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Leptin deficiency-induced obesity affects the
density of mast cells in abdominal fat depots and
lymph nodes in mice
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Abstract

Background: Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the
effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots,
skeletal muscle, and liver) and lymphatic (abdominal lymph nodes, spleen, and thymus) organs. Fourteen-week-old
male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained
with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried
out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-a (TNF-a), a proinflammatory
cytokine involved in obesity-linked insulin resistance, were identified by immunostaining.

Results: ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed
differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in
ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in
epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein
expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were
immunoreactive for TNF-a. The proportion of mast cells immunoreactive for TNF-a was higher in epididymal than in
subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal,
mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in
retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by
increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in
skeletal muscle, liver, spleen, and thymus was noted between ob/ob and control mice.

Conclusions: This study demonstrates that leptin deficiency-induced obesity is accompanied by alterations in the
density of mast cells in abdominal fat depots. The divergent distribution of mast cells in subcutaneous versus
visceral fat might partially account for their differential biological behavior. Mast cells might also play a role in
adaptive immune response occurring in regional lymph nodes in obesity.
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Background
Obesity has reached epidemic proportions in many parts
of the world [1]. Obesity if often accompanied by a low-
grade systemic inflammatory state and adipose tissue
inflammation [2]. Although the underlying mechanisms

that induce adipose tissue inflammation in obesity
remain largely elusive, adipocyte injury and death appear
to play a central role [3]. Cells and mediators of both
innate and adaptive immunity are involved in adipose
tissue inflammation in obesity. In obese rodents and
humans, monocytes infiltrate adipose tissue and differ-
entiate into proinflammatory macrophages [4]. In addi-
tion, subsets of T lymphocytes, including regulatory T
cells [5], CD8+ effector T cells [6], and natural killer T
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cells [7], are involved in adipose tissue inflammation in
obesity.
In addition to their role in host defense, mast cells

have been implicated in a variety of inflammatory and
autoimmune diseases, such as allergic reactions, bullous
pemphigoid, multiple sclerosis, inflammatory arthritis,
and atherosclerosis [8]. Mast cells accumulate in the
adipose tissue of obese human subjects and diet-induced
obese mice [9-11]. Furthermore, mast cell deficiency
and mast cell stabilizers are shown to diminish adverse
metabolic effects of a high-fat diet [10]. Of note, we
have shown that mast cells in the epididymal fat of diet-
induced obese mice contain and secrete tumor necrosis
factor-a (TNF-a), a proinflammatory cytokine impli-
cated in the pathogenesis of obesity [11].
There is a remarkable diversity in the structure and

function of the adipose tissue found in different anato-
mical locations [12,13]. Whereas visceral adiposity is
closely associated with adverse cardiovascular outcome,
increased subcutaneous fat, especially around thighs and
hips, poses little to no risk [14]. We recently demon-
strated that macrophages and mast cells are distributed
differentially in abdominal fat depots of both lean and
diet-induced obese mice [11]. We also showed that diet-
induced obesity in mice is associated with a marked
increase in mast cells in the visceral, but not in the sub-
cutaneous, fat depots [11]. Although adipose tissue
inflammation in obesity and its metabolic sequelae have
been the focus of intense research over the past two
decades, little is known about immune responses that
take place in regional lymph nodes draining inflamed
adipose tissues. Lymph nodes are strategically located
lymphoid tissues where innate immune responses result
in adaptive immunity [15]. The involvement of lympho-
cytes in adipose tissue inflammation in obesity suggests
a crosstalk between innate and adaptive immune sys-
tems in peripheral lymphoid tissues. Although there are
many potential targets, we examined the effects of adi-
pose tissue inflammation on mast cells in abdominal
lymph nodes.
The present study explored whether obesity and insu-

lin resistance as a result of leptin deficiency affect the
density and distribution of mast cells in metabolic
(abdominal fat depots, skeletal muscle, and liver) and
lymphatic (abdominal lymph nodes, spleen, and thymus)
organs. We also determined the prevalence of mast cells
immunoreactive for TNF-a in epididymal and inguinal
(subcutaneous) fat depots.

Methods
Experimental animals
We followed the ‘Principles of laboratory animal care’
established by the National Institutes of Health. The
Institutional Animal Care and Use Committee of the

University of Miami approved all procedures on experi-
mental animals (IACUC protocol number 08-245). Male
leptin-deficient (ob/ob, n = 10) and control (+/?, n = 10)
mice were purchased from the Jackson Laboratory (Bar
Harbor, ME) and acclimated for three weeks before
blood and tissue sampling was carried out at the age of
14 weeks. Mice were fed on a standard chow (Rodent
Diet 5010, LabDiet, St. Louis, MO). Mice were weighed
with a Scout Pro balance SP202 (Ohaus, Pine Brook,
NJ). Organ weights were measured with a Sartorius
ED124S Analytical Balance (Sartorius, Bohemia, NY).

Glucose, insulin and cholesterol assays
Blood was obtained from the tail of unanesthetized mice
after overnight fasting for 15 hours. Blood glucose con-
centrations were measured using a Contour glucometer
(Bayer, Tarrytown, NY). Serum insulin concentrations
were measured by immunoassay following manufac-
turer’s instructions (Crystal Chem, Downer Grover, IL).
Serum cholesterol concentrations were determined using
Cholesterol LiquiColor kit (Stanbio Laboratory, Boerne,
TX). Homeostasis Model of Assessment-Insulin Resis-
tance (HOMA-IR) was calculated using the formula: fast-
ing glucose (mg/dl) × fasting insulin (mU/L)/405.

Harvesting abdominal fat depots and lymph nodes
The anatomy of abdominal fat depots and lymph nodes
are illustrated in Figure 1. Non-fasted mice were eutha-
nized and partially skinned. The right inguinal fat depot
harboring the inguinal lymph node was dissected. After
harvesting the right epididymal fat depot, the attached
testis and epididymis were dissected under a Nikon
SMZ 1500 microscope (Nikon, Melville, NY). The small
intestine, attached mesenteric fat, and mesenteric lymph
nodes were removed in toto. The retroperitoneal organs,
including kidneys, retroperitoneal fat depots and retro-
peritoneal lymph nodes, were dissected off posterior
abdominal wall.

Quantification of mast cells
Tissues were fixed in Carnoy’s solution and embedded
in paraffin. Five micron-thick sections were cut, baked
at 60°C for one hour, deparaffinized in xylene, and rehy-
drated in a graded ethanol series and water. To demon-
strate mast cells, toluidine blue staining was carried out
by briefly submerging tissue sections in 0.1% aqueous
toluidine blue (Electron Microscopy Sciences, EMS, Hat-
field, PA) [11]. Mast cells were counted in twenty high-
power fields (400X) of toluidine blue-stained sections
and their density was expressed as mast cells per mm2

of tissue section. In the epididymal fat, mast cells were
counted along the long axis of the fat depot from rostral
to caudal. In the mesenteric, perinephric, and inguinal
subcutaneous fat depots, mast cells were counted in
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areas away from the mesenteric, retroperitoneal, and
inguinal lymph nodes, respectively.

Enzyme histochemistry
Esterase activity of mast cells was demonstrated as pre-
viously described [11]. Briefly, tissue sections were
stained with a mixture of new fuchsin acid solution (Poly
Scientific, Bay Shore, NY), 4% sodium nitrite solution
(Sigma-Aldrich, St. Louis, MO), and naphthol AS-D
chloroacetate solution (Sigma-Aldrich) in 0.1 M sodium
phosphate buffer, pH 7.6 (EMS) and counterstained with
Mayer’s hematoxylin (EMS). Light microscopic images
were acquired using a Leica DMLB microscope with a
Leica DFC420 C color camera (Leica, Bannockburn, IL).

Immunofluorescence staining
After blocking with 5% goat serum, deparaffinized tissue
sections were sequentially incubated with polyclonal rabbit
anti-mouse TNF-a antibody (1:250; Abcam, Cambridge,
MA) and Alexa Fluor 594-labeled goat anti-rabbit IgG
(1:1000; Molecular Probes, Eugene, OR). Mast cells were
labeled with FITC-conjugated avidin (1:100; BD Pharmin-
gen, San Jose, CA) as previously described [11,16].

Protein extraction and immunoblotting
Epididymal and inguinal adipose tissue (100 mg) were
homogenized in 0.5 ml ice-cold lysis buffer containing
50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40,

0.5% sodium deoxycholate, 0.1% SDS, 5 mM EDTA, 1
mM EGTA (Boston BioProducts, Ashland, MA) supple-
mented with a cocktail of protease inhibitors (Complete
Mini, Roche Applied Science, Indianapolis, IN). Follow-
ing agitation on a rotator for 1 hour and centrifugation
at 13,000 rpm for 20 minutes at 4°C, middle phase of
lysate containing 30 μg protein was subjected to polya-
crylamide gel electrophoresis (NuPAGE Bis-Tris system,
Invitrogen, Carlsbad, CA). A rabbit polyclonal antibody
against CD117/c-kit (1:1000, Dako, Carpinteria, CA) and
a mouse monoclonal antibody against actin (1:1000,
Sigma-Aldrich) were used for immunoblotting.

Statistics
Results are presented as mean ± SEM. Unpaired Stu-
dent’s t test was used to assess for statistically significant
differences between groups. Comparisons among multi-
ple groups were made using one-way analysis of var-
iance (ANOVA) with Tukey post-hoc analysis.
GraphPad Prism software (5.0a) was used for calcula-
tions (GraphPad Software, La Jolla, CA).

Results
Leptin-deficient ob/ob mice demonstrated adiposity,
insulin resistance, and hypercholesterolemia
Compared to controls, ob/ob mice demonstrated greater
body mass, fasting blood glucose, serum insulin and
cholesterol concentrations, and HOMA-IR (Homeostatic
model assessment-insulin resistance) (Table 1). In addi-
tion, ob/ob mice had larger liver, inguinal and epididy-
mal fat depots than control mice (Table 1).

Mast cells were distributed differentially in abdominal fat
depots
Mast cells were present in abdominal fat depots of ob/
ob and control mice (Figure 2). The density of mast
cells, however, differed from one fat depot to another.
In control mice, the density of mast cells was higher in
subcutaneous than in visceral fat depots (Figures 2A-E).
Moreover, the density of mast cells was 2.5-fold higher
in mesenteric and perinephric than in epididymal fat in
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Figure 1 Abdominal fat depots and lymph nodes in the mouse.
The epididymal (1), mesenteric (2), perinephric (3), and inguinal (4)
fat depots of a male ob/ob mouse are demonstrated. Furthermore,
the inguinal (5), mesenteric (6), and retroperitoneal (7) lymph nodes
are represented schematically. The right testis (8), right epididymis
(9), left kidney (10), urinary bladder (11), and a small bowel loop (12)
are also shown.

Table 1 Metabolic characteristics of mice

Variables ob/ob (n = 10) +/? (n = 10) P value

Body weight (g) 60.2 ± 1.2 33.0 ± 0.7 < 0.001

Epididymal fat weight (g) 1.70 ± 0.04 0.41 ± 0.05 < 0.001

Inguinal fat weight (g) 1.86 ± 0.07 0.21 ± 0.02 < 0.001

Liver weight (g) 4.96 ± 0.17 1.53 ± 0.06 < 0.001

Blood glucose (mg/dl) 115 ± 8 64 ± 3 < 0.001

Serum insulin (ng/ml) 5.8 ± 0.6 1.1 ± 0.2 < 0.001

HOMA-IR 47.2 ± 4.9 5.0 ± 0.7 < 0.001

Serum cholesterol (mg/dl) 228 ± 5 89 ± 4 < 0.001
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control mice (Figure 2A). In ob/ob mice, however, the
density of mast cells was higher in epididymal fat than
in inguinal, mesenteric, and perinephric fat depots (Fig-
ures 2F-J).

Leptin deficiency led to a divergent change in the density
of mast cells in inguinal and epididymal fat
Leptin deficiency-induced obesity was accompanied by a
20-fold increase in the density of mast cells in epididy-
mal fat, but a 13-fold decrease in inguinal fat (Figures
2K-M). No statistically significant difference in the

density of mast cells in mesenteric and perinephric fat
depots between ob/ob and control mice was observed
(Figures 2N, O). To confirm divergent alteration in the
density of mast cells in epididymal vs. inguinal adipose
tissue, tissue homogenates were subjected to immuno-
blotting for CD117/c-kit, a transmembrane tyrosine
kinase receptor highly expressed in mast cells. Consis-
tent with increased mast cell density in epididymal fat
with leptin deficiency, Western blot analysis demon-
strated increased CD117/c-kit expression (Figure 2P). A
decline in mast cell density in inguinal fat with leptin

Figure 2 Mast cells in abdominal fat depots. The density of mast cells in epididymal, mesenteric, perinephric, and inguinal (subcutaneous) fat
depots from control (+/?, n = 10, white bars) and ob/ob mice (n = 10, black bars) are shown (A-J). Leptin deficiency-induced obesity was
accompanied by a divergent change in the density of mast cells in inguinal and epididymal adipose tissues (K-O). Photomicrograhs demonstrate
mast cells (arrows) stained for chloroacetate esterase. CD117/c-kit protein expression in epididymal and inguinal fat depots from ob/ob and
control mice are also shown (P, Q). Scale bars are 50 μm. ***P < 0.001.
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deficiency was accompanied by diminished CD117/c-kit
protein expression (Figure 2Q).

The proportion of mast cells immunoreactive for TNF-a
was higher in epididymal than in inguinal fat
We have previously shown that adipose tissue mast cells
may be immunoreactive for TNF-a (11). Considering
biological differences between subcutaneous and visceral
fat, we tested whether the prevalence of mast cells
immunoreactive for TNF-a was different between ingu-
inal and epididymal fat. We found that 96% of mast
cells in epididymal fat from control mice were immu-
noreactive for TNF-a. However, only 69% of those in
inguinal fat showed TNF-a immunoreactivity (Figure
3A). In ob/ob mice, TNF-a immunoreactivity was also
observed in the vast majority of mast cells (95%) in epi-
didymal fat, while only 53% of mast cells in inguinal fat

were immunoreactive for TNF-a (Figure 3B). Therefore,
the proportion of mast cells immunoreactive for TNF-a
was greater in visceral than in subcutaneous fat in both
ob/ob and control mice.

Mast cells were distributed differentially in abdominal
lymph nodes
Tissue inflammation often leads to immune responses in
draining lymph nodes. Here, we sought to determine the
effects of leptin deficiency-induced obesity on the den-
sity of mast cells residing in abdominal lymph nodes.
We found that mast cells populated retroperitoneal,
mesenteric, and inguinal lymph nodes in both ob/ob and
control mice (Figure 4). In control mice, the density of
mast cells was significantly higher in retroperitoneal (40
± 12 cells/mm2) than in inguinal (18 ± 2 cells/mm2) and
mesenteric (0.1 ± 0.1 cells/mm2) lymph nodes (Figures
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Figure 3 TNF-a immunoreactivity in adipose tissue mast cells. Immunofluorescence microscopy demonstrated mast cells labeled with FITC-
conjugated avidin (green) and Alexa Fluor 594-labeled TNF-a (red) in epididymal and inguinal adipose tissues from control (+/?, n = 5, white
bars, panel A) and ob/ob (n = 5, black bars, panel B) mice. Scale bars are 50 μm. * P < 0.05, ** P < 0.01.
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4A-D). Similarly, retroperitoneal lymph nodes had a
higher density of mast cells (81 ± 14 cells/mm2) than
inguinal (25 ± 2 cells/mm2) and mesenteric (2.1 ± 0.5
cells/mm2) lymph nodes in ob/ob mice (Figures 4E-H).
In both ob/ob and control mice, the density of mast
cells was higher in inguinal than in mesenteric lymph
nodes.

Leptin deficiency-induced obesity was accompanied by
increased mast cell density in abdominal lymph nodes
Mast cells were more prevalent in retroperitoneal,
mesenteric, and inguinal lymph nodes from ob/ob than
those from control mice (Figures 4I-K). The density of
mast cells in retroperitoneal lymph nodes was twofold
higher in ob/ob than in control mice (Figure 4I). More-
over, mast cells were 40% more prevalent in inguinal

lymph node from ob/ob mice than in that from control
mice (Figure 4J). The density of mast cells in mesenteric
lymph nodes was also higher in ob/ob than in control
mice (Figure 4K).

The density of mast cells in skeletal muscle, liver, spleen,
and thymus was not affected by leptin deficiency
There was no significant difference in the density of
mast cells in the gastrocnemius muscle between ob/ob
and control mice (3.0 ± 0.4 vs. 2.1 ± 0.2 cells/mm2)
(Figure 5A). Mast cells were rare in the liver of both ob/
ob (0.02 ± 0.02 cells/mm2) and control (0.00 ± 0.00
cells/mm2) mice (Figure 5B). The density of mast cells
in the spleen of ob/ob mice (1.0 ± 0.4 cells/mm2) was
similar to that of controls (1.2 ± 0.5 cells/mm2) (Figure
5C). Mast cells were rare in the thymus of both ob/ob
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(0.03 ± 0.03 cells/mm2) and control (0.03 ± 0.03 cells/
mm2) mice (Figure 5D).

Discussion
Here, we demonstrated that mast cells are distributed
differentially in abdominal fat depots and lymph nodes
in leptin-deficient obese mice. With respect to abdom-
inal fat depots, leptin deficiency-induced obesity was
accompanied by a substantial increase (20-fold) in the
density of mast cells in epididymal fat, while a remark-
able decrease (11-fold) in the density of mast cells in
inguinal (subcutaneous) fat was observed. This divergent
alteration in the density of mast cells was confirmed by

CD117/c-kit protein expression analysis. Furthermore,
the proportion of mast cells immunoreactive for TNF-a
was significantly greater in epididymal than in inguinal
fat. Leptin deficiency-induced obesity was associated
with increased mast cells in abdominal lymph nodes.
We found no significant difference in the density of
mast cells in skeletal muscle, liver, spleen, and thymus
between leptin deficient and control mice.
The structural and functional differences between fat

depots in various anatomical locations have been the
subject of much interest [12-14]. Since the discovery of
adipose tissue inflammation in obesity and its impact on
systemic insulin sensitivity, numerous studies have
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examined immune responses in fat depots in obese
rodents and humans [11,17,18]. Our group recently
reported that a high-fat diet (60% calories from fat) fed
for 20 weeks led to an increase in mast cells in epididy-
mal (90-fold), perinephric (24-fold), and mesenteric (7-
fold) fat depots of 6-month-old C57BL/6 mice [11].
However, we found no significant difference in the den-
sity of mast cells in inguinal fat between diet-induced
obese and control mice [11]. We believe that the differ-
ences observed between these two studies can be
explained by at least three factors: 1) the duration of
obesity; 2) the experimental diet; and 3) the proinflam-
matory properties of leptin, as discussed below.
Similar to other inflammatory diseases, adipose tissue

inflammation in obesity is a dynamic pathophysiological
process [18]. Neutrophils infiltrate visceral fat of mice
within a week after high-fat feeding [19]. This is fol-
lowed by macrophage accumulation and formation of
crown-like structures [3,4]. Over time, adipose tissue
inflammation in obesity is associated with collagen
deposition and tissue fibrosis [18]. Thus, the type and
severity of inflammatory changes in a specific fat depot
is in part a function of the duration of obesity. More-
over, since fat depots have different propensity for obe-
sity-associated inflammation, at any given time-point the
severity of inflammation is different from one fat depot
to another. In addition, the development of obesity and
associated adipose tissue inflammation also depends on
the type of diet consumed. We believe that a high-fat
diet leads to more severe adipocyte injury and associated
adipose tissue inflammation than the intake of larger
quantities of a standard chow, as it is the case with lep-
tin-deficient mice in the present study.
Pivotal in the regulation of energy homeostasis, meta-

bolism, and neuroendocrine functions, leptin also plays
an important role in innate and adaptive immune
responses. Leptin can induce TNF-a and IL-6 production
by monocytes [20]. Leptin can also augment the ability of
macrophages to phagocytize pathogens [21]. For exam-
ple, macrophages harvested from leptin-deficient mice
showed reduced phagocytosis of bacteria [22]. Since lep-
tin is required for lymphopoiesis, leptin receptor-defi-
cient mice have fewer circulating B- and CD4+ T-
lymphocytes and are unable to correct irradiation-
induced lymphopenia [23]. By stimulating IL-2 and IFN-g
and suppressing IL-4 production, Leptin may favor
proinflammatory T-lymphocyte responses as well [24].
Leptin is also found to be important in the development
and activation of natural killer cells [25]. Thus, a lower
degree of adipose tissue inflammation in ob/ob mice can
also be accounted for by diminished innate and adaptive
immune responses due to leptin deficiency.
A proinflammatory cytokine with diverse biological

effects, TNF-a plays a critical role in the pathogenesis of

obesity-linked insulin resistance [2]. Mast cells may con-
tain preformed TNF-a [26]. Moreover, upon proper sti-
mulation, TNF-a protein and gene expression can be
upregulated in mast cells [26]. We have previously shown
that mast cells in the epididymal fat of diet-induced
obese mice store and secrete TNF-a [11]. Here we
showed that the majority of mast cells in epididymal and
subcutaneous adipose tissue of both leptin-deficient
obese and control mice are immunoreactive for TNF-a.
However, we found that the proportion of mast cells
immunoreactive for TNF-a was significantly higher in
epididymal than in subcutaneous adipose tissue.
Although other inflammatory and non-inflammatory
cells in adipose tissue are capable of expressing TNF-a, a
lower proportion of mast cells immunoreactive for TNF-
a might be an important mechanism for the resilience of
subcutaneous adipose tissue to metabolic challenges and
consequent adipose tissue inflammation in obesity.
Lymph nodes are strategically located lymphoid tissues

where innate immune responses can result in the induc-
tion of adaptive immunity [12]. Macrophages, B- and T-
lymphocytes form the bulk of a lymph node. Although
lymph nodes are involved in most immune responses,
little is known about immunological reactions occurring
in regional lymph nodes draining fat depots in obesity.
A recent report indicated that increased T-lymphocyte
activation and apoptosis was associated with decreased
numbers of CD4+ and CD8+ T-lymphocytes in mesen-
teric lymph nodes of diet-induced obese mice [27].
Moreover, decreased proportions of CD8+ T-lympho-
cytes and higher proportions of helper T-cell subsets in
mesenteric lymph nodes of genetically obese rats com-
pared to lean controls [28].
Mast cells are scattered in the cortical and medullary

sinuses of murine lymph nodes [29]. While much is
known about immune responses that take place in a
lymph node, the immunological functions of mast cells
in a lymph node remain largely elusive. It has been
shown that mast cells residing in a lymph node can
facilitate recruitment of T-lymphocytes by secreting che-
mokines such as macrophage inflammatory protein-1B
[30]. Furthermore, mast cells in inflamed tissues can
cause enlargement and activation of a draining lymph
node by releasing TNF-a that is transported to draining
lymph nodes [31]. In addition, it has been shown that
dermal mast cells can migrate to draining lymph nodes
and induce adaptive immune responses [30,32]. The
present study is the first to show an increase in the den-
sity of mast cells in regional lymph nodes draining
abdominal fat depots in obesity. The increased numbers
of mast cells in the abdominal lymph nodes could be
due to 1) increased mitotic activity of resident mast
cells, 2) enhanced recruitment of precursor cells, 3)
immigration from inflamed adipose tissue, and/or 4)
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decreased emigration. Although the contributions of
mast cells to the activation of the immune system are
widely recognized, under certain conditions mast cells
can suppress immune responses [33]. Thus, further stu-
dies are required to delineate the role of mast cells in
the lymph nodes draining inflamed fat depots in obesity.
The present study describes the effects of leptin defi-

ciency-induced obesity on the distribution of mast cells
in subcutaneous and visceral fat depots and regional
lymph nodes. Important differences were noted between
subcutaneous and epididymal fat depots. Increased den-
sity of mast cells in abdominal lymph nodes in obesity
represents an anatomical link between adipose tissue
inflammation and adaptive immune responses in lymph
nodes. This work will stimulate design and implementa-
tion of mechanistic studies addressing immunological
functions of mast cells in adipose and secondary lym-
phoid tissues in obesity.
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