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Abstract
Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and 
cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-
treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). 
These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously 
hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed 
BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in 
small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with 
the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol 
concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and 
BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted 
DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic 
interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose 
intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.

Findings
Glucocorticoids (GC) have been utilized for decades in
treatment of wide variety of inflammatory, allergic,
hematological and other disorders. In spite of their dem-
onstrated therapeutic value, glucocorticoid treatment is
often accompanied with substantial side-effects, includ-
ing dyslipidemia, diabetes, obesity, osteoporosis, muscle
wasting, impaired wound healing or rheumatoid arthritis
[1]. While the molecular mechanisms of the GC-induced
metabolic disturbances have been subjected to intensive
investigation [2], the genetic basis of the interindividual
differences in response to GC received only limited atten-
tion so far. Several genes have been proposed to trans-

duce or modulate the metabolic effects of
glucocorticoids, including functional candidates like glu-
cocorticoid receptor [3], 11β-hydroxysteroid dehydroge-
nases 1 and 2 (11β-HSD1, 2) [4] and corticosteroid-
binding globulin (CBG) [5], and peroxisome proliferator-
activated receptor alpha (PPARα) [6]. We have previously
reported a comprehensive set of quantitative trait loci
related to genomic architecture of metabolic syndrome
including its dynamics in response to dexamethasone
(DEX)-induced derangements of lipid and carbohydrate
metabolism [7].

In the current study, we tested the effect of deficiency
of one of the DEX-target genes, fatty acid translocase
Cd36 [8,9], on the DEX-induced metabolic changes. To
that end, we have compared triacylglycerol and choles-
terol concentrations across 20 lipoprotein fractions and
glucose tolerance in control and DEX-treated adult males
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of two rat strains, Brown Norway (BN) and congenic
BN.SHR-(Il6-Cd36)/Cub (BN.SHR4 hereafter; Rat
Genome Database [10] (RGD) ID 728142). These two
inbred strains differ in a defined segment of chromosome
4, originally transferred from the spontaneously hyper-
tensive rat (SHR) including the mutant Cd36 gene into
the genomic background of BN to create BN.SHR4
[11,12].

All experiments were performed in agreement with the
Animal Protection Law of the Czech Republic (311/1997)
which is in compliance with the European Community
Council recommendations for the use of laboratory ani-
mals 86/609/ECC and were approved by the Ethical com-
mittee of the First Faculty of Medicine. Animals were
held under temperature and humidity controlled condi-
tions on 12 h/12 h light-dark cycle. At all times, the ani-
mals had free access to food and water. Male BN (n = 12)
and BN.SHR4 (n = 13) rats were fed standard laboratory
chow ad libitum. At the age of 7 months, the rats were
randomly split into control (n = 6 and 7 for BN and
BN.SHR4, respectively) and experimental groups (n = 6/
strain). Experimental groups were administered dexame-
thasone (Dexamed, Medochemie) in drinking water (2.6
μg/ml) for three days as described previously [7]. The
OGTT was performed after overnight fasting. Blood for
glycaemia determination (Ascensia Elite Blood Glucose
Meter; Bayer HealthCare, Mishawaka, IN, validated by
Institute of Clinical Biochemistry and Laboratory Diag-
nostics of the First Faculty of Medicine) was drawn from
the tail at intervals of 0, 30, 60, 120 and 180 minutes after
the intragastric glucose administration to conscious rats
(3 g/kg body weight, 30% aqueous solution). Plasma lipo-
proteins were analyzed by an on-line dual enzymatic
method for simultaneous quantification of cholesterol,
triacylglycerol and free glycerol by HPLC at Skylight Bio-

tech Inc. (Akita, Japan) according to the procedure
described previously [13].

The control groups of both strains showed similar mor-
phometric profile, BN.SHR4 had slightly lower relative
heart and testes weights compared to BN. DEX-treated
BN.SHR4 displayed greater body weight loss while main-
taining food intake comparable to BN (Table 1). Despite
that, the reduction of retroperitoneal fat mass was more
pronounced in BN (Table 1).

Although total serum triacylglycerols (TG) were not
significantly different between the control groups of the
two strains, in-depth analysis revealed TG elevation in
BN.SHR4 in small very low-density lipoprotein (VLDL),
large, medium and small low-density lipoprotein (LDL)
and small and very small high-density lipoprotein (HDL)
subfractions (Figure 1A). DEX induced substantially
more robust decreases of TG in BN.SHR4 except for
small HDL. Therefore, DEX-treated BN had higher con-
centrations of TG in large, medium and small LDL (Fig-
ure 1B). There were no strain- or DEX-related differences
in fasting glycerol levels (data not shown).

Standard diet-fed BN.SHR4 showed in comparison to
BN higher cholesterol content in most lipoprotein frac-
tions except chylomicrons (Figure 1C). Total cholesterol
was decreased by DEX by more than 21% in BN.SHR4
contrasting with the tendency to increase in BN
(strain*DEX interaction p = 0.0017, Table 2). When ana-
lyzed in detail, DEX-treated BN displayed higher choles-
terol concentrations in very small LDL and across HDL
spectrum (Figure 1D). Concomitantly, the HDL particle
size increased only in BN (Table 3).

While there was no strain difference in response to glu-
cose bolus administration in the control groups, we
observed a markedly diminished DEX induction of glu-
cose intolerance in BN.SHR4 compared to BN (Figure 2,

Table 1: Morphometric comparison of BN vs. BN.SHR4 rats.

CONTROL DEXAMETHASONE

Trait BN
(n = 6)

BN.SHR4
(n = 7)

BN
(n = 6)

BN.SHR4
(n = 6)

Body weight (b.wt.), g 281 ± 9 312 ± 15 257 ± 7 262 ± 10†

Liver wt, g/100 g b.wt. 2.17 ± 0.03 2.15 ± 0.03 2.40 ± 0.03‡ 2.27 ± 0.03a,*

Heart wt, g/100 g b.wt. 0.31 ± 0.01 0.28 ± 0.01a 0.34 ± 0.01* 0.34 ± 0.01‡

Kidney wt, g/100 g b.wt. 0.55 ± 0.01 0.52 ± 0.01 0.58 ± 0.02 0.58 ± 0.01‡

Adrenals wt, mg/100 g b.wt. 15.2 ± 1.7 13.6 ± 0.6 12.9 ± 0.6 12.3 ± 1.3

Testes wt, g/100 g b.wt 1.09 ± 0.03 0.97 ± 0.04a 1.13 ± 0.03 1.03 ± 0.03

EFP wt, g/100 g b.wt. 0.80 ± 0.03 0.89 ± 0.05 0.73 ± 0.03 0.82 ± 0.02

RFP wt, g/100 g b.wt. 0.36 ± 0.03 0.40 ± 0.04 0.25 ± 0.02* 0.34 ± 0.02a

The significance levels are indicated as follows: a...p < 0.05, respectively for differences between BN and BN.SHR4 under conditions of a single 
diet; *, †, ‡... p < 0.05, 0.01 and 0.001, respectively, for DEX effect within individual strain. Values are shown as mean ± S.E.M.; b.wt....body weight; 
EFP...epididymal fat pad; RFP...retroperitoneal fat pad.
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reflected by strain*DEX interaction in two-way ANOVA,
p = 0.005). Actually, the incremental area under the gly-
caemic curve failed to increase significantly in BN.SHR4
(244 ± 34 vs. 418 ± 66 mmol/l/180 min in control vs.
DEX-treated animals, respectively, p = 0.23), while we
observed more than threefold, significant increase in BN
rats (222 ± 30 vs. 817 ± 110 mmol/l/180 min in control vs.
DEX-treated animals, respectively, p = 0.0002).

Our study presents a pharmacogenetic interaction
between limited genomic segment with mutated Cd36
gene and dexamethasone-induced glucose intolerance
and triacylglycerol and cholesterol redistribution into
lipoprotein fractions. Genetic variation in fatty acid
translocase CD36 has been previously linked with dyslip-
idemia and insulin resistance both in experimental mod-
els [14,15] and in human subjects [16,17]. Moreover, we
have established Cd36 as key determinant of the meta-
bolic effects of insulin-sensitizer drugs - thiazolidine-
diones by demonstrating their blunted action both in
SHR [18] and BN.SHR4 [12,19]. The BN.SHR4 displays

several derangements of lipid and carbohydrate metabo-
lism compared to BN while fed standard or high-sucrose
diet [11]. In this study, the Cd36-deficient congenic
showed reduced susceptibility to diabetogenic action of
DEX and even partial improvement of its lipid profile,
contrasting with its BN progenitor. Dexamethasone is
known to induce whole body insulin resistance and affect
lipid metabolism after both short and long-term adminis-
tration [20,1,21] while CD36 is one of its target genes
[8,9]. We have previously shown DEX to concomitantly
induce both muscle-specific insulin resistance and dyslip-
idemia in experimental models of metabolic syndrome
including spontaneously hypertensive rat-derived con-
genic strain [22], polydactylous rat as well as BN [7]. The
distinct pattern reported in the current study, i.e. induc-
tion of glucose intolerance by DEX combined with ten-
dency to reduce concentrations of triacylglycerol and
cholesterol in certain lipoprotein fractions may be attrib-
uted to short term administration of one-tenth of the
dose used in our prior studies [7,22]. One of the limita-

Figure 1 Triacylglycerol and cholesterol profile of BN vs. BN.SHR4. The triacylglycerol (A, B) and cholesterol (C, D) content in 20 lipoprotein sub-
fractions in standard diet-fed (STD, A and C) and dexamethasone-treated (DEX, B and D) BN (open symbols) vs. BN.SHR4 (closed symbols) male rats (n 
= 6/strain*treatment). Within the graph, the significance levels of strain comparison (BN vs. BN.SHR4, two-way ANOVA with STRAIN and DEX as major 
factors followed by post-hoc Tukey's honest significance difference test) are indicated as follows: *...p < 0.05; **...p < 0.01; ***...p < 0.001. The allocation 
of individual lipoprotein subfractions to major lipoprotein classes is shown in order of particle's decreasing size from left to right. CM...chylomicron, 
VLDL...very low-density lipoprotein, LDL...low density lipoprotein, HDL...high-density lipoprotein.
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Table 2: Two-way analysis of variance (ANOVA) results.

Phenotype STRAIN DEX STRAIN*DEX

Body weight (b.wt.) 0.11 0.0027 0.25

Liver, g/100 g b.wt. 0.08 0.0004 0.07

Heart, g/100 g b.wt. 0.09 0.0005 0.48

Kidney, g/100 g b.wt. 0.41 0.0007 0.24

Adrenals, mg/100 g b.wt. 0.37 0.15 0.71

EFP wt., g/100 g b.wt. 0.012 0.06 0.78

RFP wt., g/100 g b.wt. 0.07 0.0023 0.26

Testes wt., g/100 g b.wt. 0.0027 0.16 0.67

Glucose (0 min) 0.20 <0.0001 0.50

Glucose (30 min) 0.31 <0.0001 0.14

Glucose (60 min) 0.0015 <0.0001 0.0005

Glucose (120 min) 0.0043 0.0001 0.046

Glucose (180 min) 0.07 <0.0001 0.032

AUC OGTT (0-180 min) 0.010 <0.0001 0.0048

Glycerol 0.37 0.11 0.38

Triacylglycerol (TG)

Total TG 0.21 0.0034 0.74

Chylomicron TG 0.60 0.48 0.08

VLDL-TG 0.19 0.0026 0.99

LDL-TG 0.37 0.0002 0.017

HDL-TG 0.028 0.14 0.59

F1 (CM) 0.54 0.43 0.09

F2 (CM) 0.69 0.57 0.06

F3 (large VLDL) 0.44 0.62 0.13

F4 (large VLDL) 0.19 0.09 0.50

F5 (large VLDL) 0.15 0.0011 0.83

F6 (medium VLDL) 0.18 <0.0001 0.42

F7 (small VLDL) 0.28 <0.0001 0.11

F8 (large LDL) 0.32 0.0004 0.0014

F9 (medium LDL) 0.36 0.0002 0.0031

F10 (small LDL) 0.29 0.0002 0.013

F11 (very small LDL) 0.52 0.0003 0.11

F12 (very small LDL) 0.70 0.0060 0.45

F13 (very small LDL) 0.95 0.06 0.76

F14 (very large HDL) 0.99 0.33 0.60

F15 (very large HDL) 0.81 0.66 0.48

F16 (large HDL) 0.62 0.39 0.57

F17 (medium HDL) 0.021 0.44 0.81

F18 (small HDL) 0.0021 0.0023 0.46

F19 (very small HDL) 0.0023 0.10 0.93

F20 (very small HDL) 0.015 0.0051 0.74

Cholesterol (C)

Total C 0.26 0.28 0.0017
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Chylomicron C 0.58 0.89 0.0091

VLDL-C 0.0018 0.0081 0.35

LDL-C 0.13 0.0002 0.0006

HDL-C 0.21 0.0036 0.0059

F1 (CM) 0.55 0.82 0.0013

F2 (CM) 0.32 0.97 0.06

F3 (large VLDL) 0.54 0.38 0.10

F4 (large VLDL) 0.028 0.75 0.69

F5 (large VLDL) 0.0026 0.016 0.40

F6 (medium VLDL) 0.0009 0.0005 0.08

F7 (small VLDL) 0.025 0.0017 0.045

F8 (large LDL) 0.06 <0.0001 0.0085

F9 (medium LDL) 0.030 <0.0001 0.0007

F10 (small LDL) 0.08 <0.0001 0.0059

F11 (very small LDL) 0.11 0.0001 0.032

F12 (very small LDL) 0.52 0.94 0.0038

F13 (very small LDL) 0.47 0.014 0.0009

F14 (very large HDL) 0.21 0.0050 0.0019

F15 (very large HDL) 0.20 0.0048 0.0056

F16 (large HDL) 0.22 0.0067 0.018

F17 (medium HDL) 0.15 0.089 0.015

F18 (small HDL) 0.30 0.0004 0.0096

F19 (very small HDL) 0.41 <0.0001 0.11

F20 (very small HDL) 0.87 <0.0001 0.024

Lipoprotein particle size

VLDL-TG 0.06 <0.0001 <0.0001

LDL-C 0.15 <0.0001 0.09

HDL-C 0.59 0.44 0.0038

The significance levels of two-way ANOVA's STRAIN, DEX and STRAIN*DEX factor interactions are shown (significant p values in bold, non-
significant in italics). For glucose tolerance test, the time in minutes after the oral glucose load is indicated in parentheses. b.wt....body weight; 
EFP...epididymal fat pad; RFP...retroperitoneal fat pad. AUC OGTT...area under the glycaemic curve of the oral glucose tolerance test.

Table 2: Two-way analysis of variance (ANOVA) results. (Continued)
Table 3: Lipoprotein particle size comparison between BN and BN.SHR4.

CONTROL DEXAMETHASONE

Trait (nm) BN
(n = 6)

BN.SHR4
(n = 7)

BN
(n = 6)

BN.SHR4
(n = 6)

VLDL 44.51 ± 0.09 43.55 ± 0.17b 44.68 ± 0.28 46.60 ± 0.32‡,c

LDL 23.18 ± 0.07 23.15 ± 0.17 22.11 ± 0.06‡ 22.54 ± 0.18†,c

HDL 12.36 ± 0.07 12.64 ± 0.09 12.78 ± 0.05† 12.38 ± 0.17a

The significance levels are indicated as follows: a,b,c...p < 0.05, 0.01 and 0.001, respectively for differences between BN and BN.SHR4 under 
conditions of a single diet; *, †, ‡... p < 0.05, 0.01 and 0.001, respectively, for DEX effect within individual strain. Values are shown as mean ± 
S.E.M.
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tions of the current study is the possibility that other
genes apart from mutated Cd36 present in the differential
segment might be involved in the underlying mechanism
of distinct metabolic response of the two strains, this
issue will be addressed in future studies by e.g. generating
Cd36 knockout rats [23]. Although it is premature to
speculate on the detailed mechanism of the observed
interaction, which might involve enhanced glucose utili-
zation in peripheral tissues due to ineffective fatty-acid
uptake [18], we may hypothesize that Cd36 and/or some
other gene(s) present in the chromosome 4 differential
segment may represent pharmacogenetic hubs [24] of
particular importance for metabolic actions of glucocor-
ticoids.
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Figure 2 Oral glucose tolerance test of BN vs. BN.SHR4. Oral glu-
cose tolerance test (OGTT) in control (squares) and dexamethasone-
treated (DEX; triangles) male BN (open symbols) and BN.SHR4 (closed 
symbols) male rats. Within the graphs, the significance levels of strain 
comparison (BN vs. BN.SHR4) by post-hoc Tukey's honest significance 
difference test of the two-way ANOVA with STRAIN and DEX as major 
factors (STATISTICA 8 CZ) are indicated as follows: *...p < 0.05; **...p < 
0.01; ***...p < 0.001.
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