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Abstract

Background: The cholesteryl ester transfer protein (CETP) has a central role in the lipid metabolism and therefore
may alter the susceptibility to atherosclerosis.

Methods: The DNA of 471 subjects [133 subjects with angiographically documented left main coronary artery
disease (LMCAD), 241 subjects with more peripheral coronary artery disease (MPCAD) and 97 subjects self reported
healthy (Controls)] was analyzed for the frequency of TaqIB and I405V polymorphisms in the gene coding CETP.

Results: There is no significant difference in CETP allele frequency or genotype distribution among LMCAD and
MPCAD patients although there is statistical difference between LMCAD and Controls (p = 0.001). Specifically,
patients with LMCAD and B1B1 genotype of TaqIB polymorphism were more frequent present compared to
Controls (33.8% vs 22.9%, respectively). The frequency of B2B2 genotype was 3 times lower in the LMCAD group
compared to Controls (10.5% vs 30.2%, respectively). In the LMCAD group the frequency of B1 allele compared to
Controls was higher (62% vs 46%, respectively, p = 0.001). The relationship between TaqIB gene polymorphism and
the LMCAD was independent of lipid profile, with the exception of apolipoprotein A.

Conclusions: These findings indicate that the TaqIB polymorphism may have potential importance in screening
individuals at high risk for developing CAD. However, this polymorphism cannot distinguish between LMCAD and
MPCAD. Further prospective investigations in larger populations are required to confirm these findings.
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Introduction
The evolution of coronary artery disease (CAD) is influ-
enced by various genetic and environmental factors. The
genetic contribution is documented by a positive family
history for myocardial infarction and is considered to be
a strong cardiovascular risk factor [1,2]. This has been
supported even after adjustment for classical risk factors
such as diabetes mellitus, dyslipidemia, hypertension
and others [3-5]. Furthermore, the level of high density
lipoprotein cholesterol (HDL-C) in plasma is a major
determinant of susceptibility to coronary atherosclerosis

[6-8]. Genetic studies have recognized the impact of
genetic mutations on plasma HDL-C levels. Such one
example is Tangier disease [9,10], where very low
plasma HDL-C levels may lead to premature coronary
atherosclerosis in spite of very low low density lipopro-
tein cholesterol (LDL-C) levels. It seems that the herit-
ability of plasma HDL-C level is likely to be higher than
50% [11-13]. The estimates of heritability of plasma
HDL concentration in the Strong Heart Family Study
[13] and HERITAGE family study [12] were 50% and
52%, respectively. However, the genome-wide associa-
tion studies (GWAS) accounted for only 5-8% of the
variation in the plasma HDL-C levels [14,15]. Despite
extensive molecular genetics investigations, non specific
reproducibly genetic variants associated with CAD were
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found. This can be explained by the multifaceted pheno-
type of CAD (number of involved vessels, location of
lesions, severity of diameter narrowing, length and mor-
phology of lesions), suggesting different mechanisms.
The CAD involving left main (LM) artery is a particular
severe phenotype of CAD. Thus, the LM stenosis loca-
lized patients at the higher risk of cardiovascular events
because of the extent of jeopardized myocardium and,
therefore, has been considered as the most prognosti-
cally important coronary lesion. Fischer et al [16]
reported a stronger genetic component in this pheno-
type compared to CAD involving more peripheral (MP)
coronary arteries. Furthermore, this phenotype of CAD
should probably provide more power in detecting
genetic association. Since the discovery of cholesteryl
ester transfer protein (CETP) and its identification as a
modulator of HDL-C levels (mediates the exchange of
lipids between lipoproteins), there has been much spec-
ulation about its role in CAD [17]. Studies with animal
models have been limited, because many species do not
express a functional CETP protein and are not reliable
to provide strong evidence for CETP’s role in disease.
Thus the studies evaluating the influence of CETP gene
polymorphisms in humans are essential. The CETP gene
is located on chromosome 16q21. Widely studied CETP
variants is a silent base change called the Thermobius
aquaticus IB (TaqIB) affecting the 277th nucleotide in
the first intron of the CETP gene [18]. In normolipi-
demic subjects, the absence of the TaqIB restriction site
(B2 allele) is associated with decreased CETP activity
and, in turn, increased HDL-C levels [19] resembling a
mild form of CETP deficiency. In line with our previous
work, using the LMCAD phenotype, we investigated
whether the common polymorphisms (TaqIB and
I405V) of CETP gene are able to identify LMCAD from
MPCAD or from Controls.

Methods
The DNA of 471 subjects of Greek origin, not related
was analyzed for the presence of TaqIB and I405V poly-
morphisms in the gene coding for CETP.
Subjects were consecutively recruited among those

admitted to hospital for coronary angiography. The
Onassis Cardiac Surgery Center is a major referral hos-
pital for cardiac disorders; these patients were from var-
ious parts of Greece. Subjects were classified as LMCAD
group, n = 133; with angiographically documented left
main coronary artery disease, MPCAD group (more per-
ipheral coronary artery disease), n = 241 and Control
group, n = 97. Control group was recruited from Onas-
sis Cardiac surgery Center personnel and teachers from
TEI schools (without major risk factors) who were self
reported as healthy.

Major classical CAD risk factors were evaluated
according to the National Cholesterol Education Pro-
gram - Adult Treatment Panel III guidelines. diabetes
mellitus was defined as fasting glucose > 126 mg/dl (7
mmol/L) or currently receiving antidiabetic medication;
hypercholesterolaemia was defined as total cholesterol >
170 mg/dl (4.4 mmol/L) for subjects with CAD; hyper-
tension was defined as BP> 140/90 mmHg or currently
on treatment with antihypertensive medication. All
patients who recruited in the study gave informed con-
sent. The Onassis Cardiac Surgery Center ethics com-
mittee approved the protocol of this study.

Angiographic Evaluation
Coronary angiograms were scored systematically and in
random order by a single, experienced, interventional car-
diologist. LMCAD was defined as a lesion compromising
the lumen by >30% proximal to the bifurcation, including
ostial stenosis. Lesions compromising the lumen by >50%
further from LM were defined as MPCAD.

CETP Genotyping
After the recruitment of the study population, genotyp-
ing of CETP polymorphisms (TaqIB and I405V) was
performed by polymerase chain reaction (PCR) and
restriction fragment length polymorphism analysis as
described previously by others [20,21]. Briefly, each PCR
reaction was performed using 500 ng of genomic DNA
in a volume of 25 μl containing 50 mM KCl, 10 mM
TRIS HCl (pH 8.8), 200 μM dNTPs, 1.0-1.5 mM MgCl2,
12.5-25 pmol of each primer and 0.75 U of Taq poly-
merase (Keymed S.r.I., Rome, Italy). The intron 1 region
containing the TaqIB polymorphism was amplified using
the forward oligo 5’-CAC TAG CCC AGA GAG GGA
GTG CC-3’ and the reverse oligo 5’-CTG AGC CCA
GCC GCA CAC TAA C-3’, giving a fragment of 535 bp
length [21]. The exon 14 region containing the I405V
polymorphism was amplified using the forward oligo 5’-
TAT TTT TTT CAC GGA TGG GCA-3’ and the
reverse oligo 5’-TTG ACT GCA GGA AGC TCT GGC-
3’, giving a fragment of 142 bp length [20]. For the
TaqIB polymorphism, the PCR conditions were an initial
denaturation at 95°C for 5 min, followed by 30 cycles at
95°C for 30 sec, 65°C for 30 sec and 72°C for 30 sec and
finally at 72°C for 7 min. For the I405V polymorphism,
the PCR conditions were 95°C for 5 min, 60°C for 1
min and 72°C for 1 min for one cycle, and subsequently
35 cycles at 95°C for 30 sec, 60°C for 30 sec and 72°C
for 30 sec and finally at 72°C for 5 min. For the detec-
tion of TaqIB polymorphism 10 μl of the PCR product
were digested with 5 U of TaqI (New England Biolabs,
Frankfurt, Germany) at 65°C overnight, giving 174bp
and 361 bp fragments in presence of the TaqI site. For
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the detection of I405V polymorphism 8 μl of the PCR
product were digested with 5 U of MspI (New England
Biolabs, Frankfurt, Germany) at 37°C overnight, giving
121 bp and 21 bp fragments in presence of the less
common V allele.

Biochemical Analysis
Plasma total cholesterol, triglycerides and HDL-C were
measured using enzymatic colorimetric methods on a
Roche Integra Biochemical analyzer with commercially
available kits (Roche Diagnostics Gmbh, Hannheim,
Germany). The serum LDL-C levels were calculated
using the Friedewald formula [22] only in patients with
triglyceride levels <400 mg/dl (<4.5 mmol/l). Lipoprotein
(a), apolipoprotein A and apolipoprotein B was mea-
sured by nephelometry (Nephelometer: BN-100, Behr-
ing, Germany). Blood glucose was measured by the
hexokinase method with a Dade Behring reagent on a
Dimension (Dade Behring) instrument. All samples were
analyzed within 24 h.

Statistical Analysis
The results are expressed as mean ± standard deviation
(SD) or as median and interquartile range (IQR) accord-
ing to normality of continuous variables. All qualitative
variables are presented as absolute or relative frequencies.
Differences in lipid levels for the various genotypes were
evaluated with one - way analysis of variance (ANOVA)
or its non-parametric analogue Kruskal - Wallis H statis-
tic. The Student’s t-test or its non-parametric equivalent
Mann-Whitney U test was used to compare the continu-
ous variables between the two groups studied. The Pear-
son’s chi-square test was employed for the categorical
variables. The allele frequencies for both TaqIB and
I405V were found in Hardy-Weinberg equilibrium. All
tests were two-tailed and statistical significance was
established at 5% (p<0.05). Data were analysed using
Stata ™ (Version 10.1 MP, Stata Corporation, College
Station, TX 77845, USA).

Results
Demographic and clinical characteristics of the study
population and biochemical markers, including lipid
profile for the two CETP polymorphisms are shown in
Table 1. MPCAD and LMCAD patients do not differ
according to demographic data (Table 1). Age seems to
be an exception, since LMCAD patients were older than
MPCAD patients (p = 0.004). A comparison of the lipid
profile between the two groups revealed differences in
HDL-C and Lipoprotein (a) levels, with the LMCAD
group sustaining higher levels compared to the MPCAD
group (Table 1). The Control group comprised 97 indi-
viduals (80% women) mean age 59 (18) years old.
Demographic, clinical and biochemical variables are

significantly different between LMCAD or MPCAD
groups when compared to Controls [Body mass index:
24 (3.1) kg/m2, waist: 85 (9.3) cm and HDL-C: 67 (30)
mg/dl]. The allele frequencies for both TaqIB and I405V
are shown in Table 2.
There is no difference in CETP allele frequency or

genotype distribution among LMCAD and MPCAD
patients (Table 3) although there is difference between
LMCAD and Controls (p = 0.001). No such difference
was detected when compared the I405V polymorphisms
among the same groups (Table 3).

Table 1 Characteristics of the MPCAD and LMCAD groups

Variable MPCAD
(n = 241)

LMCAD
(n = 133)

P*

Demographic data

Sex (M/F) 194/31 (86%/14%) 121/10 (92%/8%) 0.08

Age (ys) 62 (10) 65 (12) 0.004

Waist (cm) 104 [84-107] 104 [95-112] 0.55

BMI (Kg/m2) 27 (3.5) 28 (3.8) 0.53

Lipid profile (in mg/dl)

Total Cholesterol 240 (61) 244 (60) 0.75

Triglycerides 140 [106-207] 135 [97-181] 0.17

HDL cholesterol 37 [31-44] 40 [35-47] 0.01

LDL cholesterol 151 (46) 150 (36) 0.86

Apolipoprotein A 111 [97.7-130.8] 119 [102-139.3] 0.24

Apolipoprotein B 96 [78-116] 93 [80-116] 0.83

Lipoprotein(a) 15 [10-31] 24 [18-73] 0.03

Clinical characteristics

Smoking (yes/no) 66/142 (32%/68%) 55/87 (30%/70%) 0.8

Diabetes Mellitus 87/135 (39%/61%) 57/65 (47%/53%) 0.18

Hypertension (yes/no) 156/69 (69%/31%) 92/31 (75%/25%) 0.28

Biochemical markers

Glucose (mg/dl) 105 [94-129] 103 [94-116] 0.18

Creatinine (mg/dl) 1 [0.9-1.2] 1 [0.9-1.2] 0.19

Ht (%) 41 (4.7) 41 (4.8) 0.86

MPCAD = more peripheral coronary artery disease, LMCAD = left main
coronary artery disease

*Statistical tests performed: Student’s t-test or its non-parametric equivalent
Mann-Whitney U test was used for comparison of continuous data - Pearson’s
chi-square test was employed for comparison of categorical variables.

Data are expressed as mean ± standard deviation (SD) or as median and
interquartile range (IQR) according to normality of continuous variables. All
qualitative variables are presented as absolute and relative frequencies.

Table 2 Allele frequencies of studied population

Allele frequencies Controls
(n = 97)

MPCAD
(n = 241)

LMCAD
(n = 133)

I 0.69 0.68 0.63

V 0.31 0.32 0.37

B1 0.46 0.60 0.62

B2 0.54 0.40 0.38

MPCAD = more peripheral coronary artery disease, LMCAD = left main
coronary artery disease
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Specifically, patients with LMCAD and B1B1 genotype
were more frequent present compared to Controls
(33.8% vs 22.9%, respectively). The frequency of B2B2
genotype was 3 times lower in the LMCAD group com-
pared to Controls (10.5% vs 30.2%, respectively). In the
LMCAD group the frequency of B1 allele compared to
Controls was higher (Table 2).
Blood lipid levels in LMCAD and MPCAD groups did

not differ according to I405V polymorphism. Similarly,
the relationship between TaqIB gene polymorphism and
the LMCAD group was independent of lipid profile,
with the exception of apolipoprotein A (p = 0.028).
However, TaqIB gene polymorphism seemed to differ in
the MPCAD group according to HDL-C, apolipoprotein
A and lipoprotein(a) concentrations (p = 0.016, p =
0.003, p = 0.03, respectively).

Discussion
To our knowledge, this is the first genetic CETP gene
polymorphisms association involving CAD study strati-
fying on localization of CAD and particularly on LM.
The frequency of TaqIB polymorphisms in our popu-

lation was similar to that reported for Greeks and other
Caucasian populations (B1:55%, B2:45%, I:65%, V:35%)
[23,24] suggesting that our study population is not
genetically different from other cohorts.
It was already suggested by others [25] and us [26]

that there may be a link between CETP polymorphisms
and severity of CAD. Our previous study [26] reported
that the I405V polymorphism of CETP gene was linked
with severity of coronary artery stenosis estimated by
the Gensini Score (defines narrowing or occlusion of the
lumen of the coronary arteries from 1 to 32 score; the
LM has the highest location score). Thus, we thought,

that the association of CETP polymorphisms will be
more pronounced in LM disease and will allow us to
distinct from peripheral CAD. However, we did not
found any difference in genotypic frequencies of TaqIB
or I405V polymorphisms between LMCAD and
MPCAD groups. Although, the genotypic difference
concerning TaqIB polymorphism was found between
Controls and LMCAD groups. This suggested that the
frequency of TaqIB polymorphism may be associated
with disease severity [MPCAD (moderate disease) and
LMCAD (severe disease)]. Kuivenhoven et al [24] inves-
tigated the association between TaqIB polymorphism
and the progression of coronary atherosclerosis in men.
Their results indicated that B1 allele was associated with
the increased progression of atherosclerosis in a dose-
dependent manner [24]. Similarly to our results in
which we found association of B1 allele only with
LMCAD and not with MPCAD. Also, Dandona et al
suggested a gene dosage of the common variant 9p21
locus and the severity of coronary atheromatous burden
[27]. Furthermore, Fischer et al [16] reported that 9 of
12 monozygotic twin pairs displayed concordance for
LM lesions, whereas only 3 of 12 were concordant for
MP lesions [28,29], suggesting genetically involvement.
Capodanno et al [30] investigated the epidemiology and
the clinical impact of different anatomical phenotypes of
the LM coronary artery and Iwasaki et al [31] investi-
gated the distribution of coronary atherosclerosis in
patients with CAD. They findings suggested that LM
phenotypes are more likely to present with atherosclero-
tic disease and significant stenosis [30] and are particu-
larly heritable [31]. The cause for different heritability
estimates of LM and MP lesions remains unclear.
Firstly, it could be related to the different ontogenetic
determination of LM and MP sites. The coronary vessels
develop from the blood islands [32-35]. The LM parts of
the coronary arteries develop as buds on the walls of the
truncus arteriosus and the MP portion develops as a
subepicardial vascular network [16]. Secondly, it could
be related to anatomy of the LM coronary artery, which
is composed from three parts [ostium, a body and a dis-
tal portion or bifurcation [36]. The ostium has a greater
proportion of smooth muscle and elastic tissue than the
rest of the coronary vessels [37]. This suggest that
although the LM disease seems to be influenced by
genetic factors in a great extent the CETP gene poly-
morphisms, involved in lipid metabolism, may not be
the one to differentiate between the LM and MPCAD.
This study has limitations. The sample of the study is

small due to the frequency of disease (LM disease has
been found in 3% to 5% of all patients who undergo
coronary angiography [38]), therefore, this type of study
is rarely conducted and cannot be performed in larger
and broader epidemiological studies. The fact that this

Table 3 Distribution of CETP I405V (II, IV, VV) and TaqIB
(B1B1, B1B2, B2B2) genotypes on studied population

CETP genotypes Controls
(n = 97)

MPCAD
(n = 241)

LMCAD
(n = 133)

I405V

II 40 (42%) 111 (46%) 51 (38%)

IV 52 (54%) 105 (44%) 66 (50%)

VV 4 (4%) 25 (10%) 16 (12%)

(P = 0.08*) (P = 0.12*)

TaqIB

B1B1 22 (23%) 81 (34%) 45 (34%)

B1B2 45 (47%) 128 (53%) 74 (56%)

B2B2 29 (30%) 32 (13%) 14 (10%)

(P = 0.001*) (P = 0.001*)

MPCAD = more peripheral coronary artery disease, LMCAD = left main
coronary artery disease

*Comparisons were made between LMCAD group vs Control group and
MPCAD group vs Control group. Pearson’s chi-square test (or Fisher’s exact
test when appropriate).
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study was conducted in a Mediterranean country should
not be neglected in terms of the high prevalence of
smokers (nearly 50% in general population and 10-30%
in study cohort), compared with some European coun-
tries [39]. Several ethnic differences which may play role
in CAD risk have also been documented by our group
[39]. No gender evaluation was performed due to small
number of women in the cases groups.

Conclusions
LM disease seems to be heritable to a considerable
extent. This means that in healthy relatives of affecting
families will have an increased risk for severe coronary
events. Thus, any information to detect the asympto-
matic relatives of these patients can be useful for pri-
mary prevention. In this study, the findings indicate that
the TaqIB polymorphism may have potential importance
in screening individuals at high risk for developing
CAD. However, this polymorphism cannot distinguish
between LMCAD and MPCAD. No any association was
found between I405V polymorphism and CAD. How-
ever, further prospective investigations in larger popula-
tions are required to confirm these findings.
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