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Abstract
Background: Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in 
the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several 
vegetable extracts.

Results: By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase 
coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying 
specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified 
by LC/MS. We found a significant interference of diverse (cocoa and tea-derived) extracts over this method. The 
interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of 
unspecific fluorescence was inhibitable by catalase (but not by heat denaturation), suggesting vegetable extract 
derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase 
inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable 
extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed 
quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts.

Conclusions: We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol 
analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the 
enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses 
solve these issues.

Background
Cholesterol function is essential for membrane physiol-
ogy, bile acids and steroid hormones biosynthesis. How-
ever, an elevated level of cholesterol in plasma is
implicated in atherosclerosis and other cardiovascular
diseases [1,2]. Therefore, minimizing dietary cholesterol
intake is often recommended as a primary measure for
lowering cholesterolemia [3]. In the intestinal tract,
dietary lipids are first emulsified in the lumen by bile
components (biliary salts and phospholipids) and then
encapsulated into micelles. Cholesterol can be then trans-

ferred from micelles to gut wall and thereafter to blood-
stream [4]. Epidemiological and experimental evidence
demonstrate that the consume of vegetable foods allows
to a lowering effect on cholesterol plasma levels and
diminished risk of atherosclerosis progression [5,6]. It is
known that cholesterol esters, phenol compounds and
other vegetable derived nutrients can block the entry of
most cholesterol into micelles, partially preventing its
absorption [7]. While developing a model of "in vitro"
digestion based on published methods [8] we analyzed
mixtures of cholesterol with selected foodstuffs and bile,
we detected strong interferences in a widely used method
for cholesterol quantification arising from different vege-
table foods like cocoa and/or green tea.
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This study characterized those potential interferences
and presents different solutions to solve them.

Results
Vegetable extracts induce an apparent increase in 
cholesterol content in "in vitro" experiments using an 
enzymatic method
The presence of vegetable derived extracts in a duodenal
micelle model gave rise to its apparent cholesterol con-
tent using a commercial method based on a cholesterol-
oxidase coupled reaction (Figure 1). This kit is also rec-
ommended by the manufacturer for the use in food
extracts. Different vegetable extracts (in concentration
ranging 0 to 20 mg/ml) were analyzed for the potential
interference in the cholesterol assay. Cocoa and tea
extracts increased the apparent cholesterol concentration
(figure 2A and 2B) in a concentration dependent fashion,
even in the absence of cholesterol oxidase, the key
enzyme in this system. Considering the enzyme-coupled
reaction of this method (Figure 1), we analyzed (in com-
parison to the complete system), i) the cholesterol inde-
pendent fluorescence (system without cholesterol
esterase and cholesterol oxidase), ii) the peroxidase activ-
ity independent fluorescence and iii) the resorufin inde-
pendent fluorescence. Fluorescence found in both
cholesterol dependent and independent conditions sug-
gested either a generation of vegetable extract derived
H2O2 and/or an interference from peroxidase activity
present in vegetable extracts.

Phytoesterol interferences were ruled out as ergosterol
and other sterols (data not shown) did not offer fluores-
cence in the complete system. Metal chelation (EDTA-
DTPAC) did not inhibit significantly fluorescence in the
complete system in the presence of vegetable extracts
except in the case of tea extract (figure 2C). The potential
contribution of vegetable derived peroxidases was ruled
out by heat denaturation of vegetable extracts, even
resulting in the increase of fluorescence (figure 2C).

Finally, the inhibitory activity of catalase [1.11.1.6] (lead-
ing to fluorescence decreases to 50%) suggests that there
is a vegetable extract dependent H2O2 production which
may be derived by the previously described interaction of
sample antioxidants with horseradish peroxidase [9].
Moreover, in the presence of vegetable extracts, the fluo-
rescence in both cholesterol-dependent and independent
reactions offered similar values suggesting the possibility
of using the cholesterol independent fluorescence as a
blank to account the vegetable extract derived interfer-
ences (figures 2A and 2B).

To test this alternative solution, cholesterol standard
curves in the presence of vegetable derived extracts were
developed (figure 2D and 2E). The slope of the choles-
terol concentration-fluorescence linear relationship was
inversely related to the concentration of vegetable
extract, in a given range (up to 10 mg/ml in cocoa
extract). Therefore, it is advisable to develop a cholesterol
standard curve with the chosen concentration of vegeta-
ble extract in order to ascertain linearity, even in the pres-
ence of the cholesterol independent fluorescence blank. It
should be noted that in specific cases the interference of
the vegetable extracts precluded the use of cholesterol
standard curve even at a lower doses (from 1 mg/ml in
tea).

Vegetable extracts induce an apparent decrease in 
cholesterol incorporation in bile micelles. Chromatographic 
approach for cholesterol analysis
In order to further model duodenal conditions, the
extracts were diluted with porcine bile as previously
described [8]. The fluorescence was analyzed in choles-
terol dependent and independent conditions. Surpris-
ingly, the cholesterol independent fluorescence (i.e.
vegetable extract derived H2O2) disappeared (cocoa
extract) or decreased (tea extract) in this condition (fig-
ure 3A and 3B). Nevertheless, a novel interference was
detected, since apparent cholesterol concentration
decreased. In order to further characterize this new inter-
ference, a standard curve using different extract concen-
tration was done. The results (figure 3C and 3D) show the
same behavior of cholesterol standard curves as in the
case of PBS, i.e., the slope of the cholesterol standard
curve was reduced when the concentration of food
extract was increased.

In order to further characterize those interferences in
duodenal-like conditions, we used a chromatographic
approach. Figure 3E shows that the cholesterol concen-
tration does not change with the addition of cholesterol
esterase, probably due to the virtual absence of choles-
teryl esters in porcine bile. The addition of cholesterol
oxidase in the mixture resulted in a strong decrease in the
cholesterol detection because most of the cholesterol was
oxidized (Figure 3E). However, the addition of vegetable

Figure 1 Enzymatic method used for quantification of cholester-
ol based on cholesterol oxidase-peroxidase coupled reaction. 
Amplex Red®: 10-acetyl-3, 7-dihidroxyphenoxazine.
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derived extracts caused an increase in cholesterol content
in those conditions, suggesting an inhibitory activity of
those extracts over cholesterol oxidase in the presence of
bile.

To further elucidate whether vegetable extracts induced
a decrease in the cholesterol in the micellar (bioavailable)
phase, cocoa and tea extracts were diluted in bile, incu-
bated, centrifuged and filtered to obtain the micellar frac-

Figure 2 Vegetable extracts interfere with cholesterol analyses in phosphate buffered saline based systems using cholesterol oxidase per-
oxidase-coupled reactions. Both cocoa (a) and tea-derived (b) extracts showed, in a dose dependent fashion, reactivity in systems used for choles-
terol analyses using cholesterol oxidase-peroxidase coupled reactions. Cholesterol independent fluorescence was defined as fluorescence arising 
from the complete system without the enzymes cholesterol oxidase and cholesterol esterase. Cholesterol content was obtained by subtracting cho-
lesterol independent fluorescence from the complete system. c. Interference was not sensible to heat-denaturation (96°C, 3 min) or metal chelation 
(EDTA and DTPAC 1 mM), but to catalase (7 mg/ml). Linearity of a cholesterol standard curve was sensible to the presence of either cocoa (d) and tea-
derived (e) extracts diluted in phosphate buffered saline in different concentrations (from 0 to 20 mg/ml). Values are means ± SEM. Statistical analysis 
was done by ANOVA followed by Tukey HSD post hoc test (* p < 0.05).
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tion as previously described [8]. Next, the cholesterol
content in this fraction was analyzed both by the enzyme-
based assay and by the chromatographic method. The
results show that, while porcine bile-vegetable interfer-
ences impeded accurate quantification by the enzyme-
based assay, chromatographic method allowed it (Figure
4). The results also show that while enzyme-based assay

showed marked differences in the potential for diminish-
ing cholesterol absorption between both vegetable
extracts, the use of chromatographic assays disclosed
similar effects. With these results we concluded that
although cholesterol-esterase and cholesterol-oxidase
based assays are widely [10-12] used to measure choles-
terol, it is necessary to develop artifact controls in order

Figure 3 Vegetable extracts interfere with cholesterol analyses in in the presence of porcine bile based systems using cholesterol oxidase 
peroxidase-coupled reactions. Both cocoa (a) and tea-derived (b) extracts inhibited, in a dose dependent fashion, bile-derived cholesterol reactivity 
in systems used for cholesterol analyses using cholesterol oxidase-peroxidase coupled reactions. Cholesterol-dependent and independent fluores-
cences were as defined in figure 2. Linearity of a cholesterol standard curve was sensible to the presence of either cocoa (c) and tea-derived (d) extracts 
diluted in bile in different concentrations (from 0 to 20 mg/ml). (e) Vegetable-extracts (10 mg/mL) inhibited cholesterol oxidase activity in the pres-
ence of bile, based on the cholesterol chromatographic assay. Values are means ± SEM. Statistical analysis was done by ANOVA followed by Tukey 
HSD post hoc test (* p < 0.05).
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to offer an accurate measurement in the presence of
foodstuffs.

Discussion
There are several methods described to measure choles-
terol content in foodstuff using chromatographic
approaches [13,14]. However, when it is necessary to ana-
lyze a high number of samples, an enzymatic method
based on the cholesterol oxidase-peroxidase coupled
reaction could be the best option [10-12] if we take into
account some interferences reported here.

With the objective of modeling the capability of vegeta-
ble extracts decreasing the bioavailable micellar choles-
terol, we found different interferences in the
measurement of cholesterol using an enzymatic method.
In phosphate buffered saline, we evidenced a highly
intense cholesterol independent fluorescence that we
could attribute partially (50%) to an exogenous H2O2 pro-
duction, as in those conditions it was diminished by cata-
lase preincubation. The rest of the interference could be
explained by a different mechanism recently described in
our group [9], showing an interaction of vegetable antiox-
idants with peroxidases. Horseradish peroxidase is often
used as final step for enzymatic-coupled reactions.
Briefly, in the absence of hydrogen peroxide but in aero-
bic conditions, the antioxidant compound of the vegeta-
ble extracts could reduce the ferric-horseradish
peroxidase to ferrous-horseradish peroxidase and then
interact with the O2 of the medium producing horserad-
ish peroxidase-Compound III. This compound can
undergo spontaneous decay to ferriperoxidase with the

generation of O2
- which may interact with the antioxidant

producing an antioxidant radical. This antioxidant radical
may then react with the Amplex Red® and horseradish
peroxidase and produce resorufin. Thus, all peroxidase
based enzymatic methods may show interferences by
those vegetable derived compounds. To solve these inter-
ferences we propose two different and complementary
methods: i) the use of cholesterol independent condition
as a blank of the reaction to eliminate the fluorescence
when the vegetable extracts are diluted in PBS and ii) the
application of cholesterol standard curves including the
working concentration of the extract.

For the studies of "in vitro" cholesterol absorption we
used porcine bile in order to reproduce a physiologically
relevant and a stable source of micellar cholesterol. We
first analyze the interference of the extracts diluted in bile
and we found a novel interference that decreases the
apparent cholesterol concentration. In this case, the use
of the cholesterol independent fluorescence is not as use-
ful as in the case of buffered saline-based systems because
in this latter case the interference is lower. However, the
cholesterol and/or cholesterol ester standard curve addi-
tion with the extracts could be a good method to reduce
the interferences detecting cholesterol at low concentra-
tions of vegetable extracts. After incubating the extracts
in the presence or in the absence of the enzymes choles-
terol esterase and cholesterol oxidase we discover that
vegetable extracts can interact directly and/or indirectly
decrease the activity of cholesterol oxidase. We cannot
exclude that other vegetable derived extracts could inhib-
its cholesterol esterase. The mechanisms behind this
inhibitory effect are outside the scope of this work, but
they may comprise displacement of cholesterol oxidase
outside of lipid bilayers needed for efficient catalytic
turnover [15] and they may be part of the defensive prop-
erties of polyphenols presents in vegetable extracts [16].
In any case, cholesterol oxidase is among the more fre-
quently used enzymes and its interference should be
accounted when extending the use from clinical chemis-
try to food chemistry [17].

Finally, the development of a chromatographic method
in order to measure the cholesterol concentration in bio-
logical models of food digestion is presented as a solution
when the used concentration of foodstuff is high enough
to interfere with the standard addition method. Both
detection methods were used to test the effect of these
extracts in lowering the concentration of potentially bio-
available cholesterol. Moreover, it is described that sterol,
polyphenols and other nutrients can block the entry of
most cholesterol into micelles [8,18-20]. Although there
were evidenced a blocking effect of cholesterol entry into
micellar phases by both extracts using both methods the
magnitude of the change differed. Using the enzymatic
method we demostrated that the cholesterol independent

Figure 4 Vegetable extract impairs cholesterol bioavailability in 
a model of duodenal content, but this impairment could be over-
estimated (tea) or underestimated (cocoa) by enzyme-based cho-
lesterol assays. Values are means ± SEM. Statistical analysis was done 
by ANOVA followed by Tukey HSD post hoc test (* p < 0.05).
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fluorescence in the case of tea extract was very high, quite
similar to the fluorescence of complete system. This high
fluorescence resulted in a small detection of real choles-
terol dependent fluorescence. In the case of cocoa extract
the decrease in apparent bioavailability is about 20%.
Analyzing the cholesterol concentration using a chro-
matographic method both extracts at tested concentra-
tions decreased micellar cholesterol about a 50%.

Conclusions
The use of cholesterol-oxidase and/or peroxidase based
systems for cholesterol analyses in foodstuffs should be
accurately monitored, as important interferences in all
the components of the enzymatic chain were evident.
The use of adequate controls, standard addition and
finally, chromatographic analyses should solve these
issues.

Methods
Chemicals
Ethylenediaminetetraacetic acid (EDTA), diethylenetri-
aminepentaacetic acid (DTPAC), ergosterol, catalase,
chloroform and cholesterol were from Sigma (Sigma-
Aldrich, Saint Louis, MO, USA). Acetonitrile, 2-propa-
nol, ammonium acetate and formic acid were from Baker
(Mallinckrodt Baker, Phillipsburg, NJ, USA). Millex GP
filters 0,22 μm and Ultrafree-MC filtres 30,000 from Mil-
lipore (Millipore, Billerica, MA, USA), methanol from
Carlo Erba (Carlo Erba, Milano, Italy) and
[25,26,26,26,26,27,27,27-2H7]cholesterol (cholesterol-D7)
from Avanti Polar Lipids (Avanti Polar Lipids Inc, Alabas-
ter, AL, USA).

Bile from porcine biliary vesicle was collected from a
local abattoir and placed on ice. Immediately after collec-
tion, bile was centrifuged at 2000 g at 4°C for 10 min to
remove debris. The cholesterol content of the bile was
measured (see below) and then the bile was diluted with
phosphate buffered saline to obtain a 0.5 mM of choles-
terol concentration, as described by Kirana et al [8]. It
was aliquoted and stored at -80°C.

Green tea and cocoa vegetable extracts were provided
by La Morella Nuts SA (La Morella Nuts, Reus, Spain).

Cholesterol measurement using an enzymatic method
The concentration of cholesterol in porcine bile, food
extracts and mixes was analyzed by Amplex Red Choles-
terol Assay Kit (A12216) based on an enzymatic reaction
depicted in figure 1. Briefly, reactions took place in a 96
well plate by the addition of 50 μL of Amplex Red work-
ing solution with 50 μL of assay sample. Five mL of work-
ing solution, prepared prior the analysis, contained 75 μL
of a 300 μM of Amplex Red reagent and 2 U/mL of HRP.
The working solution volume was adjusted to 5 mL with
reaction buffer, which contained 25 mM potassium phos-

phate, pH 7.4, 12.5 mM NaCl, 1.25 mM cholic acid and
0.025% Triton X-100. The reactions were incubated for
30 min at 37°C, protected from light. After incubation,
fluorescence was measured in a fluorescence microplate
reader (Tecan Infinite M200, Männedorf, Switzerland)
using excitation wavelength at 560 nm and emission
detection at 590 nm.

The samples were suspended with either phosphate
buffered saline or porcine bile to obtain the initial desired
concentration of nutrient (from 0 to 20 mg/ml). After a
dilution in PBS (1:25) cholesterol amount was quantified
by fluorescence according the kit instructions.

To model the cholesterol entry into micellar phases and
its potential inhibition by vegetable extracts, the method
of Kirana et al was used [8]. Briefly, samples suspended in
pig's bile at 10 mg/ml were incubated at 37°C for 1 h with
continuous shaking at 160 r.p.m. (Unitron, Infors HT,
Headquarter, Switzerland). The solution was then centri-
fuged at 1000 × g for 10 min, filtered through a 0.22 μm
Millex GP and diluted 25 fold. The concentration of cho-
lesterol was analyzed by Amplex Red Cholesterol Assay
Kit (A12216).

Cholesterol analysis by liquid chromatography coupled to 
mass-spectrometry
To unequivocally quantify cholesterol in food extract-bile
mixtures, cholesterol was extracted using chloro-
form:methanol (2:1) as described previously [21,22]. Pre-
vious to extraction cholesterol-D7 was added, as an
internal standard, to a final concentration of 125 μg/mL.
The mixture was vortexed and centrifuged at 4400 × g at
room temperature for 15 min. The organic phase was
conserved and the procedure was repeated. Combined
organic phases were dried in a SpeedVac (Thermo Fisher
Scientific, Madrid, Spain) and dissolved with methanol.
The samples were filtered in an UltraFree 5 kDa filter
(Millipore, Billerica, MA, USA) before liquid chromatog-
raphy analysis.

Liquid chromatography was done in an Agilent LC
model G2226A coupled to an ESI-QTOF MS 6520 (Agi-
lent Technologies, Barcelona, Spain). For this purpose,
extracted sample was applied onto a reverse-phase col-
umn (C18 Luna 3 micron pfp(2) 100 A 150 × 2 mm, Phe-
nomenex, California, USA), equipped with a guard-
column kept at 50°C. The flow rate was 100 μl/min with
solvent A composed of water containing 1% ammonium
acetate 1 M, 0.1% formic acid, and solvent B composed of
acetonitrile:2-propanol (5:2; v/v) containing 1% ammo-
nium acetate 1 M, 0.1% formic acid. The gradient started
from 65% A/35% B, reached 100% B in 35 min, held there
for the next 10 min and re-equilibrated for 15 min [23].
The temperature of the sample organizer was set at 10°C.

Data were collected in positive electrospray mode TOF
operated in full-scan mode at 100 to 3000 m/z. The capil-
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lary voltage was 3500 V with a scan rate of 1 scan/s. N2
was used as a gas nebulizer (Flow: 5 L/min and T =
350°C). The Masshunter Software was used for integra-
tion and extraction of peak intensities of the cholesterol
and cholesterol-D7. The m/z values used for quantifica-
tion were: m/z 369.35 [M+H-H2O]+ for cholesterol and
m/z 376.3955 [M+H-H2O]+ for cholesterol-D7. Interas-
say and intraassay variation < 5%, L.O.Q was 20 pmol,
RSQ = 0.98.
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