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Inhibiting CB1 receptors improves lipogenesis in
an in vitro non-alcoholic fatty liver disease model
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Abstract

Background: The endocannabinoids system (ECs) mediated mainly by CB1 and CB2 receptors plays an important
role in non-alcoholic fatty liver disease by regulating lipid metabolism. This study is to further investigate the
expression of CB1 and CB2 in the fat accumulation liver cells and to identify possible underlying mechanism by
detecting the key lipogenesis factors.

Methods: Sodium oleate and sodium palmitate were added into the HepG2 cell line for forming fat accumulation
liver cell. MTT assay was used to test the cell’s cytotoxicity. The accumulation rate of fat in HepG2 cell was analyzed
by the fluorescent staining. The mRNA and protein expression levels of CB1, CB2, SREBP-1c, ChREBP, L-PK, ACC1,
FAS, LXRs and RXR were detected by RT-PCR and Western blot before and after the use of the antagonist.

Results: The receptors of CB1 were expressed in HepG2 cells with low levels while in HepG2 fatty liver cells with
higher levels (p < 0.05). However, after the application of antagonist, the expressions were significantly decreased
(p < 0.05). The expressions of SREBP-1c, ChREBP and LXRs were detectable in HepG2 cells and the expressions were
increased in HepG2 fatty liver cells (p < 0.05). After using the antagonists, the expressions of SREBP-1c, ChREBP, LXRs,
ACC1 and FAS were significantly decreased (p < 0.05). But L-PK and RXR changed little in two groups (p > 0.05).

Conclusion: Results of the present study demonstrated that CB1 receptors had important pathophysiological
effects on the formation of fatty liver. CB1 receptors could be regulated by SREBP-1c, ChREBP and LXRs. Therefore,
targeting CB1 receptors for the treatment of NAFLD might have a potential application value.

Keywords: Endocannabinoids (ECs), Lipogenesis, Nonalcoholic fatty liver disease (NAFLD), Receptor cannabinoid
(CB1,CB2)
Introduction
Non-alcoholic fatty liver disease (NAFLD) is a spectrum
ranging from pure fatty liver to the more severe steato-
hepatitis, a condition that may progress to cirrhosis and
even hepatocellular carcinoma [1]. Lipogenesis plays a
critical role in the progression of NAFLD [2]. Though
the potential mechanisms of lipogenesis in NAFLD are
discussed a lot in previous studies, the etiology remains
elusive [3].
Recently, it is reported that the endocannabinoids system

(ECs) plays an important role in NAFLD and even its com-
plications such as cardiovascular diseases are through
modulating lipid metabolism [4]. ECs is primarily comprised
of three components: endocannabinoids, endocannabinoid
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receptors, and endocannabinoid-metabolizing enzymes.
Endocannabinoids, including arachidonoyl ethanolamide
(anandamide) and 2-arachidonoylglycerol (2-AG), are lipid
mediators that interact with cannabinoid receptors to pro-
duce effects similar to those of delta 9-tetrahydrocannabinol
(THC), which is the main psychoactive component of can-
nabis. It has been reported that ECs widely participates in
central and peripheral lipid metabolism through activating
G protein-coupled cannabinoid receptors type 1 and type
2 (CB1 and CB2) [5]. ECs can not only stimulate the appe-
tite to increase energy intake through the central nervous
system, but also promote lipogenesis of peripheral tissues
such as the adipose tissue, liver and skeletal muscle, thus
leading to obesity and fatty liver disease [6,7]. High fat
diet, alcohol and endotoxin can stimulate the production
of ECs [8]. Considering that CB1 receptors are distributed
in the brain, adipose tissue, pancreas, gastrointestinal tract,
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Table 1 The primers sequences of related genes

Gene Forward primer

5’ Reverse primer 3’

GAPDH TGCACCACCAACTGCTTAGC

GGCATGGACTGTGGTCATGAG

CB1 CTCGGACATTTTCCCACTC

AGGCAAACACCBTCTTGATA

CB2 CCTCGTACCTGTTCATCG

TGTCCTGGTGCTACGTCAA

SREBP-1C GCG CTG CAG GCTGTA GGA TG

CTG CAC GGC TGT GCCAGG AG

ChREBP CCC TCA GAC ACC CAC ATC TT

CAG AGC TCA GAA AGG GGT TG

LXRa AGCGTCCACTCAGAGCAAGT

GGGGACAGAACAGTCATTCG

L-PK GAACACCTCTGCCTTCTGGA

CCCTGCACAAATCTCACAAA

Acc-1 ACAGTGGAGCTAGAATTGGAC

ACTTCCCGACCAAGGACTTG

Fas AGGGGTCGACCTGGTCCTCA

GCCATGCCCAGAGGGTGGTT

RXRa GCACGTACACCGGAACA

CGCTTCTAGTGACGCATA
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skeletal muscle, heart and reproductive system, while CB2
receptors are mainly expressed in the immune system
[9-11], it’s interesting to explore how CB1 and CB2 recep-
tors involved in endocannabinoids to induce obesity and
fatty liver.
More and more evidences show that high-fat diet-

induced steatosis resulting from increased fatty acid syn-
thesis is mediated via anandamide-induced CB1 receptor
activation. Activation of CB1 receptors can increase hep-
atic gene expression of the lipogenic transcription factor
SREBP-1 and its target enzymes, acetylCoA carboxylase-1
(ACC1) and FAS. These effects are blocked or prevented
by CB1 antagonist. CB1 receptor activation also appears
to regulate fatty acid oxidation by modulating the activity
of hepatic carnitine palmitoyltransferase1(CPT-1), the
rate-limiting enzyme in fatty acid β-oxidation [12].
In past decades, some major lipogenesis-controlling fac-

tors have been identified in fatty liver disease, such as sterol
regulatory element binding protein (SREBP1c), carbohy-
drate responsive elements binding protein (ChREBP) and
liver X receptors (LXRs) [13]. Induced by insulin, SREBP1c
regulates some of the key enzymes in fatty acid synthesis
such as acetyl-CoA carboxylase (ACC1), fatty acid synthase
(FAS). But studies find out that SREBP1c can only con-
trolled 50% of fatty acid synthesis in vivo [14]. ChREBP can
act on lipogenic gene promoters and regulate glucose to go
into lipid synthesis pathway through the key enzymes liver
pyruvate kinase (L-PK) [15]. As the oxysterols-activated
nuclear receptors, LXRs are involved in cholesterol metab-
olism and also can induce liver lipogenesis. They act with
the retinoid X receptors (RXRs) forming heterodimers to
induce the expression of ACC, FAS and Stearoyl coenzyme
A desaturase 1(SCD1). Moreover, LXRs can directly modu-
late the transcription of SREBP1c and ChREBP [16].
This study attempted to explore the possible mechan-

ism underlying lipogenesis in the fat accumulation liver
cells through investigating the expression of CB1 and
CB2 receptors as well as SREBP1c, ChREBP, LXRs and
the downstream factors ACC1, FAS, L-PK and RXRs.

Methods
Cell line and cell culture
HepG2 cells were seeded (1 × 107 cells/100-mm dish) and
cultured in RPMI1640 (Life Technology, INc., Grand Island,
NY) containing 10% fetal bovine serum (Life Technology,
INc.) for 24 h growing as adherent cell. All cell lines were
maintained at 37°C in a humidified incubator with an at-
mosphere of 5% CO2.

Methyl Thiazolyl Tetrazolium (MTT) assay
The cytotoxicity of the cells was measured by MTT assay.
Stock solutions of fatty acids (10% w/v) prepared in
serum-free RPMI1640 containing 1% BSA were conveni-
ently diluted in culture medium to obtain the desired final
concentrations. Sodium oleate and sodium palmitate
(Sigma Aldrich, St. Louis, MO, USA) were added into the
cultured cells for 24 hr at ratios of 3:0, 2:1, 1:1, 1:2 and 0:3,
respectively. Sodium oleate and sodium palmitate were
mixed at the concentrations of 1.5 mmol/L, 1.0 mmol/L,
0.75 mmol/L, 0.5 mmol/L and 0.25 mmol/L. CB1 receptor
antagonist, rimonabant, was added to the cultured HepG2
fatty cells at the concentrations of 1 mmol/L, 5 mmol/L,
10 mmol/L, 20 mmol/L and 40 mmol/L for 4 hr, 8 hr,
12 hr, 24 hr and 48 hr, respectively.

Fluorescence microscopy assay for fat accumulation liver
cells
Stock solutions of nile red (Sigma Aldrich, St. Louis, MO,
USA, 1000 ug/ml) in acetone were prepared and stored
protected from light. The dye was added directly to the
preparation to effect a 1:100 dilution. The specimen was
incubated for 5 min. PBS rinsed the specimen while we re-
moved excess dye. The accumulation rate of fat in HepG2
cell was analyzed by the fluorescent microscopy (excita-
tion at 488 nm, and emission at 550 nm).

Reverse transcription-polymerase chain reaction (RT-PCR)
The mRNA expression under different experimental
conditions was assessed by RT-PCR. Total RNA was ex-
tracted using Trizol reagents (Invitrogen, USA) and the



Figure 1 MTT of mixed concentration of sodium oleate and sodium plamitate.
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RT-PCR kit was used according to the manufacturer’s
instructions (Shanghai Sangon Biotech Co., Ltd). The
resulting single-stranded cDNA was denatured at 95°C
for 3 min, and after the addition of the polymerase, sub-
jected to 30 cycles of amplification, each consisting of
45 sec at 94°C, 45 sec at 57°C, and 45 sec at 72°C, with a
10- min final extension at 72°C during the last cycle.
The primer sequences for CB1, CB2, SREBP-1c,
ChREBP, LXRs, L-PK, ACC-l, FAS, RXRs and β-actin
were described in Table 1. The PCR products were re-
solved by electrophoresis on 1.2% agarose gel and visual-
ized with 0.5% ethium bromide.
Western blot analysis
Cells were lysed with lysis buffer [50 mM Tris–HCl
(pH 7.5), 250 mM NaCL, 0.1% NP40, 5 mM EGTA contain-
ing 50 mM sodium fluoride, 60 mM β-glycerol-phosphate,
0.5 mM sodium vanadate, 0.1 mM phenylmethylsulfonyl
fluoride, 10 ug/ml aprotinin, and 10 ug/ml leupeptin]. Pro-
tein concentration was detected with BCA Protein Assay
Reagent Kit (Pierce, Rockford, IL). Protein samples were
electrophoresed in a 10% denaturing SDS gel and trans-
ferred to PVDF membrane (Bio-Rad, Califonia, US). The
blots were incubated with specific primary antibodies,
Figure 2 Fat accumulation in HepG2 liver cell. Fat accumulation rate in
group was 15.3 ± 6.6% (p < 0.05). HepG2 fatty liver cell; HepG2 liver cell.
reacted with a peroxidase–conjugated secondary antibody
(Santa Cruz Biotechnology, santa Cruz, CA), and finally
visualized by enhanced chemiluminescence (Amersham,
Piscataway, NJ). Polyclonal antibodies recognizing CB1/
CB2, SREBP-1c, ChREBP, FAS, LXRs and RXR were
purchased from Santa Cruz Biotechnology; L-PK, ACC1
monoclonal antibodies were purchased from Sigma-
Aldrich co.

Statistical analysis
Data were expressed as the means of at least three differ-
ent experiments (mean ± SEM). The results were analyzed
by Student’s test or one-way analysis of variance (SPSS18).
And p < 0.05 was considered statistically significant.

Results
Establishment of HepG2 fatty liver cells
Our MTT assays showed that the cell death was posi-
tively related to sodium palmitate concentration. Ac-
cording to the MTT test result, HepG2 cell added with
sodium oleate and sodium palmitate at ratios of 2:1, 1:1
and 1:2 with the mix concentrations of 1.5 mmol/L,
1.0 mmol/L, 0.75 mmol/L and 0.5 mmol/L cultured for
24 hr was tested by the fluorescence assay, respectively.
the HepG2 fatty liver cells was 52.1 ± 5.2%, while the rate in control



Figure 3 MTT test of rimonabant. CB1 receptor antagonist, rimonabant, was added to the cultured HepG2 fatty cells at the concentrations of
1 mmol/L, 5 mmol/L, 10 mmol/L, 20 mmol/L and 40 mmol/L for 4 hr, 8 hr, 12 hr, 24 hr and 48 hr, respectively.
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The best concentration with higher fat accumulation
rate and higher cell’s viability was chosen by the image
analysis system. The fluorescence assay was coincident
with the MTT result. The mixed concentration of
1.0 mmol/L of sodium oleate and sodium palmitate at a
ratio of 2:1 had minimal cell toxicity, higher cell viability
and higher fat accumulation rate (Figure 1). It showed
that the fat accumulation rate in the HepG2 fatty liver
cells was 52.1 ± 5.2%, while the rate in control group was
15.3 ± 6.6% (p < 0.05) (Figure 2). MTT assay found that
the cell’s viability was decreased with the increase con-
centration and the prolonged action period of rimona-
bant. The optimum concentration of rimonabant was
40 mmol/L and treating HepG2 cell for 4 hr (Figure 3).

Expressions of CB1 and CB2 receptors in HepG2 fatty cells
The expression of CB1 receptor was increased in HepG2
fatty liver cells compare to HepG2 cells (p < 0.05).
However, after application of the antagonist, rimona-
bant, the expression of CB1 receptor was significantly
Figure 4 The expressions of CB1 and CB2 in HepG2 liver cells. A. The
expression of CB1 and CB2 in HepG2 liver cells. C. The CB1 protein express
HepG2-fatty cell was 0.28 ± 0.02,0.95 ± 0.04,0.12 ± 0.01 compare to B-actin
HepG2-fatty. HepG2; HepG2-fatty. HepG2; HepG2-fatty; Rimonabant/HepG2
decreased (p < 0.05). The expressions of CB2 receptors
in HepG2 cells and HepG2 fatty liver cells were un-
detectable (Figure 4A-4C).

Expressions of SREBP-1c, ChREBP, L-PK, LXRs, ACC1, FAS
and RXR in HepG2 fatty liver cells
The expression levels of SREBP-1c, ChREBP, L-PK,
LXRs, ACC1, FAS and RXR were detected by RT-PCR
and Western blot assay before and after the treatment of
rimonabant to HepG2 fatty liver cells. SREBP-1c was
expressed in HepG2 cells and the expression was in-
creased in HepG2 fatty liver cells (p < 0.05). However,
after use of the rimonabant, the expression of SREBP-1c
was significantly decreased (p < 0.05). In the same way,
the downstream factor ACC1 and FAS expressions were
increased in HepG2 fatty liver cells compare to HepG2
cells, and after application of the antagonist, their ex-
pressions were decreased (p < 0.05). HepG2 cells showed
little expression of ChREBP while the expression was sig-
nificantly increased in HepG2 fatty liver cells (p < 0.05).
mRNA expression of CB1 and CB2 in HepG2 liver cells. B. The protein
ion fold change in HepG2 cell, HepG2 fatty cell and rimonabant/
as control, respectively (p < 0.05). HepG2; HepG2-fatty; Rimonabant/
-fatty.



Figure 5 The expressions of lipogenesis factors in HepG2 liver cells. A. The mRNA expression of lipogenesis factors in HepG2 liver cells.
B. The protein expression of lipogenesis factors in HepG2 liver Cells. C-E. The protein expression fold change. HepG2; HepG2-fatty; Rimonabant/
HepG2-fatty. “Violet square symbol” HepG2 cell, “red square symbol” HepG2-fatty liver cell, “yellow square symbol” Rimonabant/HepG2-fatty
liver cell.
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After application of the antagonist, rimonabant, the ex-
pression of ChREBP was decreased (p < 0.05). Similarly,
HepG2 cells showed little expression of LXRs while
LXRs expression was significantly increased in HepG2 fatty
liver cells (p < 0.05). After application of rimonabant,
the expression of LXRs was decreased (p < 0.05). However,
L-PK and RXR changed little in the two groups stated
above, indicating that, in addition to CB1 and CB2
receptor-mediated regulation, L-PK and RXR could be reg-
ulated by other factors (p > 0.05) (Figure 5A-5E) (Table 2).
Discussion
In this study, we found the expressions of CB1 receptors
were increased in HepG2 fatty liver cells compared to
HepG2 cells, and also with the same results of the lipogen-
esis factors SREBP-1c, ChREBP and LXRs. While treated
with the antagonist of CB1, the expressions of these lipo-
genesis factors including their downstream factors ACC1
and FAS were significantly decreased. However, there were
Table 2 The protein expression of lipogenesis factors

HepG2 cell HepG2 fatty cell rimon

SREBP-1C 0. 2267 ± 0. 2517 0. 9200 ± 0. 2646 0. 1233

ACC1 0. 1100 ± 0. 0100 0. 5533 ± 0. 0503 0. 0433

ChREBP 0. 1233 ± 0. 0251 0. 7533 ± 0.0503 0. 1433

LPK 0. 2567 ± 0. 0450 0. 2267 ± 0. 0450 0. 2267

LXRs 0. 1367 ± 0. 0321 0. 4500 ± 0. 0500 0. 0400

RXR 0. 5933 ± 0. 0416 0. 5233 ± 0. 1069 0. 5700
no differences of L-PK and RXR expressions between two
groups stated above.
HepG2 cell line was found to be suitable for investigat-

ing the impact of fat overaccumulation in the liver com-
pare to normal human hepatocytes [17], and was also
used for NAFLD research in many studies [18]. In this
study, we added mixed fats of sodium oleate and sodium
palmitate to HepG2 cell line as an in vitro non-alcoholic
fatty liver disease model which included satuarated and
unsaturated fatty acids.
Until now, many studies have reported that CB1 and

CB2 receptors involved in endocannabinoids induced
obesity and fatty liver. In mice model, expressions of
CB1 and CB2 receptors were lower or none in normal
liver, but increased significantly after high fat diet [19].
In the mice model with CB1 and CB2 receptors activat-
ing, obesity and fatty liver were formed progressively but
not in rimonabant-treated mice or CB1 receptor knock-
out mice [20,21]. Our in vitro study revealed that the
expression of CB1 receptors was significantly increased
abant/HepG2 fatty cell F value P value

± 0. 2517 858. 864 0. 000 p < 0.05

± 0. 0208 225. 533 0. 000 p < 0.05

± 0. 0208 320. 583 0. 000 p < 0.05

± 0. 0288 0. 551 0. 000 p > 0.05

± 0. 0173 107. 852 0. 000 p < 0.05

± 0. 0755 0. 606 0. 576 p > 0.05
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in HepG2 fatty liver cells compared to HepG2 cells, and
decreased after treated with antagonist, rimonabant.
However, the expression of CB2 receptors remained un-
changed in two groups. Therefore, we speculated that
CB1 receptors played an important role in the lipogen-
esis of NAFLD and inhibiting CB1 receptors might im-
prove lipogenesis in NAFLD.
Activation of CB1 receptor could induce the expression

of transcription factor SREBP-1c and its downstream key
enzymes such as ACC1 and FAS to enhance lipogenesis
in vivo [22,23]. By using HepG2 fatty liver cells, we also
found that the expressions of SREBP-1c and its down-
stream factors ACC1 and FAS were increased in the
progression of lipogenesis, but significantly decreased
after treated with CB1 receptor antagonist. Further-
more, Our study firstly found that the expressions of
ChREBP and LXRs were significantly increased in
HepG2 fatty liver cells but decreased after treated with
the antagonist. However, there was no obvious expres-
sion changing of downstream factors L-PK and RXR.
According to these findings, we got the conclusion that
inhibiting CB1 receptors could decrease the expres-
sions of lipogenesis factors, SREBP-1c, ChREBP and
LXRs, thus improve lipogenesis in non-alcoholic fatty
liver disease.
Andrea De Gottardi, et al. reported that cannabinoid

receptors were downregulated in the presence of steato-
sis.SREBP-1c and FAS were downregulated in fatty
immortalized human hepatocytes. These results were
different from our study [24]. The probable reasons
might be that in their study they used oleic acid to in-
duce immortalized human hepatocytes steatosis for
7 days, while we used sodium oleate and sodium palmi-
tate to induce HepG2 cell steatosis for 24 h. We specu-
lated that saturated and unsaturated fatty acids might
have different effects on hepatocytes and these might
need further to study.
In conclusion, CB1 receptor participated in ECs

and induced lipogenesis in hepatocytes through factors
SREBP-1c, ChREBP and LXRs, and might be the target for
the treatment of NAFLD [25].
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