconsistency among genetic varia-
tions, diabetes and lipid levels.

In the present study, diabetes mellitus was a pre-
dictor of ApoA and LDL-C levels in the whole study 
population but not a predictor of other lipid profiles or 
ratios. Moreover, although diabetes mellitus was iden-
tified as a predictor of HDL-C, ApoA, LDL-C and glu-
cose, neither ACE I/D nor AGTR1 rs5182 contributed 
to changes in lipid and lipid ratios in males (Tables 2, 
3 and 4). In contrast, both ACE I/D and AGTR1 rs5182 
were identified as predictors of HDL-C and LDL-C 
exclusively in females (Tables  3 and 4). Furthermore, 
in the present study, ACE I/D, not AGTR1 rs5182, 
was identified as a predictor of the TG/HDL-C ratio 
(Table 2), which might be attributable to the increased 
expression levels and increased activity of ACE in DD 
homozygotes [36, 37]. In female subjects, diabetes 

Table 3 Predictor of lipid profiles in subjects with different ACE I/D genotype in males and females
Dependent Variables Males (n = 229) Females (n = 156)

Independent Variables β Partial correlation Independent Variables β Partial correlation
TG - - - Diabetes mellitus 0.219** 0.222

- - - ACE I/Da -0.209** -0.213
TC - - - - - -
HDL-C Antidiabetic drugs -0.237*** -0.230 ACE I/Da 0.179* 0.185

Lipid-lowering drugs 0.157* 0.161 Age -0.174* -0.180
Diabetes mellitus 0.187** 0.184 Antidiabetic drugs -0.169* -0.175

ApoA Antidiabetic drugs -0.297*** -0.290 Age -0.205* -0.205
Lipid-lowering drugs 0.198** 0.206 - - -
Diabetes mellitus 0.205** 0.205 - - -

LDL-C Antidiabetic drugs -0.219** -0.210 ACE I/Da 0.210** 0.210
Diabetes mellitus 0.148* 0.144 - - -

ApoB Antidiabetic drugs -0.168* -0.168 - - -
TG/HDL-C - - - Diabetes mellitus 0.230** 0.234

- - - ACE I/Da -0.222** -0.226
TC/HDL-C - - - - - -
LDL-C/HDL-C - - - - - -
Glucose Antidiabetic drugs 0.294*** 0.295 Antidiabetic drugs 0.211* 0.199

Diabetes mellitus 0.180** 0.186 Diabetes mellitus 0.265** 0.247
Age 0.165** 0.178 Age 0.155* 0.171

Age, antidiabetic drugs, lipid-lowering drugs, diabetes mellitus, and ACE I/D were included as independent variables. TG, TC, ApoA, ApoB, HDL-C, LDL-C, TG/HDL-C, 
TC/HDL-C, LDL-C/HDL-C and glucose were included as dependent variable

β, Standardized regression coefficient; -, not included as an independent variable

TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA, apolipoprotein A; LDL-C; low-density lipoprotein cholesterol; ApoB, 
apolipoprotein B
a1 = ID/DD genotype, 2 = II genotype
*P < 0.05, **P ≤ 0.01, and ***P < 0.001
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mellitus and ACE I/D were predictors of TG and TG/
HDL-C levels (Table 3), whereas diabetes mellitus and 
AGTR1 rs5182 were predictors of TG/HDL-C ratios 
(Table 4). Thus, the interactions among ACE I/D varia-
tion or the AGTR1 rs5182 polymorphism with gender 
and diabetes mellitus are likely involved in the hetero-
geneous relationships between TG metabolism and 
diabetes.

There are limited data from previous studies con-
cerning the interplay of ACE I/D and AGTR1 rs5182, 
as well as their associations with diabetes mellitus 
in terms of lipid profiles in Chinese subjects. These 
results revealed that the combination of ACE I/D and 
AGTR1 rs5182 contributed to the TG/HDL-C ratio 
in the whole study population; TG levels in males; 
and TC, ApoB, LDL-C, ApoA and HDL-C levels in 
females (Tables  5 and 6). The association of ACE I/D 
with lipid levels has been inconsistently reported [38, 
39]. In addition, a significant correlation was observed 
between the AGTR1 rs5186 variant and TG levels, but 
the mechanism has not yet been fully elucidated [40, 
41]. Therefore, the combined effect of ACE I/D and 
AGTR1 rs5182 on lipid levels in the current study pro-
vides valuable insights into the intricate relationships 
between the RAS and dyslipidaemia.

Previous studies have shown an association between 
gender and blood lipids. For example, adult females 
had lower LDL-C levels and higher HDL-C levels com-
pared with adult males [42]. Moreover, the prevalence 
of TC, TG, and LDL-C at borderline high or greater 
levels increased with age in females, but it remained 
stable or even decreased in males [42]. Although dia-
betes is often accompanied by hyperlipidaemia [2], TG 
is associated with a decreased risk of diabetes when 
increased genetic susceptibility is considered [6]. As a 
potential predictive marker of insulin resistance (IR), 
the TG/HDL-C ratio is related to diabetes mellitus [5]. 
However, a previous study reported that no differences 
in TG/HDL-C were found between obese normal glu-
cose-tolerant individuals and patients with type 2 dia-
betes [43]. Interestingly, the combination of genetic 
variations and diabetes mellitus was demonstrated 
to be a predictor of TG and TG/HDL-C only in the 
female subjects (Table 6). Thus, the gender-dependent 
associations with the combination of genetic varia-
tions found in the present study potentially provide an 
additional explanation for the inconsistent changes in 
TG and other indicators related to diabetes mellitus 
and provide new ideas to target blood lipids clinically.

Table 4 Predictor of lipid profiles in subjects with different AGTR1 rs5182 genotype in males and females
Dependent Variables Males (n = 229) Females (n = 156)

Independent Variables β Partial correlation Independent Variables β Partial correlation
TG - - - Diabetes mellitus 0.202* 0.202
TC - - - - - -
HDL-C Antidiabetic drugs -0.237*** -0.230 AGTR1 rs5182a 0.166* 0.172

Lipid-lowering drugs 0.157* 0.161 Age -0.184* -0.190
Diabetes mellitus 0.187** 0.184 Antidiabetic drugs -0.170* -0.175

ApoA Antidiabetic drugs -0.297*** -0.290 Age -0.205* -0.205
Lipid-lowering drugs 0.198** 0.206 - - -
Diabetes mellitus 0.205** 0.205 - - -

LDL-C Antidiabetic drugs -0.219** -0.210 AGTR1 rs5182a 0.163* 0.163
Diabetes mellitus 0.148* 0.144 - - -

ApoB Antidiabetic drugs -0.168* -0.168 - - -
TG/HDL-C - - - Diabetes mellitus 0.204* 0.207

- - - AGTR1 rs5182a -0.174* -0.177
TC/HDL-C - - - - - -
LDL-C/HDL-C - - - - - -
Glucose Antidiabetic drugs 0.294*** 0.295 Antidiabetic drugs 0.211* 0.199

Diabetes mellitus 0.180** 0.186 Diabetes mellitus 0.265** 0.247
Age 0.165** 0.178 Age 0.155* 0.171

Age, antidiabetic drugs, lipid-lowering drugs, diabetes mellitus, and AGTR1 rs5182 were included as independent variables. TG, TC, ApoA, ApoB, HDL-C, LDL-C, TG/
HDL-C, TC/HDL-C, LDL-C/HDL-C and glucose were included as dependent variable

β, Standardized regression coefficient; -, not included as an independent variable

TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA, apolipoprotein A; LDL-C; low-density lipoprotein cholesterol; ApoB, 
apolipoprotein B
a1 = TC/CC genotype, 2 = TT genotype
*P < 0.05, **P ≤ 0.01, and ***P < 0.001
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Strengths and limitations
The current study is the first to assess the correlations 
between the ACE I/D variant and the AGTR1 rs5182 
polymorphism both independently and synergistically 
with diabetes mellitus in a Chinese elderly popula-
tion. A potential limitation of the current study was 
that serum ACE levels were not detected. However, the 
combination of different genetic variations was taken 
into consideration. Moreover, analysis of the younger 
Chinese population with diabetes is highly recom-
mended in future studies because of the elevated prev-
alence of diabetes in elderly subjects [44]. Additionally, 
given the diverse effects of different antidiabetic and 
lipid-lowering drugs on metabolism [45], the identifi-
cation of the associations among specific medications, 
diabetes and genetic backgrounds in China will be 
valuable.

Conclusions
The findings of the present study suggest potential 
interactions among gender, ACE I/D, AGTR1 rs5182 
and diabetes mellitus in terms of lipid and lipid ratios, 
especially in terms of TG levels and the TG/HDL-C 
ratio. This information provides possible explanations 
for the contradictory associations between diabetes 

mellitus and lipid metabolism. Furthermore, in elderly 
Chinese females, TG and TG/HDL-C levels might be 
more susceptible to the cumulative effect of ACE I/D 
and AGTR1 rs5182 as well as their combined effect 
with diabetes. Such an understanding may suggest the 
development of personalized treatments based on ACE 
and AGTR1 genetic polymorphisms to lower elevated 
TG levels in elderly diabetic female patients that have 
the potential to normalize the dyslipidaemia induced 
by diabetes mellitus.

Table 5 Combination analysis for ACE I/D and AGTR1 rs5182 in the whole subjects
Dependent Variables Independent Variables β Partial correlation
TG Gender 0.122* 0.122
TC Gender 0.122* 0.122
HDL-C Gender 0.102* 0.104

Antidiabetic drugs -0.180*** -0.182
Lipid-lowering drugs 0.117* 0.119

ApoA Gender 0.145** 0.150
Antidiabetic drugs -0.244*** -0.230
Lipid-lowering drugs 0.159** 0.165
Diabetes mellitus 0.119* 0.114

LDL-C Gender 0.106* 0.107
Antidiabetic drugs -0.170** -0.159
Diabetes mellitus 0.118* 0.110

ApoB Gender 0.117* 0.117
TG/HDL-C Dummy variable 1a -0.106** -0.107

Antidiabetic drugs 0.135* 0.136
TC/HDL-C - - -
LDL-C/HDL-C - - -
Glucose Antidiabetic drugs 0.268*** 0.263

Diabetes mellitus 0.203*** 0.202
Age 0.159** 0.172

Gender, age, antidiabetic drugs, lipid-lowering drugs, diabetes mellitus, and dummy variable 1, 2, 4 were included as independent variables. TG, TC, ApoA, ApoB, 
HDL-C, LDL-C, TG/HDL-C, TC/HDL-C, LDL-C/HDL-C, and glucose were included as dependent variable

β, Standardized regression coefficient; -, not included as an independent variable

TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA, apolipoprotein A; LDL-C; low-density lipoprotein cholesterol; ApoB, 
apolipoprotein B
a0 = Other genotypes, Dummy variable 1 1 = ACE II + AGTR1 rs5182 TT;
*P < 0.05, **P ≤ 0.01, and ***P < 0.001
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