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Phenolic-glycolipid-1 and lipoarabinomannan
preferentially modulate TCR- and CD28-triggered
proximal biochemical events, leading to T-cell
unresponsiveness in mycobacterial diseases
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Background: Advanced stages of leprosy show T cell unresponsiveness and lipids of mycobacterial origin are
speculated to modulate immune responses in these patients. Present study elucidates the role of phenolicglycolipid
(PGL-1) and Mannose-capped lipoarabinomannan (Man-LAM) on TCR- and TCR/CD28- mediated signalling.

Results: We observed that lipid antigens significantly inhibit proximal early signalling events like Zap-70
phosphorylation and calcium mobilization. Interestingly, these antigens preferentially curtailed TCR-triggered early
downstream signalling events like p38 phosphorylation whereas potentiated that of Erk1/2. Further, at later stages
inhibition of NFAT binding, IL-2 message, CD25 expression and T-cell blastogenesis by PGL-1 and Man-LAM was
noted.

Conclusion: Altogether, we report that Man-LAM and PGL-1 preferentially interfere with TCR/CD28-triggered
upstream cell signalling events, leading to reduced IL-2 secretion and T-cell blastogenesis which potentially could
lead to immunosupression and thus, disease exacerbation, as noted in disease spectrum.
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Background
Mycobacterial infections are leading cause of death
worldwide. Tuberculosis, a pulmonary disease, caused
by Mycobacterium tuberculosis (M. tuberculosis), and
leprosy, a neurodegenerative as well as dermal/mucosal
disease, caused by Mycobacerium leprae (M. leprae), are
major mycobacterial diseases. Protective immunity against
mycobacterial diseases is mainly due to cell-mediated im-
munity (CMI) mainly due to T-cells, dendritic cells (DCs),
Natural Killer cells (NK cells), macrophages, monocytes,
etc. Advance spectrum of mycobacterial infections
shows reduced CMI and is widely associated with
reduced T-cell responses [1]. These T-cell abnormalities
are widely linked with the presence of lipid coat on the
mycobacterial cell wall, which account up to 60% of dry
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weight of mycobacterium [2]. Mannose-capped Lipoarabino-
mannan (Man-LAM), cell wall-associated highly immuno-
genic glycolipid, is widely expressed by M. tuberculosis and
M. leprae, whereas Phenolicglycolipid-1, (PGL-1), a polyke-
tide synthase derived phenolicglycolipid, is expressed by
M. leprae, are among the best-characterized virulence fac-
tors of mycobacteria [3].
The lack of protective immunity in patients with

advanced stages of mycobacterial infections, leprosy and
tuberculosis, could be due to improper microbicidal ac-
tivity of macrophages, leading to the persistence of vi-
able bacilli within host. As microbicidal activity of
macrophages depends on their activation by antigen-
specific T-cells, the occurrence of infection could be sec-
ondary to interference in the activation process by
mycobacteria. Studies have revealed that Man-LAM and
PGL-1 not only reduced T-cell proliferation including
reduced production of cytokines like IFN-γ, IL-2, IL-4,
TNFα, GMCSF, IL-1α, IL-1β, IL-6, IL-8, IL-10 [4-9], but
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:beenuj2002@yahoo.co.in
http://creativecommons.org/licenses/by/2.0


Dagur et al. Lipids in Health and Disease 2012, 11:119 Page 2 of 10
http://www.lipidworld.com/content/11/1/119
also reduced T-cell activation both in vitro as well as
in vivo [10].
For proper T-cell activation, signalling by TCR and

CD28 is required and any alteration in this could lead to
T-cell anergy [11]. Though altered T-cell signalling have
been reported in tuberculosis [12]), and leprosy [13-15],
whereas effect of lipid antigens (Man-LAM and PGL-1)
on TCR/CD28- induced signalling, needs a detailed
study. Previously, we have demonstrated the response of
crude M. leprae antigens on the signalling mechanism of
T-cells [16] therefore, current study was done to de-
cipher the mechanism of Man-LAM and PGL-1, the
lipid components, on signalling events leading to T-cell
activation, which still needs documentation.

Results
The concentration of antigens corresponding to log
phase of T-cell proliferation, by lymphocyte transform-
ation assay in PBL and Jurkat T cells (data not shown),
was considered as optimal for further signalling experi-
ments. Standardized doses (15 μg/ml for both Man-Lam
and PGL-1) were found to have stimulation indices (S.I.)
in log phase in patients as well as healthy volunteers
(Additional file 1: Figure S1). The levels of S.I. with anti-
gens (15 μg/ml for both Man-Lam and PGL-1) were sig-
nificantly lower in patients than healthy volunteers and
were significantly lower to the S.I. of PHA and PPD-
stimulated cells (Additional file 1: Figure S2). All the
Figure 1 Man-Lam and PGL-1 inhibit TCR- and TCR/CD28-induced Zap
were stimulated with α-CD3 or α-CD3+ α-CD28 antibodies, and immunobl
were stripped and reprobed with anti-β-actin antibody to confirm equal lo
intensities of 3 experiments.
concentrations of antigens were used in some experi-
ments and optimal dose found in LTT was found to be
showing maximum effect.

Man-LAM and PGL-1 preferentially curtail proximal
signalling events
TCR trigerred Zap-70 phosphorylation, an early up-
stream signal, was found to be significantly inhibited by
both Man-LAM and PGL-1, which was also evident in
presence of costimulation by CD28 (Figure 1). As an in-
crease in free calcium concentration, [Ca2+]i, is down-
stream to Zap-70 activation, we assessed TCR-triggered
calcium mobilization by adding Man-LAM and PGL-1
on T-cells after stimulation with anti-CD3 antibody. We
noticed that TCR induced calcium mobilization was
diminished by two antigens (Figure 2 A, B) though it
was not statistically significant (Figure 2G). Thapsigargin
(Tg), was used to further elucidate whether these anti-
gens influence the opening of calcium channels as a re-
sult of internal store depletion. Significant inhibition by
Man-LAM and PGL-1 was noted in refilling of the cyto-
solic stores from the extracellular environment (Figure 2
C, D and G). Moreover, to directly assess the effects of
Man-LAM and PGL-1 on the opening of calcium chan-
nels, calcium-free and calcium-reintroduction (CFCR)
protocol was designed. For this, first Tg was used to de-
plete the intercellular calcium stores on EGTA chelated
cells and then calcium influx was noted after addition of
70 phosphorylation. Untreated or antigen-pretreated Jurkat T-cells
ots were performed as described in Material and Methods. Membranes
ading. Histograms represent mean± SEM values of normalised band



Figure 2 Mycobacterial lipid antigens diminish increases in [Ca2+]i. The recordings show 340/380 ratiometric curves, indicating changes in
[Ca2+]i. The test molecules were added into cuvette during real-time recordings (A-F). The cells were also pretreated with Man-LAM and PGL-1
and the effect of CD3 (A and B) and Tg (C and D) was assessed. The CFCR protocol was used to study the calcium influx, evoked by the addition
of TG after Man-LAM (E) or PGL-1 (F) treatment. Representative curves of three independent experiments are presented here and values derived
are shown as mean± SEM in histograms (G and H).
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exogenous calcium. Man-Lam and PGL-1 significantly
attenuated exogenous calcium influx, evoked by Tg
(Figure 2 E, F and H).
PKC is one of the early markers of T-cell activation

and upon activation PKC mobilizes from cytosol to cell
membrane. Decreased cytosolic PKC activity was noticed
in response to TCR alone or with CD28 stimulation,
which indicates signal for cell activation. It was noted
that PGL-1 but not Man-LAM increased cytosolic activ-
ity as compared to TCR stimulation, whereas, both the
antigens increased the PKC activity in cytosolic fractions
in TCR/CD28-stimulated cells, which indicates that
CD28 mediated PKC activation is preferentially targeted
by lipid antigens (Figure 3). Incubation of T-cells alone
with either Man-LAM or PGL-1 did not evoke signifi-
cant changes in phosphorylation levels of Zap-70, cyto-
solic PKC activity and intracellular calcium levels (data
not shown).

Man-LAM and PGL-1 differentially modulate downstream
signalling events and IL-2 gene transcription
Man-LAM and PGL-1 both significantly inhibited TCR-
induced p38MAPK phosphorylation (Figure 4). However,
these antigens significantly potentiated Erk1/2 phosphor-
ylation. Similarly, TCR/CD28 trigerred p38MAPK phos-
phorylation was significantly curtailed by PGL-1 but not
by Man-LAM. None of these two antigens significantly
modulated TCR/CD28 trigered Erk1/2 phosphorylation
(Figure 4 A, B and C).
PMA/Ionomycin induces prolonged nuclear transloca-

tion of NFAT than TCR/CD28 stimulation; therefore
DNA binding of NFAT on IL-2 promoter was assessed
on PMA/ionomycin stimulation of antigen pretreated
Figure 3 Man-LAM and PGL-1 modulate PKC activity in the
cytosolic fractions of Jurkat T-cells after α-CD3 or α-CD3+ α-
CD28 stimulation. Neg CTRL=Negative control of Kit,
Unstim=Unstimulated cells. Values in histogram are mean± SEM
values of OD. Experiments were done in duplicate and were
repeated at least three times.
cells. We observed that Man-LAM but not PGL-1 pre-
treated cells showed decreased DNA binding activity of
NFAT (Figure 5).
As all of these signalling events are linked to IL-2 gene

transcription, its transcription was studied further. We
observed that PGL-1 significantly inhibited; however,
Man-LAM potentiated TCR-stimualted IL-2 gene tran-
scription. No significant effect on TCR/CD28 stimulated
IL-2 mRNA levels was noted by both antigens
(Figure 6).

Both Man-LAM and PGL-1 downregulate CD25 expression
Induction of CD25 (IL-2Ra) by CD3+CD28 stimulation
(25.4%) was significantly inhibited by Man-LAM
(13.14%) and PGL-1 (10.83%) as compared to stimula-
tion of CD3+CD28 (Figure 7).

Man-LAM and PGL-1 inhibits production of IL-2 cytokine
and T-cell blastogenesis in healthy individuals
Both Man-LAM and PGL-1 inhibited not only TCR-
trigerred but also TCR/CD28-induced IL-2 production
significantly by PBL derived T-cells of healthy indivi-
duals (Figure 8). Furthermore, TCR-induced T-cell blas-
togenesis was also inhibited significantly by these two
antigens, whereas CD28 costimulation could overcome
this inhibition (Figure 9).

Discussion
Proper T-cell activation is a prerequisite for effective cell
mediated immune (CMI) response against intracellular
pathogens like mycobateria, leishmania, etc. Advanced
stages of mycobacterial infections like tuberculosis and
leprosy show loss of T-cell functions, including reduced
IL-2 production, which could be due to improper T-cell
activation [17]. IL-2 production is necessary for T-cell
activation, which is induced by TCR and CD28 receptors
signalling [18]. As lipids are known to differentially
modulate T-cell signalling [19], and mycobacterial spe-
cies have high contents of lipid in their cell wall [3], this
study was designed to study the impact of mycobacterial
lipid antigens, (Man-LAM and PGL-1) on T-cell activa-
tion and hence the mechanistic role of lipids in modula-
tion of T-cell physiology in mycobacterial diseases which
still needs to be delineated.
We observed that both Man-LAM and PGL-1 signifi-

cantly inhibited either TCR alone or TCR/CD28- tri-
gerred Zap-70 phosphorylation. Mahon et al., 2009 [20]
also confirms this finding where they used whole lipid
fraction of M. tuberculosis and found reduced Zap-70
phosphorylation. This reveals defective proximal TCR
mediated signalling by mycobacterial lipid fractions
Man-LAM and PGL-1.
Further, downstream second messenger such as

calcium influx was investigated. Calcium signalling is



Figure 4 Man-LAM and PGL-1 inhibit TCR- and TCR/CD28-induced phosphorylation of Erk1/2 and p38MAPkinase. (A): Untreated or
antigen pretreated Jurkat T-cells were stimulated with α-CD3 or α-CD3+ α-CD28 antibodies, and immunoblots were performed as described in
Material and Methods. Membranes were stripped and reprobed with anti-β-actin antibody to confirm equal loading. Lane 1- Control, 2- α-CD3
stimulated, 3- α-CD3 stimulated in presence of Man-LAM, 4- α-CD3 stimulated in presence of PGL-1, 5- Control, 6- α-CD3+ α-CD28 stimulated, 7-
α-CD3+ α-CD28 stimulated in presence of Man-LAM, 8- α-CD3+ α-CD28 stimulated in presence of PGL-1. (B): Normalised band intensities of
p38MAPkinase phosphorylation (C): Normalised band intensities of Erk1/2phosphorylation. Histograms represent mean± SEM values of band
intensities of 3 experiments reproduced at least 3 times independently.
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central to most of the cellular activities including antigen
presentation, cellular motility and cell activation. For T-
cells, calcium signalling is directly linked with the out-
come of immune response, like turnover and secretion of
cytokines, cell proliferation, etc. [21]. Our observation
shows that though Man-LAM and PGL-1 did not signifi-
cantly curtail TCR-trigerred calcium influx, but they cur-
tailed refilling of intracellular calcium stores significantly.
Furthermore, it was observed that these lipid antigens
also curtailed overall influx of calcium by inhibiting
opening of calcium channels as evidenced by antigen-
mediated inhibition in ionomycin triggered influx and
CFCR protocols. These observations strongly suggest
that mycobacterial lipid antigens diminish the opening of
plasma membrane associated calcium channels, which
are the result of [Ca+2]i depletion from internal stores.
These findings are in concordance with our previous
results where we have reported that soluble fractions of
M. leprae lysate blocked opening of store operated CRAC
channels [22]. Present study establishes that mycobaterial
lipid fractions alters calcium signalling and consequently
plays a major role in the pathogenesis. Indeed, it is
known that M. tuberculosis [23] and M. leprae [16]
curtails intracellular calcium levels which could be linked
with reduced phagosome-lysosome fusion, thus for
increased survival of M. tuberculosis in macrophages
[24]. Interestingly, PBMCs from patients with mycobac-
terial infection have been reported to have reduced cyto-
solic [Ca+2]i concentrations [13,15,25] which could be
due to inhibition in calcium mobilization across plasma
membrane in lymphocytes by mycobacterial lipid anti-
gens, as elucidated by series of calcium mobilization
experiments performed in the present study.
PKC translocates from cytosolic fraction to membrane

fraction upon activation by upstream signals such as Zap-
70/PLCγ [26], therefore, we analysed PKC activity in Tcells.
Significantly higher cytosolic PKC levels in lipid antigen-
treated T-cells was observed, indicating the inhibitory effect
of mycobacterial lipids on PKC trnslocation which could be
due to inhibition of upstream signals. Altogether these find-
ings allude that Man-LAM and PGL-1 play a crucial role in
inhibition of proximal TCR signalling.
We further studied downstream signalling events viz

activation of MAPkinases and nuclear translocation of
transcription factor NFAT, important events for both
cytokine production and cell activation [27].



Figure 5 Man-LAM and PGL-1 modulate DNA binding affinity of
NFAT to the promoter of IL-2 cytokine. Untreated or antigen
pretreated Jurkat T-cells were stimulated with PMA/ionomycin and
electrophoretic mobility shift assays were performed. Representative
blot of experiments were repeated at least three times.

Figure 6 Man-Lam and PGL-1 inhibit expression of IL-2 mRNA.
Untreated or antigen pretreated Jurkat T-cells were stimulated with
α-CD3 or α-CD3+ α-CD28 antibodies, and RT-PCR were performed
as described. Equal amplification of β-actin was performed as
control.
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Interestingly we found that both Man-LAM and PGL-1
curtailed TCR-triggered p38Mapkinase phosphorylation
but potentiated Erk1/2 phosphorylation, whereas on
TCR/CD28 stimulation, this trend could be reversed in
Man-LAM but not in PGL-1 treated p38Mapk phos-
phorylation, inhibitory effect of Man-LAM could be nul-
lified after co-stimulation through CD28. This is in
contrast to findings with whole M. leprae lysate where
we have shown inhibition of Erk1/2 and p38 both [16].
Our findings of differential modulation of MAPkinases
by mycobacterial lipid antigens are supported by Tapinos
and Rambukanna [28], where they have shown that live
leprosy bacilli hijack cellular signalling machinery by po-
tentiating Erk1/2 phosphorylation but not p38 in
Schwann cells, which further promotes cell proliferation
which could aid in spreading of bacilli. Therefore, it
could be inferred that lipid antigens reduce cellular tox-
icity of mycobacterial lysates, as reported elsewhere [29],
which is in contrast to inhibitory effect exerted by myco-
bacterial whole cell soluble lysate on Erk1/2 phosphoryl-
ation in T-cells [22].
NFAT binds to sites in the regulatory regions of several

cytokine genes including IL-2. Upon TCR stimulation
dephosphorylated form of NFAT translocates to nucleus
[26,27]. We observed inhibition by Man-LAM but not by
PGL-1 on DNA binding of NFAT. Defects in NFAT activ-
ity has also been found in T regulatory cells [30]. Also
Garg et al. [31] reported that Man-LAM led to expansion
of T regulatory cells. These reports further strengthens
that lipid antigens could drive hyporesponsive state of T-
cells by suppressing the induction and propagation of
TCR-initiated signals to control IL-2 production and cell
proliferation as reported here.
Our results indicate that Man-LAM and PGL-1 sig-

nificantly alter TCR/CD28- triggered signalling, leading
to diminished activity of Zap-70, calcium influx and
PKC mobilization, differential phosphorylation of
MAPKs and DNA binding of NFAT. As all these events
lead to production of IL-2 cytokine, therefore, produc-
tion of IL-2 at mRNA level was studied. It was noted
that while PGL-1 inhibited expression of TCR triggered
IL-2 mRNA, inhibition induced by Man-LAM was not
significantly different. This effect was recovered with
CD28 costimulation and TCR stimulation, further indi-
cating that CD28 signalling was not primarily targeted
by Man-LAM and PGL-1. Expression of CD25 (IL-2Rα)
is necessary for the binding of IL-2 and thus helps in self
maintenance by T-cells to avoid anergy [32]. Therefore,
its expression was evaluated after activation through
CD3+CD28 ligation in presence or absence of Man-
LAM and PGL-1. Interestingly, these antigens curtailed
TCR/CD28 mediated CD25 expression significantly.
Whole cell lysates of M. tuberculosis [33] and M. leprae
[16] have been shown to attenuate CD25 expression,
which could be specifically due to lipid fractions present
in them as reported in this study. Upregulation of CD25



Figure 7 Mycobacterial lipid antigens inhibit TCR/CD28 stimulated IL-2Rα (CD25 expression. Flowcytometric analysis showing histogram
overlay of CD25 receptor of untreated or antigen pretreated Jurkat T-cells stimulated with α-CD3+ α-CD28 antibodies. Histograms are
representative plots of experiments repeated at least 3 times independently. Here solid bold curve represent expression on α-CD3+ α-CD28
stimulation while dotted bold lines represent expression on stimulation with α-CD3+ α-CD28 plus antigens and shaded histogram shows
expression by unstimulated cells. Bar diagrams represent mean± SEM values of percent positive cells expressing CD25.
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is involved in the autocrine proliferative response [32],
whereas downregulation of CD25 could also be additive
in imposing anergic state in T-cells. Above results indi-
cate that Man-LAM and PGL-1 could lead hyporespon-
sive state of T-cells by suppressing the transduction of
TCR/CD28-induced signals for IL-2 production and
hence T-cell proliferation.
To substantiate the hypothesis generated by using Jur-

kat T-cells and to further assess the effect of mycobac-
terial lipid antigens T-cell proliferation and IL-2
cytokine production in healthy subjects, we performed
Figure 8 Man-LAM and PGL-1 inhibit TCR- and TCR/CD28-
induced secretion of IL-2 cytokine in PBMCs of healthy
individuals. Bar diagram showing mean± SEM concentration of IL-2
in pg/ml in the culture supernatant of PBMCs of healthy individuals
(N = 5) after stimulation with α-CD3 or α-CD3+ α-CD28 in presence
or absence of Man-LAM and PGL-1 at the end of 48 h. Experiments
were performed in triplicates.
the bioassays using PBMCs derived from healthy indivi-
duals. Man-LAM and PGL-1 were found to significantly
inhibit TCR mediated IL-2 secretion and T cell blasto-
genesis both. However, co-stimulation by CD28 could
help cells to proliferate (survival) but not for IL-2 pro-
duction, which further suggests that TCR triggered sig-
nalling is primarily targeted by Man-LAM and PGL-1,
over CD28- induced signalling.

Conclusion
Altogether our findings establish that Man-LAM prefer-
entially inhibit TCR-mediated proximal signaling events
Figure 9 Man-LAM and PGL-1 inhibit TCR- and TCR/CD28-
induced T-cell proliferation. Bar diagram showing mean± SEM of
tritiated thymidine (3 H) uptake by PBMCs of healthy individuals
(N = 5) after stimulation with α-CD3 or α-CD3+ α-CD28 in presence
or absence of Man-LAM and PGL-1 at the end of 72 hrs. Experiments
were performed in triplicates.
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like Zap70 phosphorylation, calcium influx, PKC activa-
tion, but potentiate phosphorylation of Erk1/2 over
p38mapk, whereas overall major effect on various signal-
ling pathways was contributed by PGL-1 as both TCR
and CD28 co-stimulatory pathways are involved. It is
possible that the ratio of PGL-1 and Man-LAM decides
the modulation of T cell responses in leprosy leading to
a state of hyporesponsiveness by upregulating Erk1/2
phosphorylation over p38mapk. Further, there is reduc-
tion of IL-2 production at protein levels and also its up-
take by inhibiting CD25 expression in T cells which
eventually leads to reduced T-cell proliferation. These
events do not show hypervirulence nature of mycobac-
teria as evident by Sinsimer et al., 2008. Altogether,
these events favour longer intracellular survival for the
bacilli by diminishing T-cell coordinated CMI, an indis-
pensable arm of immunity to clear intracellular infec-
tion, leading to disease progression, as noticed in
advance stages of mycobacterial infections such as tuber-
culosis and leprosy.

Materials and methods
Jurkat T-cell line was procured from national cell reposi-
tory, India and peripheral blood lymphocytes (PBL) were
isolated from buffy coats from healthy donors and lep-
rosy patients (both tuberculoid and lepromatous) by
density gradient separation. Cells were maintained in C-
RPMI (RPMI-1640 + 10%FBS + 2 mM-L-Glutamine + 1X
antibiotic-antimycotic cocktail) at 37°C and 5%CO2 in a
humidified incubator. Study was approved by institu-
tional ethical committee and subjects were included
after getting their informed consent.

Chemicals and antigens
General reagents were purchased from Sigma. Fura-2-
AM was from Calbiochem, USA. Anti-human CD3
(HIT3-α), anti-human CD28 (CD28.2), anti-human
CD25-PECy5, were from Becton Dickinson,USA. P-
p38MAPK and P-Erk1/2 antibodies were from Cell Sig-
nalling Technology, USA. β-actin and peroxidase-
labelled secondary antibodies were from Santacruz Tech-
nologies, USA. Tritiated-thymidine was from BARC,
India whereas ECL reagent from Millipore, USA. PGL-1
was procured from Dr. Brennan, under Leprosy research
support (NIH-N01-A1-25469), whereas Man-LAM from
Dr. Spencer, under TB Vaccine Testing and Research Ma-
terial contract (NIH, NIAID NOI-AI-40091), Colorado
State University, USA.

Quantification of transmembrane Ca2+ mobilisation
Jurkat T-cells (2x106/ml) were incubated with Fura-2/
AM dye at 1 μM for 30 min at 37°C in loading buffer.
(pH 7.4 (in mM): CaCl2, 1.2; NaCl, 110 ; NaHCO3, 25;
KCl, 5.4; KH2PO4, 0.4; HEPES, 20; MgCl2, 0.8;Na2HPO4,
0.33). Loaded cells were washed three times (2000 g x
10 min) and resuspended in loading buffer. [Ca2+]i was
measured by adding the test molecules in cuvette with-
out interruption in reading as reported elsewhere
[16,34].

Treatment and activation of cells
Serum starved Jurkat T-cells (5x106/ml) were incubated
or not with Man-LAM or PGL-1 for two hours, then sti-
mulated or not with anti-CD3 antibody (10 μg/ml) and/
or anti-CD28 antibody (5 μg/ml) at 4°C, followed by
cross linking using GAM-IgG (5 μg/ml) at 37°C as per
Kim and White [35].

Analysis of PKC activation
After 15 min of stimulation at 37°C Jurkat T-cells were
lysed with 50 μl of buffer (EDTA, 1 mM; EGTA, 1 mM;
HEPES, 20 mM pH 7.3; NaCl, 0.15 mM; Triton X-100,
1%; glycerol, 10%; PMSF, 1 mM; Na3VO4, 2 mM; anti-
protease cocktail). After centrifugation (13,000 x g for
1 min), clear cell lysates were used immediately or
stored at −80°C. Cytosolic protein contents were esti-
mated with Bradford reagent. PKC activity in the cyto-
solic fractions was measured in duplicate using protein
kinase assay kit as per manufacturer’s instructions (Cal-
biochem, USA).

Western blotting of Zap-70 and MAPKs
Denatured proteins (30 μg) were separated by SDS-
PAGE (10%) and transferred on polyvinylidine difluoride
(PVDF) membranes. Detection of phosphorylated forms
of Zap-70, p38 MAPK and Erk1/2 was done using 2 μg/ml
antibody in TBS-BSA (2.5%) with overnight incubation at
4°C. After washing with TBST (TBS+0.05% Tween-20),
membranes were incubated with secondary antibodies for
30 min at RT and peroxidase activity was detected on X-
ray sheets using ECL reagents. Membranes were stripped
and further reprobed for β-Actin to confirm equal loading.
Quantity OneTM software (BioRAD, USA) was used for
densitometric analysis of protein bands.

Electrophoretic mobility shift assay (EMSA)
Nuclear extract was prepared (as per Schrieber et al.)
[36], from serum starved Jurkat T-cells preincubated
with Man-LAM and PGL-1 for 2 h and then stimulated
with PMA (5nM) and ionomycin (2 μM) for 2 h. The
nuclear extract was either used fresh or was frozen in
aliquots at -70°C till further use. The sequence of the
oligonucleotides used for NFAT was 5'-GATCTTTA
CATTGGAAAATTTTAT-3' [37] and was biotinylated
using 3’-end DNA labelling kit (Pierce Endogen, USA)
and annealed for 2 h at RT. Binding reactions were car-
ried out using 20 fmol of biotin-end-labelled target
DNA with 4 μg of nuclear extract for 20 min at RT as
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per kit’s instructions [LightShiftTM chemiluminiscent
EMSA kit, Pierce Endogen, USA]. Assays were run on a
pre run native 4% PAGE gel in 0.5x Tris borate/EDTA
at 100 V before transferring to a charged nylon mem-
brane (Millipore, USA). Band shifts were detected after
crosslinking (120 mJ/cm2) the transferred DNAs to the
membrane as per kit instructions.
Transcription of IL-2 gene
Similarly pretreated Jurkat T-cells were stimulated with
anti-CD3± anti-CD28 and cross-linked as described
above. Total RNA was isolated using Trizol-R (Invitro-
gen, USA). 0.5 μg of total RNA was reverse-transcribed
using RT-PCR kit (Bangalore Genei, Bengaluru, India)
and PCR amplification for IL-2 and β-actin was per-
formed as described elsewhere (Dagur et al., 2010).
Amplicons were electrophoresed on 1.5% agarose gel
containing ethidium bromide. Gel images were captured
and band densities were quantified using Gel Documen-
tation System (Bio Rad, USA).
Expression of CD25 by flow cytometry
T-cells pre-incubated or not with antigens were stimu-
lated with TCR/CD28 for 18 h at 37°C in humidified 5%
CO2 incubator. Expression of CD25 was measured by
using α-humanCD25Cy5PE antibodies. Samples were
acquired on FACSAriaTM flow cytometer equipped with
FACSDIVATM software (BD Biosciences). FlowJo soft-
ware was used to analyse the acquired data (Treestar,
USA).
Effect of lipid antigens on IL-2 cytokine production and T-
cell proliferation
PBMCs were isolated from healthy volunteers and were
incubated with α-CD3 antibody alone or with α-CD28
antibody at 4°C for 15 min. Then cells were given a
quick wash and were added on GAM-IgG (5ug/ml) pre-
coated wells (2x105 per well in C-RPMI) supplemented
or not with Man-LAM and PGL-1. At the end of 48 h
IL-2 was estimated in supernatant by ELISA as per man-
ufacturer's instructions (Bender Medsystems, Austria).
Whereas tritiated thymidine (1 μCi/well) was added in
the culture for last 16 h and radioactivity was read in li-
quid scintillation counter (LKB Wallac, Netherlands) at
the end of 72 h of incubation.
Statistical analysis
Data were analysed using Graphpad Prism-3.02 software
(San Diego, CA, USA) and Mean ± SEM were calculated.
Paired student’s t test was used to compare values with
in a group and P value < 0.05 was considered as
significant.
Additional file

Additional file 1: Figure S1. Dose optimisation curve of Man-LAM and
PGL-1 by using PBMCs of healthy individuals by MTT dye uptake assay
(Different concentration of 2.5, 5, 7.5, 10, 15, 20, 25 μg/ml of antigens
were taken). Dose corresponding to log phase was taken as optimal dose
for further assays. Figure S2. Lymphoproliferative responses of healthy
and leprosy patients (TT/BT and BL/LL) using H3-thymidine uptake assay.
Bar diagram showing mean ± SEM of stimulation indices (S.I) of
Tuberculoid (TT/BT) (N = 10), Lepromatous (BL/LL) patients (N = 5) and
healthy individuals (N = 10) after stimulation of their PBMC’s with
optimized doses of PHA, PPD, Man-LAM and PGL-1. S.I was calculated
according to the formula:

S:I: ¼ Mean counts per minute of experimental wells
Mean counts per minute of control wells
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