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Abstract
The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not
in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion.
In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase
(ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose.
Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by
administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma
glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient
was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in
such animals. This application could help, if adequate protocols are designed, to induce fat
utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in
situations of obesity and diabetes.

Background
Thousands of different life-related biochemical processes,
such as cell respiration and many other metabolic reac-
tions, can lead to the production and utilization of energy
in forms of ATP synthesis and heat release [1-3]. Indeed,
all biological processes, including the chemical pathways
concerning bioenergetics, follow thermodynamic laws
[4].

The central set of reactions involved in cellular fuel home-
ostasis are collectively known as the citric acid or tricarbo-
xilic acid cycle (TCA cycle), which oxidizes the products of
glycolisis and lipid-derived substrates, such as acetyl-CoA,
to produce energy in the mitochondria [1]. Indeed, mito-
chondrial damage and the subsequent dysfunction in this

membrane-enclosed organelle are often manifested as
neurological disorders, but also as diabetes or obesity [5].

In this context, the glyoxylate cycle is a metabolic pathway
well characterized in plants, fungi and several microor-
ganisms [6]. Interestingly, the glyoxylate cycle allows
these organisms to use fats for the synthesis of carbohy-
drates via the acetate generated during fatty acid β-oxida-
tion, which is achieved by two unique enzymes: isocitrate
lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC
2.3.3.9). These enzymes sequentially catalyse chemical
conversions, which are involved in the glyoxylate cycle
and appear to be absent or unfunctional in most circum-
stances in vertebrates, including rodents [7-9], guinea pigs
[10] and humans [11].
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Current gene transfer methodologies are able to incorpo-
rate selected nucleotide sequences into the nucleus of tar-
get cells [12,13] by means of naked DNA or encoded by
molecular constructs named vectors, which can be viral
(mainly adeno or retrovirus) or non-viral (lipoplexes,
dendromers and others) in order to activate some meta-
bolic linked processes with potential application in gene
therapy [14-16].

Considering these findings and observations, our aim was
to ascertain the viability of a hydrodynamic gene transfer
[17,18] to achieve the heterologous expression of ICL and
MS in mouse hepatocytes, in order to produce a bypass in
the tricarboxilic acid cycle, enabling the carbons derived
from fatty acid oxidation to be preserved and converted
into glucose (gluconeogenesis). This approach generating
a flow from cell lipid reserves to carbohydrate utilization,
can be appropriately assessed after hydrodynamic transfer
of two glyoxylate cycle enzyme genes by measuring the
respiratory quotient [19,20], as an indicator of the macro-
nutrient mixture oxidized and indirectly the fat-to-glucose
conversion.

Methods
Plasmids. DNA codifying both bacterial enzymes of the
glyoxylate cycle (ICL and MS) was obtained from ATCC
and both concerned the Vibrio cholearae sequence gb/
AE003852.1/from 01 biovar eltor str N16961 chromo-
some 1 (clones GVCJA51 for ICL and GVCDP57 for MS).
Both clones were subcloned by PCR and inserted in the
BssHI restriction enzyme region of the commercial plas-
mid pCMV/myc/mito (Invitrogen, USA). Later, they were
transformed in Escherichia coli for laboratory scale produc-
tion using a commercial kit from Qiagen (USA). The plas-
mid integrity was checked by enzymatic digestion and
subsequent agarose gel.

Animals. Twenty male C57BL6J mice (Harlan, Italy) of
about 23 g were kept at 21–23°C, 50 ± 10% humidity on
a 12:12 light-dark cycle (8:00–20:00 h.). After a period of
acclimatation of seven days in individual cages, the ani-
mals were weighed and assigned to two dietary groups for
36 additional hours: one group (C, n = 10) received ad
libitum commercial food (Harlan Iberica 2014S) contain-
ing 349 Kcal/100 g (73% carbohydrates, 10% lipids and
17% protein), and the other group (F, n = 10) was fasted
for the same period. Free water was available at any time
in all cages.

Half of the animals assigned to every dietary group ran-
domly received a hydrodynamic load with the control
plasmid pCMV/myc/mito (C and F, n = 5) or both plas-
mids containing the two glyoxylate enzymes (CGx and
FGx, n = 5). Thus, the mice were administered, in approx-
imately 6 seconds, with a bolus injection in the tail vein

with 10% of their weights (g) in volume (ml) of a com-
plex containing MIRUS polimer solution (Madison, USA)
and approximately 20 mg of DNA according to the man-
ufacturer's instructions (MIRUS: MIR-100 trans IT® in vivo
gene delivery system) at a constant rate. An equimolar
ratio (2:1+1 mols) was used for administering a bolus
containing pCMV/myc/mito or pCMV/myc/mito-ICL and
pCMV/myc/mito-MS into the animals. The success of the
process was assessed by repeating the protocol by measur-
ing β-galactosidase staining of Lac Z transgene and luci-
ferase activity after CMV-Luc and Lac Z gene
hydrodynamic administration in mice under similar con-
ditions [21].

After 36 hours, body weights were carefully measured and
final glucose was assessed with a digital glycometer
(Medisense Optium, UK) from the jugular vein. The respi-
ratory quotient was measured by using an indirect calo-
rimeter for two hours before the mice were sacrificed. All
animal manipulations were made in accordance with
European Community Guidelines and University of Nav-
arra Ethical Committee for the use of laboratory animals.

Indirect calorimetry. Oxygen (O2) consumption, carbon
dioxide (CO2) production and respiratory quotient (RQ)
were measured using an Oxylet 00 O2/CO2 indirect calo-
rimeter (Panlab SL, Spain) [22] following manufacturer's
instructions and using an appropriate software (Chart,
ADIntruments, Australia). The O2 and CO2 analyzers were
calibrated with highly purified gas standards (Praxair,
Spain) and each animal was placed into one of four acrylic
chambers (140 mm diameter × 150 mm height each).
Room air was drawn through each chamber at a rate of
300 mL/min. The O2 and CO2 levels were then measured
on 3-min sampling periods (8 sampling periods per 2
hours of data collection with three chambers) to generate
difference scores between data derived from each mouse
chamber versus the data collected from room air [22]. RQ
was calculated as the ratio of the volume of CO2 produced
by the volume of O2 consumed, while energy expenditure
was calculated according to the formula [19,23]: EE (kcal/
day/body weight3/4) = O2 volume × 1.44 × [3.815 + (1.232
× RQ)].

Results and discussion
As expected, body weight and plasma glucose measure-
ments were affected by the 36-hour fasting period, being
statistically lower in the food-deprived mice (table 1). The
administration of both plasmids (ICL+MS) or the Control
one produced similar changes in both variables (body
weight and glycemia) within each nutritional group (con-
trol fed or fasted). Energy expenditure values were appar-
ently unaffected by the treatments when they were
normalized by body weight. Interestingly, those fasted
mice receiving both ICL+MS plasmids showed an
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increased (p < 0.05) respiratory quotient (figure 1) as
compared to the fasted control group (0.76 ± 0.08 vs. 0.67
± 0.05). This trend was also observed (p < 0.05) in the
control fed group compared to the ICL+MS plasmids-
administered mice (0.90 ± 0.08 vs. 0.95 ± 0.04) (figure 1).

The results of this experimental trial confirm that hydro-
dynamic based gene transfer technology is able to increase
the RQ, which suggests that more glucose is oxidized in
relation to lipid utilization [19,20]. This finding was espe-
cially relevant in the fasting situation, which is interesting
because in such conditions lipid reserves are more
required for energy expenditure maintenance. The trends

in the fed group were also in the same direction, confirm-
ing the validity of this gene therapy tool.

The glyoxylate cycle is a critical component of the gluco-
neogenic machinery responsible for the conversion of ace-
tate into glucose [6]. Indeed, acetate can only serve as a net
source of glucose in organisms with the necessary
enzymes to catalyze the reactions of the glyoxylate cycle
[24]. In this context, ICL and MS are recognized as the
pathway specific enzyme activities, while no remaining
enzyme activities were in common with activities of the
TCA cycle [25].

Table 1: 

2 × 2 Anova
C (n = 5) F (n = 5) C Gx (n = 5) F Gx (n = 5) Nutritional Status Treatment Nutritional status × treatment

Weight change (g) 1.47 ± 2.59 -4.53 ± 2.28 0.07 ± 1.14 -3.33 ± 1.73 ** n.s. n.s.
Final weight (g) 24.8 ± 2.59 18.8 ± 2.28 23.4 ± 1.14 20.0 ± 1.73 ** n.s. n.s.
Glucose (mg/dL) 112.8 ± 16.5 75.6 ± 30.2 122.4 ± 28.6 69.2 ± 33.9 ** n.s. n.s.

Means ± SD of body weight change (g), final weight (g) and plasma glucose (mg/dL) analized by 2 × 2 ANOVA (nutritional status × treatment). (C; 
control diet, F; fasting group, C Gx; control diet group with full plasmid, F Gx; fasting group with full plasmid, n.s.; non statistical significance, **; p < 
0.01).

Means ± SD of respiratory quotient and differences analized by 2 × 2 ANOVA (nutritional status × treatment)Figure 1
Means ± SD of respiratory quotient and differences analized by 2 × 2 ANOVA (nutritional status × treatment). (C; control 
diet, F; fasting group, C Gx; control diet group with full plasmid, F Gx; fasting group with full plasmid, n.s.; non statistical signif-
icance, *; p < 0.05, **; p < 0.01).
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The glyoxylate cycle is well characterized in microorgan-
isms, higher plants [26] and nematods, but the occurrence
and functionality in vertebrates, such as rodents, chickens
or humans [7-11], is still a matter of debate. This has been
attributed to the lack of this metabolic pathway, reduced
expression of ICL/MS in normal conditions, or improper
induction or measurement of the activity of these
enzymes [27].

In this context, our hypothesis was that the presence of a
functional glyoxylate cycle might enable the organism to
obtain more energy supply from sources different from
glucose and facilitate fat mobilization. Strategies based on
this approach might accelerate fat utilization in fasting sit-
uations or during exercise, increasing thus fuel demands,
which might be very useful in obesity and diabetes to
reduce adipose tissue depots.

Despite the apparent success of this gene transfer, some
aspects and limitations should be taken into account,
such as the administered dose, which may affect liver
function, as described by others [17,18], the limited
number of animals in this translational research or the
short period of time analyzed given that fasting can not be
maintained at long term [27], among others.

Summing up, this pioneer protocol was able to induce
changes in the mechanism of secondary glucose/glycogen
production, by the conversion of fat to carbohydrates
allowing the net utilization of sugars from acetyl-CoA.
This approach, if successfully developed in other species
including the human being, could provide a valid gene
therapy instrument for obesity and related comorbilities,
in which accelerated fat oxidation is required.
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