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The role of fatty acids in insulin resistance
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Abstract

Insulin resistance is a multi-faceted disruption of the communication between insulin and the interior of a target
cell. The underlying cause of insulin resistance appears to be inflammation that can either be increased or
decreased by the fatty acid composition of the diet. However, the molecular basis for insulin resistance can be
quite different in various organs. This review deals with various types of inflammatory inputs mediated by fatty
acids, which affect the extent of insulin resistance in various organs.

Keywords: Insulin resistance, Inflammation, Fatty acids, Palmitic acid, Omega-3 fatty acids, Hypothalamus, Adipose
tissue, Liver, Muscle, Endotoxemia

Introduction
The human body has developed an extraordinary number
of systems to maintain stable blood glucose and to avoid
broad swings in its level. These systems include hormones
that are directly or indirectly generated by the diet. These
hormones sense dietary nutrients and send appropriate
neural signals to the brain (specifically the hypothalamus)
to orchestrate fuel usage for either oxidation into energy
or long-term storage. The central hormone involved in
this metabolic communication system is insulin. However,
increased inflammation can disturb these complex com-
munication systems eventually leading to metabolic de-
fects (obesity, metabolic syndrome, and diabetes).
Insulin is the primary regulator of carbohydrate, fat,

and protein metabolism [1–3]. It inhibits lipolysis of
stored fat in the adipose tissue and gluconeogenesis in
the liver, it stimulates the translocation of the GLUT-4
protein to bring glucose into the muscle cells along with
gene expression of proteins required for the optimal
cellular function, cellular repair, and growth, and it
indicates the metabolic availability of various fuels to the
brain. Therefore keeping insulin within a therapeutic zone
is critical for our survival.
In the past, access to adequate nutrients was a major

concern. Today we have a new concern: Excess nutrient
intake. However, even in this regard, insulin plays a pri-
mary role in defending the body against potential dam-
age by using the adipose tissue, liver, and skeletal muscle

as biological buffers against excess nutrient intake. This is
important since all dietary nutrients are naturally inflam-
matory since their metabolism into other biological mate-
rials or conversion to energy can generate molecular
responses that can activate increased inflammation [4].
This means that the intake of excess nutrients sets the
foundation for the generation of excess inflammation. In
the face of increased inflammation, the ability of insulin to
orchestrate metabolism becomes compromised.
Obesity is different than insulin resistance. Obesity is

defined as the excess of body fat. That itself is not neces-
sarily an adverse condition as long as the fat is safely
stored in healthy fat cells that respond to insulin. Insulin
resistance is a condition in which cells are no longer
responding appropriately to circulating insulin. Although
there are many potential molecular causes of insulin
resistance, ultimately they are all either directly or in-
directly caused by increased inflammation.

Insulin resistance
The definition of insulin resistance is deceptively simple
(a condition in which cells are no longer responding ap-
propriately to circulating insulin). Although the molecular
mechanism is not fully understood, at the cellular level
the strength of insulin signaling from its receptor to its
final action is attenuated. In particular, if insulin receptor
substrate-1 (IRS-1) is phosphorylated at a critical serine/
threonine positions, this will lead to an accelerated deg-
radation of the phosphorylated IRS-1 protein thereby re-
ducing the strength of the insulin signaling [5, 6].
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It is also known that certain short-term dietary changes
can rapidly reduce insulin resistance before any significant
fat loss occurs. This would include stringent calorie re-
striction to reduce insulin resistance within a matter of
days [7]. Likewise, certain drugs, such as corticosteroids,
can rapidly increase insulin resistance [8].
Furthermore there are various metabolic adaptations

to stressors that can induce insulin resistance. These
stressors include pregnancy, hibernation, and sepsis [1].
The increase in insulin resistance in response to these
stressors is a method of diverting stored nutrients to ad-
dress the necessary metabolic adaptation. Likewise sleep
deprivation is another effective way of increasing insulin
resistance in the short-term [9].

The role of inflammation in insulin resistance
However, it is chronic insulin resistance that appears to be
directly or indirectly related to diet-induced inflammation.
The mechanisms at the molecular level are complex and
manifold. They are based on the ability of increased cellu-
lar inflammation to interrupt insulin’s action by disrupting
signaling mechanisms within the cell in particular by the
enhancing the phosphorylation of IRS.
The primary suspects appear to be inflammatory me-

diators including the inflammatory cytokine tumor ne-
crosis factor alpha (TNFα) as well as inflammatory
protein kinases such as c-JUN N-terminal kinase (JNK)
and the IKK complex [10].
TNFα knock-out animal models are resistant to the de-

velopment of insulin resistance in animal strains prone to
diet-induced obesity (DIO mice) or those that lack leptin
(Ob/Ob mice) [11]. The JNK pathway is stress-activated
and is associated with the presence of M1 activated macro-
phages [12]. If the IKK complex is activated by inflamma-
tion, it phosphorylates IκB (the inhibitor of NF-κB) leading
to its rapid degradation. Once IκB is degraded, it can no
longer prevent the free entry of NF-κB into the nucleus.
Once NF-κB enters the nucleus it causes the expression of
additional inflammatory mediators such as cytokines (IL-1,
IL-6, TNFα, etc.) and enzymes such as COX-2 [13].
The suggestion that inflammation may be related to in-

sulin resistance came more than a century ago when it was
observed that certain anti-inflammatory drugs (salicylates
and aspirin) were effective in reducing the hyperglycemia
observed in diabetes [14–17]. It is now known that these
drugs are inhibitors of phosphorylation action of the IKK
complex [18, 19].
Table 1 summarizes the various inflammatory pathways,

but the underlying general mechanism of each ultimately
appears to be induced through increased inflammation
within the cell.
The first three pathways have been discussed exten-

sively in the literature; therefore this review will focus on
the latter pathway.

Additional molecular mechanisms of insulin resistance
include the lipid- overload hypothesis in which there is a
build-up of diacylglycerides (DAG) or ceramides that in-
hibit the signaling of insulin as well as endoplasmic
reticulum (ER) stress (induced by excess calories) or oxi-
dative stress (induced by the generation of excess free
radicals) [20–22]. Making these diverse molecular mech-
anisms of insulin resistance even more complex is that
they are operative in some organs and not in others.

Fatty acid-mediated insulin resistance in different organs
Overview
Insulin resistance can be characterized as a metabolic
dysfunction that is often mediated by increased inflam-
mation. Much of that inflammation may be diet-induced
via the role of various dietary fatty acids. In particular,
omega-6 and saturated fatty acids (especially arachidonic
acid (AA) and palmitic acid) can be viewed as pro-
inflammatory molecules, whereas omega-3 fatty acids
(especially eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA)) can be viewed as anti-inflammatory
molecules. This is because they have the ability to func-
tion as the necessary substrates to generate resolvins as
well as binding to specific binding proteins that can de-
crease insulin resistance in an organ.
The various organs that can be affected by these fatty

acid-mediated effects are shown in Fig. 1.

Hypothalamus
In many ways insulin resistance appears to start in the
hypothalamus. The hypothalamus acts to match energy
intake to energy expenditure to prevent excess accumu-
lation of stored energy [23]. In particular, satiety signals
from the gut are matched to adiposity (primarily-leptin)
and blood (primarily-insulin) hormonal signals to control
food intake [24, 25]. Unfortunately, either excess calories
or saturated fats (especially palmitic acid) can cause in-
flammation in the hypothalamus, leading to resistance to
the satiety signaling of both insulin and leptin [26–28]. As
a result, satiety is attenuated and hunger increases. The
hypothalamus also contains GPR120 binding proteins that
are specific for long-chain omega-3 fatty acids such as
EPA and DHA [29]. Thus the presence of adequate levels
of these omega-3 fatty acids in the diet can decrease in-
flammation within the hypothalamus [30]. In fact, intra-
cerebroventricular (icv) injections of omega-3 fatty acids

Table 1 Potential inflammatory pathways leading to increased
insulin resistance

TNFα

JNK

IKK

Fatty acid-mediated effects
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into obese rats decrease insulin resistance [29–31]. Like-
wise, similar icv injections of anti-TLR-4 and anti-TNFα
antibodies also decrease insulin resistance [32].
High-fat diets (HFD), especially those rich in saturated

fats, are the standard method to cause diet-induced
obesity in animal models. Increased inflammation ap-
pears in the hypothalamus within 24 h after beginning a
HFD as indicated by increases in JNK and IKK proteins
as well as increased expression of TLR-4 receptors and
detection of ER stress [33]. IKK induces inflammation
via activation of NF-κB, which inhibits the normal hor-
monal signaling of leptin and insulin necessary to create
satiety. Activation of JNK is often preceded by the in-
crease in ER stress [34]. This sets up a vicious cycle of
increased hunger that eventually leads to the accumula-
tion of excess calories as stored fat in the adipose tissue.
It should be noted that the inflammation in the hypo-
thalamus precedes any weight gain in the adipose tissue
[35]. This also explains why significant calorie restriction
can reduce insulin resistance before any significant loss
in excess body fat in the adipose tissue. These experi-
mental observations suggest that the hypothalamus is
the central control point for the development of insulin
resistance.
Excess nutrient intake (especially saturated fat) can

also indirectly cause inflammation in the hypothalamus
by activation of the TLR-4 receptors in the microglia in
the brain eventually causing inflammatory damage to
neurons in the hypothalamus [28]. It has been shown
that with an extended use of a HFD that there is a de-
crease in the number of neurons responsible for generat-
ing satiety signals in the hypothalamus [36].
HFD diets are also associated with increased produc-

tion of palmitic acid-enriched ceramides in the hypothal-
amus. This would provide still another link to the

increased insulin and leptin resistance giving rise to in-
creased hunger as satiety depends on functioning insulin
pathways in the hypothalamic neurons [37].
Besides the presence of the GPR120 receptors in the

hypothalamus, which if activated by omega-3 fatty acids
decrease inflammation [38, 39], there are other fatty-acid-
nutrient sensors in the hypothalamus that can be activated
to increase inflammation. In particular, any increase in the
free fatty-acid (FFA) levels in the blood can be sensed by
the CD36/FATP-1 transporter at the surface of blood–
brain-barrier (BBB). If those fatty acids are rich in palmitic
acid (the primary product of de novo lipid production in
the liver caused by excess dietary glucose), then the HPA
axis is activated to release more cortisol thereby increasing
insulin resistance [40]. On the other hand, if the fatty acid
being sensed is primarily oleic acid, there will be a reduc-
tion in NPY (a powerful appetite-inducing hormone) ex-
pression in the hypothalamus that promotes satiety [41].
Finally there is the interaction of the hypothalamus

with the liver via signaling through the vagus nerve [42].
This may explain why any inhibition of TNFα or TLR-4
signaling in the hypothalamus also decreases glucose
production in the liver.
As you can begin to appreciate, the central regulation of

appetite control by the hypothalamus is a very complex
orchestration of the levels of inflammation and nutrient
intake generated by the diet and the sensing of those levels
by the hypothalamus.

Adipose tissue
We often think of obesity as the cause of insulin resist-
ance, yet as described above, the genesis of insulin resist-
ance appears to start in the hypothalamus with a
disruption in the normal balance of hunger and satiety
signals. As hunger increases, so does calorie intake.

Fig. 1 Organs affected by fatty acid-mediated insulin resistance
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The most effective site for storage of excess fat calories
is the adipose tissue including those excess calories from
carbohydrates that are converted to fat in the liver. The
fat cells of the adipose tissue are the only cells in the
body that are designed to safely contain large amounts
of fat. This is why the adipose tissue is extremely rich in
stem cells that can be converted to new fat cells to con-
tain large levels of excess energy as triglycerides [43]. As
long as those fat cells are healthy, there are no adverse
metabolic effects (except excess weight) for the person.
This is why approximately one-third of obese individuals
fall into the category of “metabolically healthy obese”
[44]. They have excess body fat but no metabolic distur-
bances that characterize the manifestation of insulin
resistance.
However, fat cells do not have an unlimited capacity to

expand. Even though the adipose tissue is highly vascu-
larized, the over-expansion of existing fat cells can create
hypoxia, which activates the HIF-1 gene [45, 46]. This
results in the increased expression of both JNK and IKK
thereby creating inflammation within the fat cell [47].
This inflammation, in turn, creates insulin resistance
within the fat cell.
In the adipose tissue, insulin is normally an anti-lipolytic

hormone as it decreases the activity of hormone-sensitive
lipase (HSL), which is required to release stored fatty acids
[48]. With the development of cellular inflammation and
insulin resistance in the fat cell, higher levels of free fatty
acids (FFA) can leave the fat cell to enter into the circula-
tion and be taken up by other organs, such as the liver
and the skeletal muscles that are unable to safely store
large amounts of fat. As described later, this leads to de-
veloping insulin resistance in these organs. With increased
inflammation in the fat cells, there is also a migration of
greater numbers of M1 macrophages into the adipose tis-
sue with a corresponding release of inflammatory cyto-
kines, such as TNFα, which further increases insulin
resistance and lipolysis [49, 50]. In the lean individual,
only about 10 % of the adipose tissue mass is composed of
macrophages, and those macrophages are primarily in
the anti-inflammatory M2 state [51, 52]. In the obese
individual up to 50 % of the mass of the adipose tissue
may contain macrophages but now in the activated
pro-inflammatory M1 state [51, 52]. Theoretically, new
healthy fat cells could be generated from stem cells
within the adipose tissue. However, that process requires
the activation of the gene-transcription factor PPARγ [53].
The activity of this gene-transcription factor is inhibited
by inflammatory cytokines, such as TNFα [54]. On the
other hand, the activity of PPARγ is increased in the pres-
ence of anti-inflammatory nutrients, such as omega-3 fatty
acids and polyphenols [55, 56]. Without the ability to form
new healthy fat cells, the continued expansion of the exist-
ing fat cells eventually leads to cell death and further

adipose tissue inflammation caused by incoming neutro-
phils and macrophages to clean the cellular debris caused
by the necrotic fat cells [57].
As stated earlier, insulin resistance can inhibit the action

of HSL due to increased hyperinsulinemia. Ironically, the
increased hyperinsulinemia activates the lipoprotein lipase
at the surface of the fat cell that hydrolyzes lipoprotein tri-
glycerides to release free fatty acids [58, 59]. This also in-
creases the synthesis of fatty-acids-binding proteins that
bring the newly released FFA from the lipoproteins into
the fat cells for deposition [60, 61]. The increase in fatty
acid flux into the fat cells also requires greater synthesis of
the FFA into triglycerides, but this can lead to ER stress
activating the JNK pathway, thus further increasing insulin
resistance in the fat cells [62]. This sets up a vicious cycle
in which insulin resistance results in greater hunger (via
insulin resistance in the hypothalamus) with increasing
flux of FFA both into and out of the adipose tissue [63].
The cytokines being released by the pro-inflammatory M1
macrophages being attracted to the adipose tissue due to
increasing cellular inflammation only increase this process
by accelerating insulin resistance in the fat cells. This is
why obese individuals with insulin resistance have greater
levels of both the uptake and release of FFA into and from
the adipose tissue. The increase in lipid influx causes an
over-load of the synthetic capacity to make triglycerides,
and as a result both DAG and ceramide levels begin to in-
crease, which only further increases insulin resistance in
the fat cells [64].
The speed of the inflammatory changes in the adipose

tissue is not as rapid as they are in the hypothalamus.
Whereas inflammatory changes can be seen in the hypo-
thalamus within 24 h after beginning a HFD in animal
models, it often takes 12–14 weeks to see similar changes
in inflammation in the adipose tissue [65].
If the fat cells cannot expand rapidly enough to store

this increasing fatty acid flow, then the excess released
fatty acids begin to accumulate in other tissues such as
the liver and skeletal muscles, and this begins the
process of lipotoxicity that further increases systemic in-
sulin resistance [66]. It is with the development of lipo-
toxicity that the real metabolic consequences of insulin
resistance begin.

Liver
The liver can be viewed as the central manufacturing
plant in the body. Raw materials (primarily carbohydrates
and fats) are bought into the body to be processed by the
liver and either stored (as liver glycogen) or repackaged as
newly formed triglycerides (in the form of lipoproteins).
The liver helps maintain stable glucose levels between
meals by balancing glycogenesis (glycogen formation) and
glycolysis of stored glycogen [67]. It should be pointed out
that the glycogen stored in muscles can only be used
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internally as a source of energy and can’t be released back
into the circulation to help maintain stable blood glucose
levels.
Unlike the adipose tissue that can safely store excess fat,

the liver cannot. Therefore of the first adverse metabolic
consequences of insulin resistance is the build-up of fatty
deposits in the liver. This is known as non-alcoholic fatty
liver disease or NAFLD. Currently 20–30 % of Americans
have NAFLD and 90 % of obese type-2 diabetic patients
have NAFLD [68]. Ominously, it is estimated that 50 % of
all Americans will have NAFLD by 2030 [67].
Another difference between the liver and the adipose tis-

sue is the lack of infiltrating macrophages. Whereas a sig-
nificant increase is observed in the levels of macrophages
in the adipose tissue upon inflammation, it is the internal
macrophages (Kupfer cells) in the liver that become acti-
vated. These activated Kupfer cells can now release cyto-
kines that will further activate NF-κB in the liver cells.
Like hypothalamic inflammation, NAFLD can be rap-

idly generated in animal models within 3 days of starting
a HFD [69]. This may be due to the direct linkage of the
hypothalamus to the liver via the vagal nerve [70]. Once
NAFLD is established, the ability of insulin to suppress
liver glucose production is diminished without changes
in weight, fat mass, or the appearance of any indication
of insulin resistance in the skeletal muscle [71].
Because of the rapid build-up of fatty acids in the liver,

the ability to convert them to triglycerides is also over-
whelmed and DAG formation in liver increases [67, 71].
This is why the levels of DAG in the liver are the best
clinical marker that chronic insulin resistance has begun
to develop in that organ. The primary source of the fatty
acids coming to the liver is via the adipose tissue be-
cause as the adipose tissue develops insulin resistance,
the increased flow of FFA from the fat cells into the
blood and therefore into the liver increases [72]. De novo
lipid synthesis of fats from glucose in the liver is a
smaller contributor to this increased flux of FFA into the
liver [73]. Furthermore, liver insulin resistance is related
only to the fatty acid levels in the liver, not the levels of
visceral fat [74]. This may explain why many normal
BMI individuals (especially Asians) can have high levels
of insulin resistance in the liver [75].
Since the liver also controls cholesterol synthesis,

insulin resistance in this organ is reflected in growing
dysfunction in lipoprotein synthesis. In particular,
VLDL particles are increased and HDL levels are de-
creased [67]. This is easily measured by the TG/HDL
ratio that is a good general clinical marker for liver
insulin resistance [76].

Skeletal muscle
Skeletal muscle represents the key site for glucose uptake.
Thus reducing insulin resistance in this organ becomes a

primary strategy for managing diabetes. Unlike the adi-
pose tissue where macrophage infiltration is a key indica-
tor of inflammation, there is very little macrophage
infiltration observed in skeletal muscle in individuals with
insulin resistance [77]. It appears that cytokines coming
from other organs (adipose tissue and liver) may have the
important impact on the development of insulin resistance
in the muscle. However, enhanced signaling through the
TLR-4 receptor by saturated fatty acids can reduce fatty
acid oxidation of the lipids in the muscle [78]. In addition,
palmitic acid is the preferred substrate for ceramide syn-
thesis [79]. Whereas ceramide levels are not related to in-
sulin resistance in the liver, they are strongly related to
insulin resistance in the muscle [80]. The skeletal muscle
is unique that exercise can overcome insulin resistance in
this organ by increasing the oxidation of accumulated fatty
acids and enhancing the transport of glucose into the cell
[81]. This suggests that the molecular drivers of insulin re-
sistance can be different from organ to organ.

Pancreas
Although the beta cells of the pancreas sense glucose
levels in the blood (via glucokinase) [82] and secrete in-
sulin in response to those levels, the beta cells of this
organ are not normally considered targets of insulin re-
sistance. However, the beta cells are very prone to tox-
icity mediated by inflammatory agents. In particular, 12-
HETE derived from AA is very toxic to the beta cells
[83]. With the destruction of the beta cells by 12-HETE,
the pancreas is no longer able to maintain compensatory
levels of insulin secretion to reduce blood-glucose levels
and the development of type-2 diabetes is rapid.

Gastrointestinal (GI) tract
Like the pancreas, the GI tract is also not considered a
standard target organ for insulin resistance, but it is the
first organ in the body for nutrient sensing of molecules
that can ultimately affect insulin resistance. This begins
in the oral region. Fatty-acid receptors such as GPR120
and GPR40 and fatty binding proteins such as CD36 are
present in the mouth and line the entire GI tract [84].
Essentially, these receptors allow for the “tasting” of the
fatty acid content of diet. CD36 binds oleic acid and
helps convert it into oleylethanolamide (OEA) [85].
OEA activates PPARα gene transcription factor to in-
crease satiety and also the expression of the enzyme re-
quired for fatty acid oxidation [86]. Thus the type of fat
sensed in mouth and gut provides satiety signals to
hypothalamus. The increased satiety lowers the overall
caloric intake and reduces development of ER and oxi-
dative stress thus indirectly reducing the development of
insulin resistance.
Although the GI tract is a long and complicated organ,

the enteroendocrine cells that produce hormones in the
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GI tract represent less than 1 % of its total cells [84].
These specific cells sense and respond to specific nutrients
by secreting more than 20 different hormones [87]. The
primary hormones secreted by these cells that relate to in-
sulin resistance include CCK (from the proximal I-cells)
and GLP-1 and PYY (from the distal L-cells).
CCK is the hormone secreted from the I-cells in re-

sponse to the fat content in a meal [88]. This is short-
acting hormone and works in association with serotonin
to suppress hunger by directly interacting with the hypo-
thalamus via the vagus nerve [89, 90]. In animal models
being fed a HFD, the satiety signals of CCK to the hypo-
thalamus can become attenuated probably by increased
inflammation in the hypothalamus [91]. CCK can also
reduce glucose synthesis in the liver probably through
its interaction with the hypothalamus [92], but only if its
hormonal signaling pathway is not being disrupted by
inflammation within the hypothalamus.
PYY and GLP-1 are the hormones released by protein

and glucose respectively when sensed by the L-cells
more distal in the GI tract. Both of these hormones are
powerful inducers of satiety [93, 94]. It has been shown
that PYY responses are lower in obese individuals com-
pared to lean individuals [95]. Animal models that have
increased levels of PYY due to transgenetic manipulation
are resistant to dietary induced obesity [96]. It should be
noted that PYY levels rapidly rise after gastric bypass
surgery helping to explain the long-term weight loss suc-
cess of this surgical intervention [97].
Finally, any mention of the GI tract would not be

complete without discussing the microbial composition
of the gut. It is known that the microbiota is different in
lean and obese individuals [98, 99]. The microbial com-
position also may be a source of low-grade intestinal in-
flammation especially via endotoxemia mediated by the
lipopolysaccharide (LPS) component of gram-negative
bacteria that interacts with the TLR-4 receptor. TNFα is
up regulated in the ileum of the GI tract by HFD before
weight gain is observed in animal models [100]. It is also
known that a single high-fat or high-carbohydrate meal
can induce such endotoxemia during the increased per-
meability of the gut during digestion [101–104]. Thus a
diet that is higher in protein and lower in both carbo-
hydrate and fat should reduce endotoxemia. Any LPS
fragments that enter the blood stream are carried by
chylomicrons to the lymph system where it can then
interact with the TLR-4 receptors in the body to in-
crease TNFα levels that can generate insulin resistance
in a wide variety of organs [105]. Furthermore, it has
been demonstrated in animal models that a high-fat
diet can initiate insulin resistance via endotoxemia as
well as change the composition of the gut microbiota
[106, 107]. It has also been recently demonstrated that
composition of the high-fat diet (either rich in saturated

fat or omega-3 fats) can dramatically alter the composition
of the gut microbiome and influence the levels of endo-
toxemia in animal models [108].

Summary
Insulin resistance is easy to define, but complex to
understand at the molecular level. The same is true for
inflammation. This leads to a major limitation of this re-
view because of the integral relationship of fatty acids to
inflammation especially as precursors to eicosanoids as
modulators of inflammation. In this more limited review,
we have tried to focus on the role of fatty acids interac-
tions with specific binding sites in different organs or
their synthesis into non-hormonal lipids that may be re-
lated to the wide range of the adverse metabolic conse-
quences associated with insulin resistance.
It appears that insulin resistance starts in the hypothal-

amus causing a disruption in the balance of satiety and
hunger signals. This leads to overconsumption of calories.
Although excess calories can be theoretically stored safely
in the adipose tissue, as the inflammation increases in this
organ and insulin resistance develops in the fat cells, the
ability to safely store excess fat is compromised. One of
the consequences of insulin resistance in the adipose tis-
sue is that excess fat is released into the blood stream and
is sequestered by other organs (liver and skeletal muscles)
that are not equipped to safely store this excess fat. This is
the start of lipotoxicity. With increased lipotoxicity, the
metabolism and energy generation becomes compro-
mised, and the development of chronic diseases (diabetes,
heart disease, and polycystic ovary syndrome) associated
with insulin resistance becomes accelerated. The levels of
fat in the diet and the composition of those fatty acids in
the fat component can have a significant role in the
modulation of insulin resistance.
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