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Abstract

ω-3 polyunsaturated fatty acids have been shown to play an important role in health. Enriched with ω-3
polyunsaturated fatty acids modulate expression of a number of genes with such broad functions as cell
proliferation, growth and apoptosis and cell signaling and transduction, these effects, seem to regulate coronary
artery disease, hypertension, atherosclerosis, psychiatric disorders and various cancer. In this context, fat-1
transgenic cattle was designed to convert ω-6 to ω-3 fatty acids could form an ideal model to study the effect of
ω-3 fatty acids on the above functions. This study focuses on the total genomic difference of gene expression
between fat-1 transgenic cattle and wild-type using cDNA microarrays, several genes were found to be
overexpressed or suppressed in transgenic cattle relative to wild-type, these discrepancy genes related with lipid
metabolism, immunity, inflammation nervous development and fertility.
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Introduction
ω-3 fatty acids can exert a wide range of effects on cell
function. In addition to being a source of energy, these
fatty acids can act as determinants of the physiochem-
ical properties of cell membranes, as substrates for the
production of signaling molecules or functioning media-
tors, and as modulators in the regulation of gene expres-
sion. Therefore, ω-3 fatty acids can profoundly affect the
physiological activity and pathological process through
different mechanisms.
Mammals cannot convert ω-6 to ω-3 fatty acids auto-

matically. Fat-1 transgenic mice showed that increased
content of ω-3 fatty acids, especially ALA, EPA, DHA,
in addition, the ratio of ω-6/ω-3 fatty acids is dramati-
cally decreased in various kinds of tissues [1]. Fat-1
transgenic animal model offers an opportunity for inves-
tigating the biological functions of ω-3 fatty acids and
the importance of the ratio of ω-6/ω-3 in various phy-
siological processes and diseases. The transgenic mice
was found to be normal and healthy and many genera-
tions of transgenic mouse lines have been examined and
their tissue fatty acid profiles showed consistently high

levels of ω-3 fatty acids, indicating that the transgene is
transmittable [2]. ω-3 fatty acids have many important
actions not only by themselves but also by giving raise
to various biologically active compounds. ω-3 fatty acids
play a significant role in various diseases and especially
in cancers and neurological/psychiatric disorders [2-5].
Due to the polyunsaturated fatty acids modulated gene

transcription. Considering this, we utilize the cDNA
microarray that is a powerful method that allows the
expression of thousands of genes to be determined simul-
taneously. The studies of gene expression were regulated
by ω-3 fatty acids mostly on specific tissue in vitro or vivo
[2,6], there are rare reports the genomic expression influ-
enced by ω-3 fatty acids, specifically in fat-1 transgenic
cattle. Here we take the fat-1 transgenic cattle as model to
study the change of genomic expression influenced by the
increased ω-3 fatty acids and decreased ratio of ω-6/ω-3
fatty acids in the body. Thousands of discrepancy genes
generated from this experiment, we choose the representa-
tive dates to analysis and delineate the exact molecular
mechanism of functions of ω-3 fatty acids.

Materials and method
Fat-1 transgenic cattle
Cattle were engineered to carry fat-1 gene from Caenor-
habditis elegans which can add a double bond into an
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unsaturated fatty acid hydrocarbon chain and convert ω-
6 to ω-3 fatty acids. The transgenic cattle were provided
by Inner Mongolia University, life science institute.

RNA isolation and analysis
RNA was extracted from whole blood by TRIzol extrac-
tion protocol. To ensure the quality, total RNA was
quantified by UV spectrophotometry, and the purity of
total RNA was assessed by 1% agarose.

Purification of RNA and cDNA synthesis
If the purity of total RNA was not very well, it will be
influence the efficiency of probe labeling and the result
of the chip hybridization. RNA was purified by using a
RNeasy® Mini Kit (QIAGEN, Germany), following the
manufacturer’s recommended protocol.
One-step of cDNA synthesis. The reaction were per-

formed with 11.5 ul of RNA mixture (2 ug of purified
RNA, 5 ul of T7 promotor primer, RNase-free Water
add to 11.5 ul, then incubation for 10 min at 65°C, ice-
bath for 5 min to denaturation), 4 ul of 5 × First strand
buffer, 2 ul of 0.1 M DTT, 1 ul of 10 mM dNTP mix, 1
ul of MMLV RT, 0.5 ul of RNase out. The reaction con-
dition was used lid temperature at 65°C, incubation for
2 h at 40°C, 65°C for 15 min, 4°C for 5 min.

cRNA synthesis labeling with aaUTP and purification of
cRNA
First, transcription mixture(60 ul) including 5.7 ul of
RNase-free water, 20 ul of 4 × Transcription buffer, 16
ul of NTP(10 mM), 6 ul of 0.1 M DTT, 6.4 ul of 50%
PEG, 4 ul of aa-UTP(25 mM), 0.5 ul of RNase OUT, 0.6
ul of Inorganic Pyrophosphatase, 0.8 ul of T7 RNA
Polymerase. Afterward, 20 ul of cDNA was added into
60 ul of transcription mix and mixing. The reaction
condition was used lid temperature at 60°C, incubation
for 2 h at 40°C.
cRNA was purified by using a RNeasy® Mini Kit(QIA-

GEN, Germany), following the manufacturer’s recom-
mended protocol.

Fluorescence labeling and purification
To concentrate the 4 ug of cRNA which was above
-mentioned to 6.6 ul and add 10 ul of DMSO, 3.4 ul of
0.3 M NaHCO3(pH9.0) and mixing. Cy3 was added into
the 20 ul of mixture, incubation for 1 h at 25°C. Finally,
10 ul of 4 M Hydroxylamine was added and incubation
for 15 min at 25°C. Fluorescence labeling cRNA also
need purification, the method as same as the purifica-
tion of cRNA, which was above -mentioned.

Hybridization (4×44K microarrays)
The purified Cy3 cRNA demand to fragmentation
before the hybridization, the reaction (55 ul) was

performed with 875 ng of Cy3 cRNA, 11 ul of 10 ×
Blocking Agent, 2.2 ul of 25 × Fragmentation Buffer,
Nuclease-free water added to 55 ul, incubation for 30
min at 60°C to fragmentation. 45 ul of 2 × GEx Hybridi-
zation Buffer was added into the cRNA fragmentation.
100 ul mixture was dropped onto the center of the array
surface and then covered with a coverslip without any
bubbles. The slides were placed into a sealed cassette to
hybridize at 65°C water bath for 17 h.
After hybridization, the microarray slides were washed

once with 2 × SSC, 0.1% sodium dodecyl sulfate (SDS)
at 42°C for 4 min, once with 0.1 × SSC, 0.1% SDS at
room temperature for 10 min and three times with 0.1
× SSC at room temperature for 1 min. The microarray
slides were then washed with distilled water and spin
dried. Hybridized slides were scanned at 5 μm using an
Agilent chip Scanner. The scanner could scan with
100% and 10% PMT automatically, two results were
combined use Agilent software automatically.

Result and analysis
Fat-1 transgenic cattle and wild-type cattle have 43653
discrepancy expressed transcripts according to the Agi-
lent software. It will be waste abundant time and energy
to analysis all database, and some databases are mean-
ingless to analysis, so this study we choose differentially
expressed genes of p-value ≤ 0.05 and fc ≥ 1(Table 1).
In our study fat-1 transgenic cattle convert ω-6 fatty

acids into ω-3 fatty acids and decrease the ratio of ω-6/
ω-3 fatty acids (dates not shown), the change composi-
tion of polyunsaturated fatty acids can effects on gene
expression, some genes are up regulation and some
genes are down regulation, and then affect the physiolo-
gical activity and pathological process through different
mechanisms.

ω-3 fatty acids on lipid metabolism
Fat-1 transgenic cattle enriched ω-3 fatty acids, ω-3 fatty
acids play a major role in the regulation of several genes
involved in fatty acid metabolism. There had been
reported that the influenced by ω-3 fatty acids on lipoly-
tic and lipogenic gene expression [7-9]. Hyperlipidemia
is often associated with insulin resistance, coronary
artery disease, hypertension [3-5,10]. Decreased ω-6/ω-3
ratio in the fat-1 mouse can enhance glucose tolerance,
independent of changes in mitochondrial content [11].
Decreased in both mitochondrial content and intrinsic
ability of mitochondrial to oxidize fatty acids, can con-
tribute to lipid accumulation and development of insulin
resistance [12,13], overexpression of carnitine palmitoyl-
transferase (CPT-1) and peroxisome proliferator acti-
vated receptor g (PPAR-g) increasing fatty acids
oxidation and improving insulin sensitivity [14,15]. In
our study, the expression of CPT-1 and PPAR-g were
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Table 1 Gene expression that either upregulated or downregulated in the whole genome of fat-1 transgenic cattle (p-
value < 0.05 and fc ≥ 1)

Genbank Accession Gene name Fold change

Metabolism

NM_177494 carnitine palmitoyltransferase 1 1.635675

NM_174530 cytochrome P450, family 2, subfamily E, polypeptide 1 3.129168

NM_001100366 cytochrome P450, family 2, subfamily S, polypeptide 1 1.085825

NM_001099367 cytochrome P450, family 3, subfamily A, polypeptide 4 1.0726473

NM_001046391 cytochrome P450, family 4, subfamily F, polypeptide 3 1.021228

NM_174810 ATPase, H+ transporting, lysosomal 31 kDa, V1 subunit E1 1.0310035

NM_174717 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6 1.0874296

NM_001083636 peroxisome proliferator activated receptor 1.1880234

AB257751 low density lipoprotein receptor-related protein 5 -1.1805074

NM_001077843 low density lipoprotein receptor-related protein 4 -1.5911577

Immunity

XM_001250583 Indoleamine 2, 3-dioxygenase 2.0460057

XR_042605 granulocyte-macrophage colony-stimulating-factor receptor a 2.167638

NM_174358 interleukin-2 receptor a -2.3078954

NM_174093 interleukin-1, beta -2.8775382

NM_174086 interferon-g -2.1359362

NM_173923 nterleukin-6 -1.8120259

XM_591164 interleukin-10 receptor a -1.107485

XM_615064 CD4 molecule -1.19058

XM_001787801 WC1 -6.185475

XM_593126 lymphocyte-activation gene 3 -2.201507

similar to Zeta-chain associated protein kinase 70 kDa -2.379626

NM_177493 acetylserotonin O-methyltransferase -2.1411839

NM_174589 prostaglandin E receptor 4 -1.1957332

NM_001166554 prostaglandin E synthase 2 -1.0895984

NM_001078151 mature T-cell proliferation 1 -1.0484107

BC142016 T-cell receptor delta chain -2.3310187

XM_603087 T-cell acute lymphocytic leukemia 2 -1.1402003

NM_001075374 lymphocyte-specific protein 1 -1.2811403

NM_001102073 immunoglobulin-like domain containing receptor 2 -1.6142586

NM_001076844 lymphocyte cytosolic protein 2 -1.2404228

NM_001034720 lymphocyte cytosolic protein 1 -1.0534877

Inflammation and cancer

NM_001101158 cell adhesion molecule 1 10.783385

NM_001035468 acireductone dioxygenase 1 2.893599

NM_001083481 suppression of tumorigenicity 7 like 1.1566072

NM_001035287 serpin peptidase inhibitor 7.2662635

NM_001083645 RAS-like, family 10, member A 2.4159741

NM_001101092 serine/threonine kinase 38 like 1.0883793

XM_608304 NLR family, pyrin domain containing 13 2.8275476

NM_174532 DnaJ (Hsp40) homolog, subfamily B, member 6 1.0343608

NM_175804 nuclear receptor subfamily 2, group F, member 1 1.1831405

XM_613126 chondroitin sulfate proteoglycan 4 -2.4661286

NM_001024521 TNF receptor-associated factor 7 -1.182513

XM_594145 L1 cell adhesion molecule -2.0497224

XM_604945 adenomatosis polyposis coli 2 -2.1012108

XM_608123 laminin, alpha 4 -2.7227702

AB043995 matrix metallopeptidase 3 -2.013966

XM_597651 matrix metallopeptidase 15 -1.0679191
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up-regulation. It is important that the CYP (including
CYP2E1, CYP2S1, CYP3A4, CYP4F3) encodes a member
of the cytochrome P450 superfamily of enzymes that
involved in the polyunsaturated fatty acids oxidation
were upregulated.
To decrease the content of very low-density lipopro-

tein (VLDL) is benefit to coronary artery disease, hyper-
tension. ω-3 fatty acids suppress triglyceride synthesis,
VLDL secretion, and serum triglycerides [4,16]. Decrease
the VLDL level can through two mechanisms involved
in ω-3 fatty acid specific control of VLDL synthesis.
First, decrease the VLDL expression directly, such as
suppress the expression of low density lipoprotein
receptor in transgenic cattle. Second, suppression of
ApoCIII transcription, PPAR competes with HNF4 for
binding the ApoCIII promoter. PPAR expression was
increased in transgenic cattle [17,18].

ω-3 fatty acids protect against insulin resistance, cor-
onary heart disease, hypertension by lowering triglycer-
ide explained by the inhibition of hepatic lipogenesis
and the simultaneous stimulation of mitochondrial fatty
acid oxidation.

ω-3 fatty acids on Immunity
ω-3 fatty acids has beneficial effects on immune func-
tion [19]. ω-3 fatty acids regulate the immuniy through
suppress the T-lymphocyte proliferation. T-lymphocyte
proliferation has been shown to be inhibited in vitro by
an increased concentration of free fatty acids via an
eicosanoid-independent mechanism [20]. The T-lym-
phocyte regulates an immune response by responding to
antigen, then produce cytokines. There are three major
subsets of T-lymphocytes, Th (helper T cells), Tc (cyto-
toxic T cells), Treg (regulatory T cells). Th and Tc

Table 1 Gene expression that either upregulated or downregulated in the whole genome of fat-1 transgenic cattle (p-
value ?<? 0.05 and fc ?≥? 1) (Continued)

NM_174112 matrix metallopeptidase 1 -1.0266808

XM_604345 matrix metallopeptidase 16 -1.1511999

XM_609577 matrix metallopeptidase 20 -1.0834453

NM_001075502 nitric oxide synthase interacting protein -1.027486

NM_001076799 nitric oxide synthase 2 -1.1507416

NM_174589 prostaglandin E receptor 4 -1.1957332

NM_174443 prostaglandin E synthase -1.0576057

NM_001166554 prostaglandin E synthase 2 -1.0895984

DV775423 claudin 10 -1.221211

XM_601963 b-catenin -2.1087096

XM_609364 NF-kB -1.7619956

NM_001102498 NF-kB activating protein-like -1.2362162

XM_582283 Huntingtin interacting protein-1 2.2835305

NM_001159566 transforming growth factor, beta receptor II -1.1494738

NM_001035313 transforming growth factor beta 1 induced transcript 1 -1.560125

XM_001253071 transforming growth factor, beta receptor III -1.0382366

NM_001101910 tumor protein p53 binding protein 1 -1.1203252

NM_174201 tumor protein p53 -1.1353312

NM_001076401 gamma-glutamyltransferase 7 -2.7013438

Nervous development

XM_588574 protocadherin gamma subfamily A, 6 4.1054792

XM_001254336 protocadherin gamma subfamily A, 8 3.6014705

NM_001102513 protocadherin gamma subfamily B, 4 1.5915743

XM_870459 protocadherin gamma subfamily A, 9 3.789133

BC103033 potassium channel, subfamily K, member 10 1.2212783

XM_001253926 Olfactory receptor 13H1 4.0936475

NM_001076371 SEPTIN5 2.3829544

XM_608747 nucleoredoxin-like 2 6.2915673

XM_001788280 semaphorin 5B -3.1176894

Fertility

NM_001034205 Calmegin 2.228811

XM_608786 SRY (sex determining region Y)-box 8 1.8772229

NM_001076057 EF-hand calcium binding domain 6 -2.55162
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express the CD4 and CD8 receptors respectively. The
CD4+ T-lymphocyte can further be classified as either a
Th-1 or Th-2 type cell depending on the types of cyto-
kines it produces. The Th-1 type produces primarily
interleukin-2 (IL-2) and interferon-g (IFN-g) which
upregulates cell mediated immunity. The Th-2 type pro-
duces primarily IL-4, 5, 6, 10 and 13 which upregulates
humoral or antibody mediated immunity via activation
of B-cells and macrophages. We found that the expres-
sion of CD4 was decreased in transgenic cattle, and it
stand to reason that the expression level of IL-2 and
IFN-g were decreased, in addition, the expression of IL-
6 and IL-10 were decreased.
It is widely known that granulocyte-macrophage col-

ony-stimulating-factor (GM-CSF) combination with
cytokines to differentiate human peripheral blood mono-
cytes into potent T cell-stimulatory cells and also has
been involved in the spontaneous differentiation of
human monocyte precursors into macrophages, by
enhancing their survival [21,22]. GM-CSF is promote
the differentiation of human blood monocytes into den-
dritic cell(DC) and that the number of DC achieved in
the presence of GM-CSF alone, but not in combination
with IL-4, correlates with the extent of GM-CSF recep-
tor a expression [23]. The expression level of GM-
CSFRa is down regulated in transgenic cattle.
A sequence in transgenic cattle which similar to ZAP-

70 (Zeta-chain associated protein kinase 70 kDa) is
down-regulation. ZAP-70, a cytoplasmic tyrosine kinase
mainly expressed in T cells, and it plays a role in T-cell
development and lymphocyte activation [24-27]. In
rodents, it has been shown that stimulation through the
TCR/CD3 complex is associated with reduced IL-2 pro-
duction and subsequent proliferation [28]. Loss of ZAP-
70 activation in response to TCR/CD3 receptor stimula-
tion and subsequent suppression of IL-2 production
[29].
Indoleamine 2, 3-dioxygenase (IDO2), which is the

rate-limiting enzyme for tryptophan catabolism, may
play a critical role in various inflammatory disorders
[30]. IDO2 may be important to sustain immune escape,
IDO2 seems to block the proliferation of alloreactive T
lymphocytes through arrest in the G1 phase of the cell
cycle [31-33]. The expression of IDO2 is increased in
transgenic cattle.
Regulatory T cells (Treg) play an important role in

maintain of homeostasis of the immune system capable
of suppressing other immune responses in vitro and/or
in vivo. The cattle CD4+CD25high Foxp3+ and CD4
+CD25low Foxp3+T cells do not function as Treg ex vivo.
This indicates that the bovine immune system may be
governed by different regulatory mechanisms as com-
pared to rodents and humans. In the bovine immune
system a role for monocytes has been suggested in the

control of gδ T cell responses [34], probably mediated
by IL-10 secretion [35]. The bovine Treg function
appears to reside in the gδ T cell population, more pre-
cisely in the WC1.1+ and the WC1.2+ subpopulation,
major populations present in blood of cattle [36], in this
study the expression of WC1 in transgenic cattle is
down regulation. Expression of LAG3 in human CD4+T
cells and found that LAG3 identifies a discrete subset of
CD4+CD25highFoxp3+T cells. CD4+CD25high Foxp3
+LAG3+T cells are functionally active cells that release
the immunosuppressive cytokines IL-10 and TGF-b1
[37]. Nevertheless, the cattle CD4+CD25high Foxp3+ T
cells do not function as Treg ex vivo[36], lower expres-
sion of LAG3 in transgenic cattle whether influence the
immune should be further study.
Acetylserotonin O-methyltransferase (ASMT) is the

enzyme involved in the last step of melatonin synthesis.
Melatonin is a powerful antioxidant molecule involved
in the protection of nuclear and mitochondrial DNA
and in the regulation of circadian seasonal rhythms and
immune function [38]. It is produced and secreted pre-
dominantly by the pineal gland. The proportions of
ASMT-immunoreactive cells successively decreased in
the pineocytoma [39]. Lower expression of ASMT in
transgenic cattle may affect the melatonin synthesis and
then influence the immune function.
Feeding purified EPA and DHA significantly reduced

spleen lymphocyte proliferation, natural kill cell activity
and PGE2 production in nonautoimmune prone mice
[40]. It is consistent with the result that natural kill cells
activity and the expression of prostaglandin E synthase
are reduced in transgenic cattle.

ω-3 fatty acids on inflammation and cancer
A large number of epidemiological studies and data in
rodents implicate polyunsaturated fatty acid related with
cancer particularly colon, breast, and prostate cancer
[5,41,42]. They are complex diseases that are affected by
both genetic and environmental factors. There have
been advanced to explain that fatty acid composition
effects on membrane fluidity, cell signaling, hormone
imbalance, and prostanoid synthesis [41-43]. Fatty acid
effects on cell growth, differentiation, metabolism, and
the production of eicosanoids, cytokines, and adhesion
molecules are all likely to contribute to cancer cell
growth.
The generation of proinflammatory cytokines, eicosa-

noids, and growth factor agonists and antagonists at the
site of injury contributes to atherosclerosis [44]. To
decrease the eicosanoid, cytokine, and adhesion mole-
cule production is benefit to control the atherosclerosis
process. The production of adhesion molecules (VCAM-
1) from cultured endothelial cells is suppressed by ω-3
fatty acids [45]. Adhesive interactions between
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leucocytes and cellular or extracellular components of
tissues are involved in inflammatory or immunological
response mechanisms. Adhesion molecules direct the
leucocyte-endothelium interactions, transendothelial
migration of leucocytes and leucocyte trafficking in gen-
eral [46]. However, our date showed that expression of
VCAM-1 in transgenic cattle is higher than wild-type
cattle.
Eicosanoid is promote the tumourgenesis, which pro-

duced by COXs and LOXs to catalyze Amino acid or
EPA. The antiproliferative effects of ω-3 fatty acids in
cancers is inhibit the expression of cyclooxygenase 2
(COX2), at least partly [47]. However, the change of
COX2 expression level is not detected in our data. To
decrease the COX2 expression also can by regulate
other genes indirectly, such as nitric oxide (NO). NO
activates COX2 expression, the effect of DHA on COX2
could be to decrease NO indirectly. Narayanan et al had
shown that treatment of human colon cancer cells with
DHA downregulates inducible NO synthase [48]. NO
also can cause cell damage in inflammation process,
therefore, it is possible that sustained high levels of NO
generated by iNOS can produce lead to tumor initiation
and promotion various kinds of damage [49,50]. DHA
could indeed induce cancer cell death via down-regula-
tion of iNOS expression and/or by modulating sets of
genes involved in apoptosis and differentiation [51].
Ntric oxide synthase was decreased in transgenic cattle
in our study.
Arachidonic acid (AA) which is released from mem-

brane phospholipids together with diacylglycerol during
signal transduction activates the transcription factor or
nuclear factor NF-kB, which then transmigrates into the
cell nucleus and induces a number of the inflammatory
genes, such as COX2, cytokines, and adhesion mole-
cules. Inhibit of NF-kB signaling is contribute to the
anti-inflammatory actions of DHA [52,53]. The expres-
sion NF-kB activation induced by arachidonic acid is
decrease in transgenic cattle, in turn, down-regulates the
transcription of genes regulating the inflammatory
response (cytokines, chemokines, cell adhesion mole-
cules). Berger A et al consistent with the result that
hepatic NF-kB gene expression was downregulated by
DHA [54].
Chondroitin sulfate proteoglycan 4 (CSPG4), also

known as high Molecular Weight- Melanoma Asso-
ciated Antigen, is a cell surface proteoglycan which has
been recently shown to be expressed not only by mela-
noma cells, but also expressed by basal breast carci-
noma, squamous carcinoma of the head and neck,
mesothelioma, pancreatic carcinoma, some types of
renal cell carcinoma, chordoma, and chondrosarcoma
cells, however, its restricted distribution in normal tis-
sues and cells [55]. So lower expression of CSPG4 in

transgenic cattle may be a signal of reduce the risk of
suffer from various types of cancer. Furthermore, there
have other genes related with cancer showed in Table 1.
There had reported that fat-1 mice with elevate ω-3
fatty acid is suppressed various tumorigenesis [56-59].
Huntingtin interacting protein-1 (HIP1) is known to

be associated with the N-terminal domain of huntingtin.
Overexpression of HIP1 induced cell death through cas-
pase-3 activation in immortalized hippocampal neuro-
progenitor cells [60], HIP1 overexpression was also
found in several primary epithelial tumors including
breast, ovarian, prostate, lung and colon, and its expres-
sion negatively correlated with survival in men with
prostate cancers [61]. The expression of HIP1 in trans-
genic cattle is increased.

ω-3 fatty acids on nervous development and neurologic
disease
PUFAs have many important actions not only by them-
selves but also by giving raise to various biologically
active compounds. PUFAs play a significant role in var-
ious diseases and especially in cardiovascular and neuro-
logical/psychiatric disorders [62]. Enrich the ω-3 fatty
acids alter the composition of membranes. Alteration in
the cellular architecture along with alterations in mole-
cular composition of membranes might influence a wide
range of brain functions: stabilization of axons and den-
drites, cell shape, polarity, neural plasticity, vesicle for-
mation and transport. Diet with high DHA slowed the
progression of Alzheimer’s disease (AD) in mice. Specifi-
cally, DHA cut the harmful brain plaques that mark the
disease [62-64]. DHA protected against damage to the
«synaptic» areas and enabled mice to perform better on
memory tests [2]. The observation that ω-3 fatty acids,
affect expression levels of a number of genes in brain
opens the way toward understanding the role of these
fatty acids in the function of central nervous tissue.
The proteins encode by protocadherin gamma sub-

family most likely play a critical role in the establish-
ment and function of specific cell-cell connections in
the brain, such as PCDHGA9, PCDHGA8, PCDHGB4,
PCDHGA6 [65], so higher expression of this genes may
beneficial to brain development. KCNK10 is probably an
important ion channel to involve in the neuroprotection
by tuning the level of resting potential, reducing the
brain cell excitability and release of stimulative neuro-
transmitters. The expression of KCNK10 is increased
when in the process of neuropathic pain and memory
impaired [66]. The expression of KCNK10 in transgenic
cattle is lower than wild-type. SEMA5B is involved in
synapse elimination in hippocampal neurons. Overex-
pression of SEMA5B in hippocampal neurons results in
a decrease in synapse number, however, depletion of
endogenous SEMA5B using short hairpin RNA (shRNA)
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resulted in the exuberant formation and/or maintenance
of synaptic connections, with a concomitant increase in
the size of pre and postsynaptic densities [67], lower
expression of this gene in transgenic cattle may increase
the synaptic number and size in hippocampal neurons,
and maybe increase the ability of learning and memory.
Recent studies in fat-1 transgenic mice showed that
increased brain DHA significantly enhances hippocam-
pal neurogenesis as evidenced by an increase in the
number of pro-liferating neurons and increased density
of dendritic spines of CA1 pyramidal neurons in the
hippocampus [68]. The study of fat-1 transgenic mice
had demonstrated that higher level of ω-3 fatty acids is
more effective in reaching the brain and achieving neu-
roprotection in an animal model of PD [69,70].
ω-3 fatty acids modulate brain growth and develop-

ment, and neuronal differentiation. In addition, their
ability to form an important constituent of neuronal cell
membranes and involvement in memory formation and
consolidation [71], explaining the beneficial action of
EPA and DHA in the prevention and treatment of
dementia and Alzheimer’s disease [72,73]. However, dif-
ferent conclusion on DHA and EPA in neurological
conditions had been present. Bate et al reported that
pre-treatment with DHA or EPA significantly reduced
the survival of cortical or cerebellar neurons, they noted
that treatment with DHA or EPA reduced the free cho-
lesterol content of neuronal membranes that increased
the kinetics of incorporation [74,75]. These observations
indicate that under some specific conditions ω-3 fatty
acids (EPA and DHA) may actually accelerate neuronal
loss in the terminal stages of prion or Alzheimer’s dis-
eases. Our dates not show adverse effect on neurological
conditions.
Higher expression of Olfactory receptor, SEPTIN5 in

transgenic cattle may strengthen the function of olfac-
tory sense, visual sense respectively [76,77]. Suh M had
demonstrated that fat-1 mice enriched highly ω-3 fatty
acids in the retina lead to supernormal scotopic and
photopic ERGs and increases in Muller cell reactivity
and oxidative stress in photoreceptors [78].

ω-3 fatty acids on fertility
PUFA composition of the cell membranes of the sperm
and oocyte is important during fertilization [79]. Alter-
ing the PUFA sources in the diet resulted in concomi-
tant changes in the ω-6 and ω-3 composition of sperm
[80]. With regard to male fertility, PUFAs are essential
by virtue of their ability to confer upon the sperm
plasma membrane the fluidity it needs to achieve fertili-
zation. Experiments on chickens have shown that feed-
ing more PUFAs in the diet reduced the antioxidant
status and quality of the semen [81].

Loss of the Calmegin (CLGN) lead to the production
of sterile sperm that do not bind to the egg zone pellu-
cida [82], so higher expression of CLNG in transgenic
cattle might benefit to the spermatogenesis. EF-hand
calcium binding domain 6 (EFCAB6) recruits histone-
deacetylase complexes in order to repress transcription
activity of androgen receptor (AR). The AR is a member
of the nuclear receptor superfamily and plays a role as a
ligand-dependent transcription factor. After a ligand
binds to the AR, the AR is translocated into the nucleus
and binds to the androgen-responsive element (ARE),
on the androgen-activating gene that affects develop-
ment, growth, and regulation of male reproductive func-
tions [83,84]. Lower expression of EFCAB6 in transgenic
cattle may lessen the suppression of AR and to express
male-specific genes and the fertilization function of
mature sperm.
Sex determining region Y-box 8 (SOX8) is expressed

in the developing testis around the time of sex determi-
nation suggesting that it might play a role in regulating
the expression of testis-specific genes [85], higher
expression of SOX8 in transgenic cattle may receptor
the sex determination.

Conclusion
To study the effect of ω-3 fatty acids on various physio-
logical processes and pathologic situations, traditional
approach to modify tissue nutrient composition is by
supplementing the experimental groups with different
ω-3/ω-6 fatty acid ratios. Although this is an accepted
mode of studying the effect, it is difficult to make all the
dietary components identical. The inevitable differences
between diets and their components, even if small they
may be, may confound the study and contribute to
inconsistencies or conflicting results observed. In these
studies, fish oils or plant oils are used to provide the
required ω-3/ω-6 fatty acids in generally. Since these
fatty acids are derived from different sources and are
likely to contain other bioactive compounds, however
minor they might be, are likely to affect the study out-
comes. It is necessary to develop a transgenic animal
model more efficient converting ω-6 to ω-3 fatty acids,
the results obtained in such model will be more reliable
to interpret the function of ω-3 fatty acids.
Our data derived from the fat-1 transgenic cattle sup-

port the notion that a reduced ratio of ω-6/ω-3 fatty
acids is favorable for normal cell function and may
reduce the risk of certain diseases, such as cardiovascu-
lar disease, inflammatory disorders and cancer. Our
result is generally consistent with studies using this
model to address the effects of ω-3 fatty acids. However,
we detected some gene expression are contrary to pre-
vious studies, for instance, the production of VCAM-1
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from cultured endothelial cells is suppressed by n-3
PUFA, however, our date showed that expression of
VCAM-1 in transgenic cattle is higher than wild-type
cattle. In addition, the expression of WC1, ASMT and
SOX8 were down-regulated and HIP1 expression was
increased.
Due to the only three positive fat-1 transgenic cattle

detected, the result of cDNA microarray is limited by
the little number of samples. It is necessary to verify the
conclusion using large-scale samples when transgenic
cattle have generation.
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