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Abstract

Background: A sedentary lifestyle predisposes to cardiometabolic diseases. Lifestyle changes such as increased
physical activity improve a range of cardiometabolic risk factors. The objective of this study was to examine
whether functional changes in adipose tissue were related to these improvements.

Methods: Seventy-three sedentary, overweight (mean BMI 29.9 ± 3.2 kg/m2) and abdominally obese, but otherwise
healthy men and women (67.6 ± 0.5 years) from a randomised controlled trial of physical activity on prescription
over a 6-month period were included (control n = 43, intervention n = 30). Detailed examinations were carried out
at baseline and at follow-up, including fasting blood samples, a comprehensive questionnaire and subcutaneous
adipose tissue biopsies for fatty acid composition analysis (n = 73) and quantification of mRNA expression levels of
13 candidate genes (n = 51), including adiponectin, leptin and inflammatory cytokines.

Results: At follow-up, the intervention group had a greater increase in exercise time (+137 min/week) and a
greater decrease in body fat mass (−1.5 kg) compared to the control subjects (changes of 0 min/week and −0.5 kg
respectively). Circulating concentrations of adiponectin were unchanged, but those of leptin decreased significantly
more in the intervention group (−1.8 vs −1.1 ng/mL for intervention vs control, P< 0.05). The w6-polyunsaturated
fatty acid content, in particular linoleic acid (18:2w6), of adipose tissue increased significantly more in the intervention
group, but the magnitude of the change was small (+0.17 vs +0.02 percentage points for intervention vs control,
P< 0.05). Surprisingly leptin mRNA levels in adipose tissue increased in the intervention group (+107% intervention
vs −20% control, P< 0.05), but changes in expression of the remaining genes did not differ between the groups.

Conclusions: After a 6-month period of increased physical activity in overweight elderly individuals, circulating
leptin concentrations decreased despite increased levels of leptin mRNA in adipose tissue. Otherwise, only minor
changes occurred in adipose tissue, although several improvements in metabolic parameters accompanied the
modest increase in physical activity.
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Introduction
The number of obese individuals worldwide has increased
dramatically during the last couple of decades. Obesity
strongly predisposes to cardiometabolic diseases and
hence, a vast number of people are characterized with a
poor health prognosis.
A major contributor to the obesity epidemic in modern

societies is a sedentary lifestyle and low levels of daily
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physical activity have a negative effect on many phy-
siological pathways [1]. Increased physical activity, as
induced for example by an individualised written pre-
scription, has been shown to improve a spectrum of
clinical risk markers, and hence cardiometabolic risk
[2-4]. Furthermore, increasing the degree of physical ac-
tivity, as one part of a healthier lifestyle, has shown even
greater efficiency than pharmacotherapy in preventing
the onset of type 2 diabetes [5]. Such data clearly support
the promotion of physical activity as a key factor in the
battle of primary prevention. Metabolic pathways that
are affected by increased physical activity include weight
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regulation, glucose and lipid handling capacities, hemo-
dynamics, hormonal balance and inflammatory state [6-8].
All of these variables are recognised components of the
unfavourable metabolic state called the metabolic syn-
drome. However, the mechanisms at the molecular level
by which changes in physical activity lead to improve-
ments in metabolic parameters have not been fully eluci-
dated. One possibility is that changes in adipose tissue
metabolism and function are involved, either directly or
indirectly, in these metabolic improvements.
Obesity is tightly related to insulin resistance and adi-

pose tissue is an important endocrine organ that produces
adipokines that can affect metabolic and inflammatory
pathways, predominantly in an autocrine/paracrine fash-
ion, but also systemically [9-11]. Relationships between
many of these adipokines (such as adiponectin, leptin,
IL-6 and TNFα) and insulin resistance have been de-
scribed [12,13]. Obesity and insulin resistance are strong-
ly associated with local inflammation and macrophage
accumulation within adipose tissue, and a direct relation-
ship between adipose tissue inflammation and insulin re-
sistance has been proposed [12,14,15]. However, more
recently a “house keeping” role of adipose tissue macro-
phages in the regulation of adipocyte lipolysis has been
suggested [16], indicating the complexity of the relation-
ship between local inflammation, adipose tissue function
and obesity/insulin resistance.
Another important aspect of adipose tissue metabolism

in relation to components of the metabolic syndrome is
the fatty acid composition of stored triglycerides. A
higher content of saturated fatty acids has been described
in adipose tissue from obese compared to overweight
individuals [17], while a diet rich in saturated fatty acids
promoted expression in adipose tissue of genes involved
in inflammation [18]. Estimates of the activity of stearoyl
CoA desaturase (SCD) in adipose tissue have been posi-
tively correlated to insulin resistance [19] and obesity [20],
possibly suggesting an increased desaturation of adipose
tissue fatty acids by SCD in response to (and to cope
with) an unfavourable increase in saturated fatty acids.
Therefore in this randomized controlled trial in over-

weight individuals we investigated whether increases in
physical activity over a 6-month period induced changes
in subcutaneous adipose tissue as assessed by changes in
i) circulating adiponectin and leptin concentrations, ii)
adipose tissue fatty acid composition, and iii) expression
in adipose tissue of genes encoding key proteins.

Materials and methods
Study subjects and study design
Study design and study participants have been described
in detail elsewhere [3]. In brief, 101 overweight (BMI
≥25 kg/m2 and <40 kg/m2), centrally obese (waist cir-
cumference ≥102 cm in men and ≥88 in women) [21],
physically inactive, but otherwise healthy individuals
(67–68 years) were recruited from a Stockholm county-
cohort [22] to participate in a life-style intervention study
over 6 months. Recruitment took place between January
and June 2006. The present study of adipose tissue was
completed at the 6 month follow-up. The study was per-
formed at Karolinska University Hospital, Huddinge. Par-
ticipants were randomized in parallel fashion to either a
control group (n = 54) or to an exercise intervention group
(n = 47) with a baseline and a 6 month follow-up. Calen-
dar days were randomised as either control or interven-
tion days to prevent discussions between subjects in the
different groups. Study participants and staff, apart from
those staff directly involved in the intervention, were
blinded to intervention status. Blood samples were taken
after an overnight fast. In 73 of the subjects (29 men, 44
women), it was possible to take a subcutaneous abdom-
inal adipose tissue biopsy approximately 5 cm lateral to
the umbilicus at baseline and again after 6 months under
local anaesthesia by needle biopsy. However, the collec-
tion of biopsies was not evenly distributed across the two
groups: n = 43 control, n = 30 intervention. The fatty acid
composition of these biopsies was determined (see below).
In a subset of biopsies (n = 51, 21 men, 30 women), in
which there was sufficient material for RNA extraction,
gene expression analysis was performed. These indivi-
duals from whom adipose tissue biopsies were taken
(n = 73 for fatty acid composition and n= 51 for gene ex-
pression analysis) represent the current study population.
The primary outcomes were differences between the in-
tervention and control groups in changes in adipose tis-
sue metabolism as assessed by circulating adiponectin
and leptin concentrations and adipose tissue fatty acid
composition and gene expression.
The degree of physical activity was assessed by pedo-

metry and by an activity diary over seven consecutive
days. Information on exercise time was obtained, and
physical activity of at least moderate intensity was as-
sessed as described [3]. The intervention group received
patient-centred counselling and individualized written
prescription of physical activity, as described [3]. In brief,
the intervention aimed to achieve a daily physical activity
level of at least 30 min of moderate intensity and in-
cluded both aerobic and strength training. Participants
were also encouraged to reduce their time spent in sed-
entary behaviour. No dietary recommendations were
given. Due to ethical considerations, the control group
received usual care including general information about
the importance of physical activity for health. No side
effects were reported during the study. All participants
completed a food frequency questionnaire (28 questions)
covering the most frequently consumed foods and bev-
erages. Dietary improvements over the 6-month period
were considered to have been made if consumption of
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vegetables, fruit or seafood increased, or if consumption
of candy, buns, snacks, high fat cheese, pizza or soda
decreased. If individuals improved their consumption of
at least three of these food groups they were categorised
as having favourably changed their diet.
The Ethics Committee of Karolinska Institutet ap-

proved the study and all subjects gave informed consent
to participate.

Assessment of anthropometry and cardiometabolic
risk factors
Anthropometric measurements, body fat mass (bioelec-
trical bioimpedance) and blood pressure were assessed as
described [3].Glucose, glycosylated haemoglobin (HbA1c),
cholesterol, HDL-cholesterol, triaclyglycerol, apolipopro-
tein A1 (apo A1), apolipoprotein B (apo B) and C-reactive
protein (CRP) were analysed by accredited methods in the
clinical chemistry laboratory at the Karolinska University
Hospital, Huddinge. Insulin was quantified by ELISA
(Dako Sweden) and adiponectin and leptin by radio-
immunoassay (Linco Research, St Charles, Missouri, USA
and Millipore, Billerica, MA, USA respectively). Homeo-
stasis model assessment (HOMA) index was calculated
as the product of fasting insulin and glucose concentra-
tions divided by 22.5.

Adipose tissue fatty acid composition analysis
Fatty acids in adipose tissue-triacylglycerols were sepa-
rated by gas liquid chromatography as previously de-
scribed [20] and expressed as the relative molar
percentage of the sum of the fatty acids analysed. The
fatty acids quantified were 14:0, 15:0, 16:0, 16:1w7, 17:0,
18:0, 18:1, 18:2w6, 18:3w6, 18:3w3, 20:3w6, 20:4w6,
20:5w3, 22:4w6, 22:5w3 and 22:6w3.

RNA isolation from adipose tissue and cDNA synthesis
Following collection of subcutaneous adipose tissue bi-
opsies, the samples were rinsed immediately in 0.9%
NaCl to remove excess blood and stored in RNAlater
(Qiagen) at −80 °C until analyzed. RNA was extracted
from approximately 150 mg tissue: homogenization in
phenol-containing TRIzol (Invitrogen), DNaseI treatment
and spin column purification (RNeasy, Qiagen). RNA
concentrations were determined using a NanoDrop spec-
trophotometer (Thermo) and the quality analyzed with an
Agilent Bioanalyzer 2100 (Agilent Technologies). Isolated
RNA was stored at −80 °C until cDNA synthesis. A total
of 1 μg total RNA was used for cDNA synthesis using
oligo-(dT)12-15 primers.

Quantification of gene expression
The mRNA expression of specific genes was quantified
by real time PCR using the ABI 7000 Sequence Detection
System instrument and software (Applied Biosystems).
In each reaction, cDNA that had been synthesized from
15 ng of total RNA was mixed with TaqMan Universal
PCR Master Mix (Applied Biosystems) and a gene-
specific primer and probe mixture (pre-developed
TaqMan Gene Expression Assays, Applied Biosystems)
in a final volume of 25 μl. The genes analysed and
the corresponding assays used were: 11β-hydroxysteroid
dehydrogenase type 1 (11βHSD1), Hs00194153_m1; adi-
ponectin, Hs00605917_m1; monocyte chemoattractant
protein 1 (CCL2), Hs00234140_m1; CD36, Hs00169627_m1;
CD68, Hs00154355_m1; cannabinoid receptor 1 (CNR1),
Hs00275634_m1; cannabinoid receptor 2 (CNR2),
Hs00361490_m1; interleukin 6 (IL-6), Hs00174131_m1;
leptin, Hs00174877_m1; lipoprotein lipase (LPL),
Hs00173425_m1; peroxisome proliferator activated re-
ceptor gamma (PPARγ), Hs00234592_m1; stearoyl-CoA
desaturase (SCD); Hs001682761_m1; tumour necrosis
factor α (TNFα), Hs00174128_m1; and ribosomal protein
large P0 (RPLP0), Hs99999902_m1. All samples were run
in duplicate. Relative expression levels were determined
using a 5-point serially diluted standard curve, generated
from cDNA from human adipose tissue. Gene expression
was expressed in arbitrary units and normalized relative
to the housekeeping gene RPLP0 to compensate for dif-
ferences in cDNA loading. Levels of RPLP0 mRNA were
comparable between all subjects in the study.

Statistical analysis
Data were summarized by calculating means and stand-
ard deviations (SD) or median and interquartile ranges
(IQR) depending on normality of quantitative variables.
Changes from baseline to follow-up were determined by
paired t-test if normally distributed or by Wilcoxon
matched-pair signed-rank test if skewed. ANCOVA, in
which baseline values were taken into consideration,
was used to analyse differences between the groups over
the 6-month period. To investigate the ability of
changes in physical activity, anthropometric measures
and HbA1c (the parameters that showed significantly
different responses between control and intervention
groups) to predict changes in selected markers of adi-
pose tissue metabolism, linear regression was applied.
Skewed variables were normalised prior to analysis. All
analyses were performed with the use of STATA statis-
tical package (Intercooled STATA 11.0 for Windows;
Stata Corp, College Station, TX), and significance was
set at P < 0.05.

Results
Changes in physical activity, anthropometric
measurements and metabolic status
Characteristics of participants in the control and inter-
vention groups at baseline and their changes at 6 months
are presented in Table 1. At baseline the control group



Table 1 Baseline characteristics and follow-up changes of selected variables

Baselinea Changeb Between group diff

Control n = 43 Intervention n= 30 Control Intervention PANCOVA

Age (yr) 67.5 (0.5) 67.6 (0.5) - -

Female (%) 58 63 - -

Exercise time (min/w) 120 (5, 205) 135 (40, 215) 0 (-105, 240) +137 (0, 490)** 0.03

Steps per day 5200 (2730) 5900 (2800) +719 (2490) +1190 (3270) 0.28

Dietary improvements (%)c - - 12 49 0.001

Weight (kg) 89 (81, 95) 82 (73, 97) -0.1 (-1.1, 0.9) -1.8 (-3.9, 0.3)** 0.02

BMI (kg/m2) 30.3 (28.6, 31.8)†† 27.5 (26.6, 30.8) -0.04 (-0.47, 0.30) -0.68 (-1.21, 0.11)** 0.04

Waist circumference (cm) 107 (8)† 103 (10) -1.3 (3.1)** -2.6 (4.0)** 0.12

Body fat mass (kg) 31.4 (28.1, 38.7)† 29.8 (24.7, 31.6) -0.5 (-1.9, 0.4)* -1.5 (-3.6, -0.4)** 0.04

Systolic blood pressure (mmHg) 144 (17) 136 (16) -5 (11)* -0 (15) 0.61

Diastolic blood pressure (mmHg) 81 (9) 78 (10) -1 (8) -1 (9) 0.61

Insulin (uU/mL) 10.9 (6.8, 14.1)† 8.2 (6.4, 10.9) -0.85 (-2.98, 0.89) -0.90 (-2.97, 0.46)* 0.16

Glucose (mmol/L) 5.4 (4.9, 5.7) 5.3 (4.9, 5.5) -0.2 (-0.4, 0.1)** -0.1 (-0.3, 0.1) 0.79

HOMA 2.6 (1.7, 3.6)† 1.9 (1.7, 2.3) -0.2 (-0.9, 0.3) -0.2 (-0.7, 0.1) 0.19

HbA1c (%) 4.8 (4.6, 5.0) 4.9 (4.7, 5.2) 0.1 (0.0, 0.3)** -0.1 (-0.2, 0.1) 0.0003

Triacylglycerol (mmol/L) 1.2 (1.0, 1.6) 1.1 (1.0, 1.5) -0.0 (-0.3, 0.2) -0.1 (-0.3, 0.1)* 0.23

Cholesterol (mmol/L) 5.6 (0.9) 5.9 (1.0) 0.0 (0.6) -0.3 (1.0) 0.14

HDL (mmol/L) 1.7 (1.4, 1.9) 1.7 (1.5, 1.9) -0.1 (-0.1, 0.1) +0.0 (-0.2, 0.2) 0.57

ApoB/A1 0.73 (0.14) 0.78 (0.20) -0.04 (0.11)* -0.08 (0.15)** 0.27

C-reactive protein (mg/L) 1.9 (1.1, 4.0) 1.7 (0.8, 3.4) +0.2 (-0.4, 1.5) +0.1 (-0.7, 0.6) 0.20

Adiponectin (mg/L) 16 (10, 21) 20 (14, 24) -0.1 (-1.5, 1.3) +0.3 (-1.0, 1.3) 0.21

Leptin (ng/mL) 22 (13, 36) 15 (13, 23) -1.1 (-5.0, 0.5) -1.8 (-8.8, 0.3) ** 0.011

Values are mean (SD) or median (IQR) and changes denote measure(follow-up) – measure(baseline).
Total number of individuals analysed varies slightly due to technical reasons.
a Significant differences between groups at baseline: †P< 0.05, ††P< 0.01.
b Significant within-group changes: *P< 0.05,**P< 0.01.
c Defined as changes (according to self-reported frequencies) in the consumption of at least three of the following dietary variables: vegetables, fruit, seafood,
candy, buns, snacks, high fat cheese, pizza and soda.
HOMA, homeostasis model assessment of insulin resistance; HDL, high density lipoprotein; ApoB/A1, ratio between apolipoproteins B and A1.

Sjögren et al. Lipids in Health and Disease 2012, 11:80 Page 4 of 10
http://www.lipidworld.com/content/11/1/80
had significantly higher BMI, waist circumference, body
fat mass, insulin and HOMA index than the interven-
tion group. Following the 6-month period, changes in
physical activity, anthropometric measurements and
diet differed significantly between the groups. The
intervention group demonstrated greater increases in
exercise time, greater decreases in weight, BMI and
body fat mass, and greater dietary improvements com-
pared to the control subjects. HbA1c was lowered in
the intervention compared to the control group, but
there were no significant differences between the groups
with regard to changes in blood pressure or circulating
concentrations of insulin, lipids or CRP. Circulating con-
centrations of adiponectin were unchanged over the
6-month period, with no differences between the control
and intervention groups. However, concentrations of
leptin decreased in both the control and intervention
groups, although the decrease was greater in the inter-
vention group (−1.8 vs −1.1 ng/mL for intervention vs
control, P= 0.01).
Changes in adipose tissue fatty acid composition
The adipose tissue fatty acid profiles of the control and
intervention groups at baseline and their changes at
6 months are presented in Table 2. After 6 months the
w6-polyunsaturated fatty acid content of adipose tissue
in the intervention group increased significantly more
than in the controls (P= 0.04), which appeared to be
explained by changes in linoleic acid, 18:2w6 (+0.17 vs
+0.02 percentage points for intervention vs control,
P= 0.01). There were no significant differences between
the groups in changes of any other fatty acid or of an es-
timate of SCD activity (the 16:1/16:0 ratio).

Changes in adipose tissue gene expression
Characteristics of the subset of participants from whom
adipose tissue gene expression data were available are
presented in Additional file 1: Table S1. Changes in sub-
cutaneous adipose tissue gene expression from baseline
to follow-up in control and intervention groups are
shown in Table 3. After 6-months there was a significant



Table 2 Baseline values and follow-up changes of fatty acids in subcutaneous adipose tissue

Baselinea Changeb PANCOVA

Control n = 43 Intervention n= 30 Control Intervention

Grouped fatty acids

Saturated 30.4 (2.9) 31.0 (3.7) -0.3 (1.3) -0.2 (1.4) 0.48

Monounsaturated 57.0 (2.7) 56.5 (3.7) +0.3 (1.3) +0.1 (1.5) 0.33

Polyunsaturated w6 10.6 (9.4, 11.9) 10.4 (9.7, 11.3) +0.1 (-0.2, 0.3) +0.2 (-0.0, 0.5)** 0.04

Polyunsaturated w3 2.0 (0.4) 2.0 (0.5) +0.0 (0.2) -0.0 (0.1) 0.24

Individual fatty acids

14:0 3.3 (0.5) 3.4 (0.7) -0.10 (0.20)** -0.11 (0.24)* 0.90

15:0 0.33 (0.06) 0.35 (0.08) +0.01 (0.02)** -0.00 (0.02) 0.12

16:0 23.1 (2.1) 23.1 (2.6) -0.15 (0.89) +0.01 (0.92) 0.45

16:1w7 6.4 (1.8) 5.7 (1.4) +0.16 (0.68) +0.04 (0.62) 0.28

17:0 0.27 (0.24, 0.30) 0.28 (0.25, 0.33) +0.02 (-0.01, 0.06)** +0.00 (-0.04, 0.06) 0.26

18:0 3.4 (0.7)† 3.9 (0.9) -0.08 (0.34) -0.08 (0.38) 0.50

18:1 50.6 (1.9) 50.7 (2.7) +0.15 (0.88) +0.06 (1.13) 0.78

18:2w6 9.6 (8.4, 11.0) 9.4 (8.7, 10.4) +0.02 (-0.14, 0.22) +0.17 (0.03, 0.39)** 0.012

18:3w6 0.10 (0.09, 0.11) 0.10 (0.09. 0.11) +0.01 (0.00, 0.01)** +0.00 (0.00, 0.01) 0.26

18:3w3 1.08 (0.24) 1.04 (0.25) -0.02 (0.09) -0.03 (0.10) 0.47

20:3w6 0.21 (0.17, 0.24) 0.20 (0.16, 0.24) -0.01 (-0.03, 0.01)** -0.01 (-0.02, 0.01) 0.72

20:4w6 0.43 (0.09) 0.40 (0.10) +0.01 (0.05) +0.01 (0.06) 0.52

20:5w3 0.16 (0.14, 0.19) 0.16 (0.14, 0.19) +0.02 (-0.01, 0.05)** -0.00 (-0.02, 0.03) 0.079

22:4w6 0.13 (0.12, 0.17) 0.14 (0.11, 0.17) -0.00 (-0.01, 0.01) -0.00 (-0.01, 0.01) 0.25

22:5w3 0.39 (0.10) 0.41 (0.14) +0.00 (0.03) -0.01 (0.05) 0.63

22:6w3 0.39 (0.13) 0.41 (0.19) +0.01 (0.05) +0.00 (0.05) 0.82

SCD-index (16:1/16:0) 0.28 (0.08) 0.26 (0.08) +0.01 (0.04) -0.00 (0.04) 0.13

Values are mean ± SD or median (IQR) and changes denote measure(follow-up) – measure(baseline). Fatty acids are presented as relative percentage of fatty acids
analysed. Saturated, sum of 14:0, 15:0, 16:0, 17:0 and 18:0; Monounsaturated, sum of 16:1 and 18:1 Polyunsaturated w6, sum of 18:2, 18:3, 20:3, 20:4 and 22:4
(all w6); and Polyunsaturated w3, sum of 18:3, 20:5, 22:5 and 22:6 (all w3).
a Significant differences between groups at baseline: †P< 0.05.
b Significant within-group changes: *P< 0.05,**P< 0.01.

Sjögren et al. Lipids in Health and Disease 2012, 11:80 Page 5 of 10
http://www.lipidworld.com/content/11/1/80
difference in the change in adipose tissue leptin mRNA
levels between the groups, with an increase in the inter-
vention group (+107% intervention vs −20% control,
P < 0.02), a finding that was in contrast to the decreases
in circulating leptin concentrations observed in both
groups. There were no significant differences between
groups for changes in adipose tissue expression levels of
the remaining genes.

Prediction of changes in leptin and adipose tissue linoleic
acid by changes in physical activity, anthropometric
measures and HbA1c
Markers of adipose tissue metabolism that responded
significantly differently between the control and inter-
vention groups, namely changes in serum leptin concen-
trations, adipose tissue linoleic acid content, and adipose
tissue leptin gene expression levels, were analysed with
linear regression to investigate the predictive ability of
changes in physical activity (exercise time), anthropo-
metric measures (weight, BMI and body fat mass), and
HbA1c (Table 4). Decreases in circulating leptin concen-
trations were predicted by decreases in weight, BMI and
body fat mass, but the latter was not statistically signifi-
cant in the intervention group. Changes in leptin gene
expression levels within adipose tissue were not signifi-
cantly predicted by any of the selected parameters in ei-
ther group. The only variable that explained significant
variation in the change in adipose tissue linoleic acid
content was change in exercise time, in the intervention
group alone.

Discussion
In the present analysis, using a subset of 68 year-old
overweight-to-obese men and women exposed to phys-
ical activity on prescription in a randomized intervention
trial for 6 months [3], we observed a decrease in circu-
lating leptin concentrations, despite an increase in leptin
mRNA in adipose tissue. Moreover, there was a small in-
crease in the adipose tissue content of the w6 polyunsat-
urated fatty acid linoleic acid (18:2w6), even though no



Table 3 Changes from baseline to follow-up in
subcutaneous adipose tissue gene expression

Median percent change (IQR) PANCOVA

Controla n = 30 Interventiona n = 21

CD68 0 (-39, 59) -16 (-32, 20) 0.17

CCL2 -11 (-25, 66) -17 (-39, 11) 0.11

IL-6 -31 (-56, 7)** -16 (-62, 30) 0.87

TNFα -11 (-57, 38) -16 (-45, 42) 0.97

Adiponectin -34 (-66, 64) +38 (-42, 59) 0.35

Leptin -20 (-54, 195) +107 (-15, 428) 0.019

CD36 -8 (-16, 9) -10 (-47, 18) 0.55

LPL -3 (35, 26) -24 (-43, 12) 0.44

PPARγ -9 (-31, 21) -11 (-28, 26) 0.30

11βHSD1 -4 (-29, 15) +3 (-31, 18) 0.57

SCD +18 (-49, 109) -62 (-74, 4) 0.08

CNR1 -25 (-70, 70) -4 (-66, 101) 0.80

CNR2 -30 (-83, 96) -9 (-73, 111) 0.94
a Significant within-group changes indicated: **P< 0.01.
Total number of individuals analysed varies slightly due to technical reasons.
Only percent changes are reported since gene expression is quantified in
arbitrary units, absolute quantification is not performed.
11βHSD1: 11β-hydroxysteroid dehydrogenase type 1; CCL2: monocyte
chemoattractant protein 1 (MCP-1); CNR1: cannabinoid receptor 1; CNR2:
cannabinoid receptor 2; IL-6: interleukin 6; IQR: interquartile range; LPL:
lipoprotein lipase; TNFα: tumour necrosis factor α; PPARγ: peroxisome
proliferator activated receptor gamma; SCD: stearoyl CoA desaturase.
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dietary recommendations were given. The original study
showed improvements in metabolic and anthropometric
measurements after the physical activity intervention.
The current objective was to evaluate if such improve-
ments could be related to changes in subcutaneous adi-
pose tissue metabolism, as estimated by fatty acid
composition, expression of genes encoding key proteins,
and circulating adiponectin and leptin concentrations.
The data presented here for anthropometric and

plasma parameters in the subset of individuals from
whom adipose tissue biopsies were available are in line
with our previously published data from the whole co-
hort [3]. While there were a number of improvements in
metabolic parameters within both the control and inter-
vention groups, the intervention group demonstrated
more favourable changes in exercise time, weight, BMI,
body fat mass and HbA1c compared to the control sub-
jects, despite the fact that the control group had greater
BMI, waist circumference, body fat mass, insulin and
HOMA index at baseline. Here we show that circulating
leptin concentrations decreased, but adiponectin con-
centrations were unchanged over the 6-month period of
the intervention. We also report that the intervention
group performed greater dietary improvements than the
controls, but the extent of the dietary data was not suffi-
cient for detailed investigation of nutrient composition.
While the fatty acid composition of adipose tissue

reflects that of the diet over the past months to years
[23], it is also modifiable by other factors since preferen-
tial uptake and release of certain fatty acids has been
documented [24]. Obesity has been associated with a
greater saturated fatty acid content of adipose tissue
[17], and estimates of the activity of SCD within adipose
tissue are increased in obesity and insulin resistance
[19,20]. A study of obese subjects identified positive cor-
relations between the w6-polyunsaturated fatty acid con-
tent of adipose tissue and measures of obesity in three
different adipose tissue depots [25], while on the other
hand, a 4-month marathon-training programme resulted
in significant increases in the linoleic acid (18:2w6) con-
tent of subcutaneous adipose tissue in healthy men [26].
In the present study we find that 6 months of exercise
on prescription resulted in a greater increase in the total
w6-polyunsaturated fatty acid content of adipose tissue
compared to the control group, and that linoleic acid
largely accounted for this change. Since linoleic acid is
preferentially retained in adipose tissue of both rats and
rabbits when fatty acid mobilisation from adipose tissue
is stimulated [27,28], an increase in physical activity
might be expected to have similar effects. Indeed,
changes in the adipose tissue linoleic acid content were
not predicted by changes in weight, BMI, body fat mass
or HbA1c, but the change in exercise time was a signifi-
cant predictor in the intervention group, possibly impli-
cating that the effect of increased physical activity on the
linoleic acid content of adipose tissue was direct and not
mediated via changes in adipose tissue mass or glucose
control. However, changes in diet could also underlie the
observation since greater dietary improvements were
performed by individuals in the intervention group.
However, although the dietary data were not detailed
enough to permit investigation of dietary fat compos-
ition, analysis of reported changes in major fat sources
suggested that no apparent alterations in the intake of
w6-polyunsaturated fatty acids had occurred over the
intervention period. There is an ongoing debate as to
whether w6-polyunsaturated fatty acids are pro- or anti-
inflammatory [29], but concentrations of linoleic acid in
circulating cholesteryl esters were negatively correlated
to plasma concentrations of CRP [30]. Therefore the in-
crease in adipose tissue linoleic acid observed in the
present study could be interpreted as a beneficial
change, although the magnitude of the increase is very
small (0.2 percentage points) and the biological rele-
vance of such a change is unknown.
The expression levels in adipose tissue of genes encod-

ing a number of proteins with important roles in adipose
tissue metabolism were quantified. CCL2, IL-6, TNFα
and CD68 were selected as markers of inflammation and
macrophage infiltration, which are features of insulin re-
sistant adipose tissue [14]. LPL and CD36 regulate lipid
influx via hydrolysis of circulating triacylglycerols and



Table 4 Linear regression analysis for changes in serum leptin, changes in adipose tissue linoleic acid content, and
changes in adipose tissue leptin gene expression in relation to changes in selected variables in control and
intervention groups

Δ Serum leptin Δ Adipose tissue linoleic acid Δ Adipose tissue leptin gene expression

β P β P β P

Control group

Δ Exercise time -0.09 0.61 -0.17 0.31 0.10 0.64

Δ Weight 0.63 <0.0001 0.12 0.43 -0.01 0.96

Δ BMI 0.66 <0.0001 0.10 0.54 0.00 0.99

Δ Body fat mass 0.63 <0.0001 0.08 0.59 0.00 0.98

Δ HbA1c 0.20 0.20 -0.15 0.33 -0.19 0.34

Δ Linoleic acid 0.14 0.39 – – -0.34 0.086

Δ Leptin mRNA -0.03 0.90 – – – –

Intervention group

Δ Exercise time 0.40 0.07 0.39 0.047 -0.43 0.11

Δ Weight 0.59 0.002 0.00 0.99 0.13 0.62

Δ BMI 0.57 0.003 -0.01 0.94 0.17 0.51

Δ Body fat mass 0.29 0.17 -0.09 0.63 0.06 0.82

Δ HbA1c -0.15 0.46 0.09 0.64 0.01 0.97

Δ Linoleic acid 0.30 0.15 – – -0.46 0.06

Δ Leptin mRNA -0.32 0.27 – – – –

The size of the control and intervention groups is: n = 43 and n= 30 for serum leptin and adipose tissue linoleic acid; and n= 30 and n= 21 for adipose tissue
leptin gene expression respectively, but the number of individuals analysed varies slightly due to technical reasons.
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fatty acid uptake respectively [31], while PPARγ is a key
regulator of adipogenesis and adipocyte function [32].
Of the many adipokines produced and secreted by adi-
pose tissue, leptin and adiponectin are two of the most
important and are adipocyte-specific. Leptin regulates
intake and expenditure of energy, while adiponectin
increases insulin sensitivity and is anti-inflammatory
[12]. The actions of the enzymes 11βHSD1 and SCD in
adipose tissue have both been linked to insulin resist-
ance [19,33]. Endocannabinoids increase food intake and
weight gain and decrease energy expenditure via activa-
tion of the cannabinoid receptors CNR1 and CNR2 [34].
Activation of these receptors in the periphery (including
adipose tissue) plays an important role in mediating the
metabolic changes associated with obesity and insulin
resistance [34]. Of these genes, changes in only the ex-
pression of leptin differed significantly between the con-
trol and intervention groups, with a median increase of
107% in the intervention group, compared to a median
decrease of 20% in the control group. This result is un-
expected given the concomitant decreases in circulating
leptin concentrations, median changes of −6% in con-
trols versus −13% in the intervention group (P= 0.01 for
group comparison), and in light of the greater decrease
in body weight and fat mass in the intervention group.
Reports of decreased leptin concentrations in response
to weight loss are widespread [35,36] and prior reports
have shown decreased adipose tissue leptin expression
and circulating leptin concentrations in response to
exercise, although some contradictory results have also
been reported [37,38]. The opposing changes observed
for leptin mRNA expression in adipose tissue (increased)
and for circulating leptin concentrations (decreased), at
least in the intervention group, suggest that leptin
mRNA levels are a poor marker of circulating leptin, im-
plicating post transcriptional regulation of the leptin
gene, as has been previously demonstrated in rats [39].
Indeed, changes in leptin gene expression and changes
in circulating leptin concentrations were essentially un-
related to one other in the present study, which under-
lines the caution that should be employed when
interpreting gene expression data and the importance of
determining protein concentrations. The fact that the
changes in circulating leptin concentrations were signifi-
cantly predicted by changes in anthropometric measures,
but not by changes in exercise time, might suggest that
the lowering of leptin was mediated via decreases in fat
mass, rather than by a direct effect of increased physical
activity. Changes in HbA1c and the adipose tissue lino-
leic acid content were similarly unable to predict
changes in circulating leptin.
Similar to the results presented here, a relative absence

of changes in adipose tissue gene expression in response
to physical activity (12-weeks of 3 supervised aerobic ex-
ercise sessions/week) was reported in obese individuals
(BMI 33.3 kg/m2 at start, mean weight loss of 3.5 kg)
[40]. Only expression of adiponectin increased, while IL-
6, TNFα, CCL2, CCL3, leptin, CD68 and CD14 were all



Sjögren et al. Lipids in Health and Disease 2012, 11:80 Page 8 of 10
http://www.lipidworld.com/content/11/1/80
unchanged [40]. However, significant decreases in ex-
pression levels of IL-6, IL-8, TNFα CD68 and CD14 and
an increase in adiponectin mRNA in adipose tissue of
severely obese individuals who underwent major weight
loss as a result of a 15-week lifestyle intervention con-
sisting of hypocaloric diet and at least 2–3 hours of
moderate-intensity physical activity 5 days/week (BMI
45.8 kg/m2 at start, mean weight loss of 18 kg) were
reported [41]. This suggests that substantial changes in
adipose tissue mass may be required in order to result in
changes at the gene expression level.
These data suggest that the lifestyle modifications

implemented, although sufficient to lead to reductions in
fat mass (−0.5 kg in the controls and −1.5 kg in the
intervention group) and circulating leptin concentra-
tions, were not associated with alterations in circulating
adiponectin. This observation is in line with a recent re-
view that concluded that mild weight loss lowers leptin
concentrations, but has no clear impact on adiponectin
[35]. The clinical relevance of the increased adipose tis-
sue content of linoleic acid is not clear. The relatively
minor changes in adipose tissue metabolism achieved in
the current study might reflect the fact that changes in
adipose tissue mass were only small, or that changes in
metabolism were too subtle to be detected by the
techniques employed (primarily fatty acid composition
and gene expression analysis). However, given that
some changes in circulating parameters were docu-
mented (a greater improvement in HbA1c in the inter-
vention compared to the control group), it may well
be that modulation of adipose tissue metabolism was
not directly responsible for such changes. The in-
creased physical activity could have lead to alterations
in other tissues, such as skeletal muscle, thereby medi-
ating systemic improvements [42], but this was not
investigated in the present study. Furthermore, the
changes in diet (which were observed in both control
and intervention groups, but greater in the latter) may
have had effects on metabolism independent of those
induced by an increased physical activity, but again,
this remains unknown.
Strengths associated with the present study include

the relatively large and homogenous study sample, as
compared to previous studies in the field, and the imple-
mentation of a randomised controlled design. However,
the cohort was not sufficiently large to address gender-
differences. One limitation is that our data are derived
from subcutaneous adipose tissue, rather than from the
metabolically more active visceral depot. We cannot ex-
clude the possibility that different adipose tissue depots
within the body would respond differently to increases
in physical activity. Furthermore, adipose tissue biopsies
contain a mixture of cell types, although adipocytes pre-
dominate, and the cell sources of the mRNA of the
genes investigated in this study is unknown. Finally,
improvements in physical activity were also seen in the
control group, which, combined with the greater dietary
improvements in the intervention group, makes it harder
to identify changes in metabolic parameters in the inter-
vention group attributable to increased physical activity.
In summary, our results show that changes occurred

in adipose tissue, as documented by decreased circulat-
ing leptin concentrations (despite increased leptin gene
expression) and increased linoleic acid content in sub-
cutaneous adipose tissue, after a 6-month period of life-
style modification, primarily increased physical activity,
in overweight-to-obese elderly individuals. However,
these changes were relatively modest and we conclude
that improvements in metabolic parameters induced by
only a moderate increase in physical activity are unlikely
to be driven solely by these changes in adipose tissue
metabolism.

Additional file

Additional file 1: Table S1. Baseline characteristics and follow-up
changes of selected variables in only those individuals from whom
adipose gene expression data were available.
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