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Citrus flavonoids repress the mRNA for stearoyl-
CoA desaturase, a key enzyme in lipid synthesis
and obesity control, in rat primary hepatocytes
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Abstract

Citrus flavonoids have been shown to decrease plasma lipid levels, improve glucose tolerance, and attenuate
obesity. One possible mechanism underlying these physiological effects is reduction of hepatic levels of the mRNA
for stearoyl-CoA desaturase-1 (SCD1), since repression of this enzyme reduces hyperlipidemia and adiposity. Here,
we show that citrus flavonoids of two structural classes reduce SCD1 mRNA concentrations in a dose-dependent
manner in rat primary hepatocytes. This is the first demonstration of repression of SCD1 by citrus flavonoids, either
in vivo or in cultured cells. Furthermore, it is the first use of freshly-isolated hepatocytes from any animal to
examine citrus flavonoid action at the mRNA level. This study demonstrates that regulation of SCD1 gene
expression may play a role in control of obesity by citrus flavonoids and that rat primary hepatocytes are a
physiologically-relevant model system for analyzing the molecular mechanisms of flavonoid action in the liver.

Background
Understanding the molecular mechanisms that regulate
lipid synthesis and deposition is of paramount impor-
tance, since obesity increases the risk of prevalent, life-
threatening diseases such as diabetes and atherosclerosis.
An intriguing model proposes that obesity is attenuated
by lowering the amount of hepatic and/or adipose stear-
oyl-CoA desaturase-1 (SCD1), the rate-limiting enzyme
in biosynthesis of monounsaturated fatty acids, which are
preferred for triglyceride assembly [1]. This model is sup-
ported by gene knockout or knockdown studies, in which
reduction of SCD1 mRNA levels restricted adiposity,
insulin resistance, and hepatic lipid accumulation in
rodents [2-5]. Conversely, elevated SCD1 levels in
humans were associated with high plasma lipid concen-
trations, elevated hepatic lipid synthesis, obesity, or famil-
ial combined hyperlipidemia [6-9].
In the quest for therapies to alleviate obesity and asso-

ciated illnesses, citrus flavonoids (Figure 1) are particu-
larly promising, since a large body of research in
humans and animals has shown hypolipidemic and/or
antidiabetic effects of citrus fruits and juices [10-12], as

well as purified flavonoids [12-20]. To examine the
molecular mechanisms of citrus flavonoid action in
more detail than is possible in vivo, the human hepa-
toma HepG2 cell line has been used extensively to
establish that citrus flavonoids act through multiple
pathways to reduce hepatic lipid secretion, and that the
effects are consistent with physiological responses to
these compounds in humans and animals [21-26]. Our
previous work showed that citrus flavonoids regulated
transcription of the low-density lipoprotein receptor
(LDLR) gene in HepG2 cells, and that the DNA binding
site for the transcription factor, sterol regulatory ele-
ment binding protein (SREBP), was necessary for the
regulation [27]. This work was the first direct demon-
stration that citrus flavonoids act at the level of hepatic
gene transcription. Although the experimental manipul-
ability of HepG2 cells has facilitated the analysis of
underlying molecular mechanisms, it is desirable to use
primary hepatocytes, since they more closely represent
the physiology of intact liver. However, we are aware of
only one published experiment in which citrus flavonoid
action, specifically inhibition of apolipoprotein B secre-
tion, was demonstrated in primary liver cells [21].
Therefore, the present study developed the use of iso-
lated hepatocytes for examining hepatic effects of citrus
flavonoids at the mRNA level. We chose to examine
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regulation of SCD1 mRNA because of the hypothesis
that repression of SCD1 plays a key role in control of
obesity and diabetes [1], and because of the recent
report of citrus flavonoid attenuation of adiposity and
insulin resistance in mice fed a high-fat diet [20].

Methods
Animals, primary hepatocyte isolation, and flavonoid
treatment in culture
Male Sprague Dawley rats (Charles River Laboratories,
Wilmington, MA) were used at 12-17 weeks of age, fol-
lowing protocols that conform with NIH guidelines and
were approved by the University of Missouri Animal
Care and Use Committee. Hepatocytes were isolated by
collagenase perfusion [28] and cultured as described in
Additional file 1-Detailed methods. Hesperetin (≥ 95%
pure) was from Sigma. Nobiletin was purified from tan-
gerine peel and recrystallized twice to yield a purity of
>99% [29]. Flavonoid stock solutions (50 mM) were pre-
pared in dimethyl sulfoxide, the final concentration of
which was 0.3% (v/v) in flavonoid-treated and control
cells.

RNA purification and analysis by molecular hybridization
or quantitative real-time polymerase chain reaction
(qRT-PCR)
RNA purification and molecular hybridization were con-
ducted as described in Additional file 1-Detailed meth-
ods. Total RNA (20 μg/sample) was size fractionated on
a formaldehyde gel and transferred to GeneScreen. Sin-
gle-stranded cDNA probes for SCD1 and eukaryotic
initiation factor 3H (EIF3H) mRNAs (Integrated DNA
Technologies, Coralville, IA) (Table 1) were labeled,
hybridized to the membrane, and detected by phosphori-
maging. SCD1 mRNA was normalized to EIF3H mRNA,

to correct for variable gel loading and any general flavo-
noid toxicity at higher flavonoid concentrations. The nor-
malized results for treated samples are expressed as
percent of the untreated control. qRT-PCR was carried
out with SYBR-Green-based methodology (see Additional
file 1-Detailed methods), using primer pairs for SCD1 or
EIF3H (Table 1).

Results
Verification of hybridization probes for SCD1
and EIF3H mRNAs
Rats have two SCD genes, SCD1 and SCD2 (sometimes
called SCD). Hybridization of size-fractionated rat hepato-
cyte RNA with the SCD1 probe yielded a single RNA
band of ~5,100 bases (Figure 2), similar to the previously-
described ~5,900 bases [30]. These sizes are larger than
the reported 4475 bases (GenBank ID: NM_139192.2), but
that sequence is not necessarily full length. Although our
hybridization probe matches SCD2 mRNA (GenBank ID:
NM_031841.1), it is unlikely that the detected RNA is
SCD2, since that isoform was completely undetectable in
rat liver tissue [30]. qRT-PCR experiments below
confirmed that the SCD isoform expressed in rat hepato-
cytes was SCD1. For normalization we used mRNA for
the housekeeping protein, EIF3H. The EIF3H probe
hybridized with a single RNA species of ~1,650 bases
(Figure 2), which is compatible with the reported 1,243
bases (Genbank ID#: NM_198751.1).

Citrus  Flavanones

Citrus  Polymethoxylated  Flavones  (PMFs)

Hesperetin Naringenin

Nobiletin Tangeretin

Figure 1 Structures of two classes of citrus flavonoids.

Table 1 Sequences of hybridization probes and qRT-PCR
primers

Name DNA Sequence

Hybridization Probes

5’ 3’

SCD1 (AS)1 1007 GTGGTGAAGTTGATGTGCCAGCGGTACTCACTG 975

EIF3H (AS)2 1034 GGCAGTGAACTCCTTGATGTTCTGG
CAGTAAGTGTT 999

qRT-PCR Primers

5’ 3’

SCD1 (S)1 26 GAAGCGAGCAACCGACAGCCAC 47

SCD1 (AS)1 180 GTCTTCTTCCAGATAGAGGGGCAC 157

EIF3H (S)2 850 AACACCAGTATCAGCAGCGTCG 871

EIF3H (AS)2 1027 AACTCCTTGATGTTCTGGCAGTAAGTG 1001

1 Sequence and numbering based on rat SCD1 (GenBank ID: NM_139192.2).
2 Sequence and numbering based on rat EIF3H (GenBank ID:
NM_198751.1)

SCD1 and EIF3H hybridization probes are located within the protein-
coding regions. The PCR-amplified sequence from EIF3H mRNA includes
most of the 33-mer used as the EIF3H hybridization probe. The PCR-
amplified sequence from SCD1 mRNA does not overlap with the SCD1
hybridization probe, because of the necessity to avoid potential cross
reactivity with SCD2 mRNA, but it does produce an amplicon that is
mostly within the protein-coding region. The SCD1 primer set does not
match the SCD2 mRNA sequence (GenBank ID: NM_031841.1), and
cloning and sequencing of the product generated by qRT-PCR confirmed
that the amplified sequence was SCD1.
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Dose-dependent repression of SCD1 mRNA levels by
hesperetin or nobiletin in rat hepatocytes
To represent the flavanone class, we used hesperetin
(Figure 1), since it was more effective than naringenin in
HepG2 cells [22]. For the polymethoxylated flavone class,
which has been shown to be more potent (i.e. effective at
lower doses) than flavanones in vivo [19] and in HepG2
cells [23,27], we chose nobiletin, since it was more effec-
tive than tangeretin in HepG2 cells (our unpublished
data). For quantitative analysis, mRNA concentrations
were assayed both by hybridization, which allowed
assessment of RNA integrity and correct size (as in Fig-
ure 2), and by qRT-PCR, which allowed more rapid
quantitation and exclusive detection of the SCD1 iso-
form. For 150 μM hesperetin, repression of SCD1 mRNA
reached 49% (by hybridization) or 57% (by qRT-PCR)
compared to the untreated control (Figure 3A). The inhi-
bition was statistically significant (P ≤ 0.05) at 100 and
150 μM hesperetin by the hybridization assay. The qRT-
PCR data did not quite reach statistical significance, but
the results were very similar to those in the hybridization
assay. For 150 μM nobiletin, the inhibitory effect was
58% (by hybridization) or 50% (by qRT-PCR), which was
statistically significant (P ≤ 0.05) by both assays (Figure
3B). At low concentrations of nobiletin (5-10 μM), there
is some difference in the pattern of the response by the
two assays, but none of the effects in this concentration
range were significantly different from the control.
Despite the differences at low doses, the overall trend is a
decrease in SCD1 mRNA with increasing concentrations
of nobiletin, similar to that of hesperetin.

Discussion
The citrus flavonoid repression of SCD1 mRNA levels
described here is compatible with the recent report that
naringenin reduced adiposity and weight gain in mice
after 4 weeks [20], based on the model that SCD1 plays
an important role in obesity control [1]. The in vivo
effects of flavonoids were proposed to be due to a
reduction in the amount of SREBP1 [20]. However, pre-
vious work in HepG2 cells indicated that citrus flavo-
noids stimulate, rather than repress, SREBP levels after
short term treatments [21,27]. This apparent discre-
pancy may be explained by well-established mechanisms
whereby SREBPs stimulate many genes that elevate
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Figure 2 Specificity of hybridization probes for SCD1 or EIF3H
mRNA in rat hepatocyte RNA. Rat hepatocytes were treated with
vehicle, 20-150 μM hesperetin, or 10-150 μM nobiletin for 20 h.
Total RNA was hybridized with cDNA probes for SCD1 mRNA or the
normalizer, EIF3H mRNA. Apparent sizes of the RNAs are denoted
on the left in kilobases (kb).
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Figure 3 Dose-dependent repression of SCD1 mRNA levels in
rat hepatocytes by hesperetin or nobiletin. Rat hepatocytes were
treated with vehicle or 5-150 μM hesperetin or nobiletin for 18-20 h
in four independent experiments. mRNAs were quantitated by
hybridization (closed symbols) or qRT-PCR (open symbols). Effects of
increasing doses of (A) hesperetin or (B) nobiletin on normalized
SCD1 mRNA levels are expressed as percent relative to the untreated
control. At each flavonoid concentration, n = 3 or 4, and the error
bars represent SD. Each experimental condition was compared back
to the control by one-way ANOVA with Dunnett’s post test using
InStat (GraphPad, La Jolla, CA). An asterisk indicates a statistically-
significant difference from the untreated control (P ≤ 0.05).
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lipids and cholesterol production [31]. Cholesterol then
sequesters SREBPs in an inactive form, which leads, in
the long term, to decreased expression of genes that
were initially induced, including the SREBP genes them-
selves [31-33]. Thus, SREBP effects on hepatic lipid
handling in vivo are a complex balance between oppos-
ing actions and feedback mechanisms [31].
Because citrus flavonoids elevate SREBPs in HepG2

cells, the simplest prediction is that these compounds
stimulate SREBP activity in primary rat hepatocytes.
However, our observation of the repression of SCD1
mRNA is not compatible with this prediction, since the
SCD1 gene is a positive target for both SREBP1 and
SREBP2 [32,33]. Thus, our results suggest that, in rat
liver cells, either the flavonoids reduce SREBPs or repres-
sion of SCD1 mRNA occurs by SREBP-independent
mechanisms. A study with a different flavonoid, the soy
isoflavone genistein, also showed repression of SCD1
mRNA levels in HepG2 cells [34]. This repression corre-
lated with a 50% decrease in nuclear SREBP1 and a
5-fold increase in nuclear SREBP2, but these conclusions
are not definite since the particular antibody used should
not recognize the mature N-terminal portion of SREBP2
in the nucleus, and data from multiple experiments were
not reported [34]. Another group found that soy isofla-
vones increased the amount of the C-terminal mature
portion of SREBP2 in whole cell extracts of HepG2 cells
after 24 h, but SREBP1 levels did not change [35].
Because of this variability regarding flavonoid effects on
SREBP levels in HepG2 cells, the rat primary hepatocytes
will be invaluable for deciphering the mechanisms under-
lying the complexities of regulation of both isoforms of
SREBP, as well as the role of SREBP in flavonoid repres-
sion of the SCD1 gene.
Freshly-isolated hepatocytes allow a more thorough

mechanistic analysis of flavonoid action than is possible
in vivo and are more physiologically-relevant than
tumor-derived HepG2 cells. A detailed molecular under-
standing is essential for evaluating the potency and effi-
cacy of flavonoids of different structural classes and
metabolic forms, so that ultimately the most effective
flavonoid-based treatments can be used for combating
atherosclerosis, diabetes, and obesity.

Additional material

Additional file 1: Detailed methods. Methodological details for
hepatocyte isolation and culture, RNA purification, molecular
hybridization, and qRT-PCR.
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