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Camel milk peptide improves wound
healing in diabetic rats by orchestrating the
redox status and immune response
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Abstract

Background: Diabetes mellitus alters oxidative stability and immune response. Here, we investigated the impact of
a peptide extracted from camel milk (CMP) on the oxidative status, transcription factor kappa-B (NF-kB) and
inflammatory cytokine in diabetic wounds.

Methods: Rats were assigned into three groups: control, diabetic induced (DM) and diabetic induced with multiple
doses of CMP for a week (DM-CMP).

Results: DM showed a sharp decline in the activity of major antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT) and glutathione (GSH) compared to the control. The DM-CMP group, however, showed a
noticeable replenishment in the activity of these enzymes compared to the DM group. The CMP-treated group also
showed a normal level of lipid peroxidation marker (MDA) compared to the DM rats. Furthermore, ELISA analysis of
serum TNF-α protein showed an elevated level in diabetic rats in comparison to control serum. However, RT-PCR
analysis of locally wounded skin tissues revealed that diabetes down-regulates the RNA expression of both TNF-α
and MIF genes in comparison to the control samples but that CMP was found to restore RNA expression
significantly. Although it was elevated in CMP-treated rats after one day of wound incision, the NF-kB protein level
was significantly decreased seven days after the incision in comparison to the animals in the diabetic group.

Conclusion: CMP, therefore, can be seen an effective antioxidant and immune stimulant that induces oxidative
stability and speeds up wound healing in diabetic model animals, making it a potential adjuvant in improving
wound healing in those with diabetic conditions.
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Background
Oxygen free radicals are normally balanced by the pres-
ence of adequate endogenous antioxidant defences [1].
An imbalance between endogenous/exogenous oxidants
and the antioxidant system in a living organism is called
oxidative stress. This type of stress has been implicated in
the pathogenesis of various diseases including diabetes
mellitus [2–4]. One of the major concerns in respect to
diabetic patients is their prolonged inflammatory period

that delays, or exerts a derogatory effect, on the natural
wound healing process.
Normally, wound healing is initiated by an inflamma-

tory phase that is followed by a proliferation of fibro-
blasts and endothelial cells, and then by the production
and reorganization of the extracellular matrix, leading to
repair or regeneration. The inflammatory phase provokes
the recruitment of leukocytes that produce growth factors
and remove debris from the wound [5–7]. The healing
process requires an interaction between inflammatory
cells and biochemical mediators, which is stimulated by a
number of mitogens and chemotactic factors [8].
IL-1β and TNF-αare critical to the normal inflamma-

tory phase of wound healing, while NF-kB is required
for the induction of pro-inflammatory cytokines, such as
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IL-1β, TNF-α and IL-6 [9]. IL-1β and TNF-α modulate
the expression of the chemokines and adhesion molecules
necessary for the recruitment of inflammatory cells to the
site of injury [10, 11]. The inflammatory phase recruits
leukocytes that produce growth factors and remove debris
from the wound [5]. Impairment of leukocyte recruitment
is associated with delayed wound healing [7]. Neutrophils
release highly active antimicrobial substances, proteinases
[12] and inflammatory cytokines which also have crucial
roles in the healing of wounds.
Our previous work based on the proteins derived from

camel milk have demonstrated their enhanced wound heal-
ing capacity in diabetic as well as older animals [13–15].
Additionally, our recent study [16] revealed the ability of
this protein to direct immune processes and its ability to
trigger the proliferation of peripheral blood mononuclear
cells (PBMCs) [17]. In the present piece of work, we
hypothesize that wound healing in diabetic animals could
be improved by supplementing camel milk derived protein
fractions. Thus, the camel milk proteins were enzymatically
digested into different peptide fractions in order to find the
active one to improve the diabetic wound healing.

Materials and methods
Enzymatic and degree of hydrolysis of camel milk
whey proteins
Camel milk was obtained from a camel breed (Majaheem)
from the Najd region in Saudi Arabia. Camel milk was
used to isolate the whey proteins as previously described
[13–15]. Briefly, Skim milk was acidified to pH 4.3 using
1 M HCl. The precipitated casein was removed by centri-
fugation, and the supernatant containing the whey protein
was saturated with ammonium sulfate (70 % saturation)
and incubated overnight at 4 °C. The precipitated whey
protein was collected by centrifugation and dialyzed
against distilled water for 48 h at 4 °C using a Spectra/Pro®
Membrane, MWCO 6000–8000 Da. The obtained
dialyzate was lyophilized using a Unitop 600SL, [Virtis
Company, Gardiner, New York 12525 USA] and were kept
at −20 °C until use. The dialyzate containing non-
denatured whey protein was freeze-dried and refrigerated
until use.
A 2.5 % whey proteins solution was suspended in

water at pH 7.0 using 1 mol NaOH. After complete
solublization, the temperature was adjusted at 37 °C and
the trypsin enzyme was added to proteins in ratio 1/100
and incubated. The enzyme inactivation was achieved by
heating the samples in boiling water bath for 5 min.
Samples were cooled under running tap water followed by
their storage in the refrigerator until usage. Degree of
protein hydrolysis was determined using the ortho-
phthaldialdehyde based method. Then protein fractions
were independently tested to their bioactivities (wound
closure rate, histological features of cutaneous epidermal

and dermal events, and oxidative stability). Among them,
the peptide fraction 1 (camel milk peptide: CMP) was
chosen for wound healing experiments in vivo.

Ethical approval and preparation of un-denatured camel
milk whey proteins
Camel milk was obtained from a camel breed (Majaheem)
from the Najd region (Alazeria farm; GPS: 300 02 47/ 300
02 27) in Saudi Arabia. Specific permissions were not
required for activities in this private farm as this study did
not involve endangered or protected species. Regarding
experimental animals, all procedures were conducted in
accordance with the standards set forth under the guide-
lines for the care and use of experimental animals by the
Committee for the Purpose of Control and Supervision of
Experiments on Animals and the National Institutes of
Health. The study protocol (care and handling of experi-
mental animals) was approved by the Animal Ethics
Committee of the Zoology Department in the College of
Science at King Saud University, Riyadh (KSA).

Diabetes induction and wound incision
Diabetes was induced by a single injection of freshly dis-
solved streptozocin (STZ) at the standardised dose of
60 mg/kg of body weight in a 0.1 Mcitrate buffer (pH 4.5)
into the peritoneum region of the rats. Control rats
received only equal volume of citrate buffer. After seven
days, the rats were screened for serum glucose levels in
which a serum glucose level ≥ 200 mg/dl after 2 h of
glucose intake were considered as diabetic and selected
for further studies.
Rats were anaesthetized with isoflurane. Their backs

were gently shaved with sterilization using an alcohol
swab. The wound biopsy model used in this experiment
has been described previously [18] with little modification.
The shaved skin was pinched and folded, and the wound
was punched through the full thickness of the folded skin
to form a 2 × 5 mm rectangle below the shoulder blades in
each rat.

Experimental design
Twenty four healthy male Sprague–Dawley rats, 8 weeks
old and weighting 150 g to 200 g, were purchased from
the Animal Breeding Center in college of pharmacy,
King Saud University (Riyadh, KSA). This murine model
was used to mimic the pathophysiological features seen
in human diabetic wounds as previously described [19].
The animals were assigned to three groups: 1) the first
group was remained as a wounded non-diabetic control
group (CN) and was given phosphate buffered saline, 2)
the second group was a wounded diabetic group (DM)
that was treated with phosphate buffered saline, 3) the
third group was a wounded diabetic group that was or-
ally supplemented with camel milk peptide (CMP) at a
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dose of 25 mg/kg of body weight for 7 days (was daily
administered as a single dose by gavage for 7 days) during
wounding healing. Additional supplementary groups such
as diabetic rats treated with whey protein fraction 2 and
the non-injuried diabetic groups were studied for confirm-
ing the results of the three main groups. However, data
from supplementary groups are not included in this study.
Seven animals from each group were sacrificed under

mild diethyl ether anesthesia after 1st and 7th day after
the wounding.

Evaluation of the intensity of histochemical staining
All expression patterns were analyzed by two independ-
ent investigators with histology expertise on skin and
pancreas. The expression ranged from 1 = low (<10 %),
2 =medium (10–25 %), 3 = high (26–70 %), 4 = very high
(71 %) were followed under the present study [20].

Measurement of wound closure
The procedure for measuring wound closure was con-
ducted according to previously described by Lim et al.
[9]. Wounds from individual rats were digitally photo-
graphed every day. A standard rectangle equivalent in size
to the initial wound area was drawn beside the wound and
used as a reference. Wound size was calculated by deter-
mining the area of the wound each day in comparison to
the area of the standard rectangle. Wound closure was
expressed as the ratio of the initial wound size to the
wound area (each day after wounding). A higher ratio
indicates faster wound closure.

Collection of blood and tissue samples
Two blood samples were immediately collected. The first
sample was used for serum analysis. Plasma was isolated
from the second sample using EDTA (ethylenediamine-
tetra acetic acid) as an anticoagulant. Samples of plasma
and serum were separated for analysis by centrifuging
the blood for 15 min at 2000 rpm.

Assay of Antioxidant Enzymes (SOD and CAT)
The activity of different antioxidant enzymes in the liver
homogenates was assayed with standard protocols. Cu
Zn superoxide dismutase (CuZnSOD) was assayed by
autoxidation of pyrogallol [21] while catalase (CAT) was
assayed by decomposition of hydrogen peroxide [22].

Estimation of GSH and MDA levels
The level of reduced glutathione (GSH) was estimated in
the liver homogenates by method of Jollow et al. [23].
The extent of lipid peroxidation was estimated by the
method of Buege and Aust [24] involving the measure-
ment of total malondialdehyde (MDA).

ELISA assay for the inflammatory cytokines TNF-α
and NF-kB
Sera and liver homogenates were tested for TNF-α and
NF-kB, respectively by ELISA according to the manufac-
turer’s instructions for the corresponding rat immunoassay
kits (Abcam, USA). The optical densities were measured at
405 nm. The detection limits were set according to the
log-log correlative coefficient of the standard curve.

RT-PCR analysis of RNA expression of MIF and TNF- α in
wounded skin
Quantification of mRNA expression by real-time poly-
merase chain reaction cDNA from the above preparation
was subjected to PCR amplification using 96-well optical
reaction plates in the ABI Prism 7500 System (Applied
Biosystems®). The 25-μl reaction mixture contained
0.1 μl of 10 μM forward primer and 0.1 μl of 10 μM re-
verse primer (40 μM final concentration of each primer),
12.5 μl of SYBR Green Universal astermix, 11.05 μl of
nucleasefree water, and 1.25 μl of cDNA sample. The
primers used in the current study were chosen from
pubmed com. The RT-PCR data was analyzed using the
relative gene expression method, as described in Applied
Biosystems ® User Bulletin No. 2. The data are presented
as the fold change in gene expression normalized to the
endogenous reference gene and relative to a calibrator.

Statistical analysis
The statistical analysis was performed using MINITAB,
State College, PA, Version 13.1, 2002. The data were
normally distributed with homogeneous variances. One-
way ANOVA statistical measure was used to determine
the overall effect of each treatment. This measure was
supplemented by individual comparison between the dif-
ferent treatments using Tukey’s method for pairwise
comparisons. The results were expressed as mean (M) ±
standard deviation (SD). Only statistically significant
differences with P < 0.05 were found between the treat-
ment group and the control, and between the treatment
group and the diabetic group considered.

Results
Electrophoresis pattern of the hydrolysed whey proteins
Electrophoresis-pattern clearly revealed that the camel
whey proteins extensively hydrolysed during incubation
time for 3 h with trypsin enzyme (Fig. 1). After hydroly-
sis whey protein hydrolysates were separated by centrifu-
gation into several fractions; the total unhydrolysed whey
protein, the hyrolysed whey protein, long chain peptide
and the camel milk peptide1 (CMP). Different fractions
were independently tested. Among them, the CMP
(3 kDa) was chosen for wound healing experiments in
vivo.
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CMP enhanced wound closure rate in diabetic models
Morphologically, no significant differences were ob-
served between the different rat groups on day 1. As the
experiment progressed it was evident that the time re-
quired to heal wounds was significantly shortened in the
CMP treated rats comparing to the untreated diabetic rats.
All the wounded diabetic animals fed CMP achieved
complete healing by day 7 (Fig. 2).

Effect of CMP on collagen deposition in the dermis of the
wounded tissues
Histological examination demonstrated that wounded
tissues from the diabetic rats appeared disturbed one
day after wounding (Fig. 3), while those of the CMP dia-
betic rats seemed similar to the normal tissues. One of
the most indicative elements of dermal recovery is the
rate of collagen fibril deposition and Mallory Trichrome

stain demonstrated that in the CMP-treated rats there
were a moderate number of collagen fibrils and the colla-
gen bundles were organized in a more regular fashion than
in the untreated diabetic rats, which tended to be asym-
metrically distributed. Dermal regeneration in rats supple-
mented with CMP was characterized by fibroblasts and
well-developed symmetrically distributed collagen bundles
(Fig. 3). Table 1 summarizes the histological changes
detected in dermal regions from different wounded groups.

The effect of camel milk peptide on oxidative stress
In the present study, the assessment of oxidative stress
was based on measuring the specific activity of key anti-
oxidant enzymes, SOD and CAT, along with estimation of
the level of reduced GSH and MDA in the liver samples
of different treatment groups (Fig. 4). All the diabetic
induced groups (DM-1D and DM-7D) were compared to
the control normal group while all CMP-treated diabetic
groups (DM+CMP-1D and DM+CMP-7D) were com-
pared to the DM-1D group.
SOD is considered to be the most important antioxi-

dant enzyme in the assessment of redox status in living
organisms. Group DM-1D showed a sharp decline in its
specific activity (by 39.04 %) and decreased further as the
experiment progressed so that it was 44.54 % lower than
the control by seven days after wounding (DM-7D).
Group DM+CMP-1D, however, demonstrated an in-
crease in its activity by 9.8 % while DM+CMP-7D
showed a significant increase in activity by 17.54 %, com-
pared to DM-1D (Fig. 4).
CAT is also a very prominent antioxidant enzyme. Its

activity was found to be decreased by 42.19 % in DM-1D
and by 47.15 % in the case of DM-7D, compared to con-
trol rats. Among the peptide treated groups, DM +
CMP-1Dshowed an increase in its activity of 10.27 %,

Fig. 1 Electrophoresis pattern of native and hydrolysed whey
proteins: MS: marker with molecular weight ranged from 135 to 11
KDa; WP: native whey proteins; HWP: hydrolysed whey proteins with
trypsin enzyme for 3 h at 37

Fig. 2 Wound closure rate in non-diabetic normal rats, diabetic rats
(DM) and diabetic rats supplemented with CMP. All the values have
been expressed as mean ± SEM for six different preparations.
* indicates significantly different from the control group.
# indicates significantly different from the diabetic group (1D)
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whereas DM +CMP-7D demonstrated a prominent in-
crease of 22 % compared to DM-1D (Fig. 4).
In tandem with the enzymes mentioned above, GSH is

one of the most important cellular reductants and plays a
vital role in maintaining the normal redox status in a cell.
DM-1D showed a decrease in GSH of 40.87 %, while DM-
7D exhibited a decline of 43.68 %, compared to the control.
DM+CMP-1D, meanwhile, demonstrated an increase in

GSH level of 10.25 %, which further risen to 19 % in DM
+CMP-7D, compared to DM-1D (Fig. 4).
MDA is one the most stable oxidative products post

lipid peroxidation in vivo as well as in situ, and is consid-
ered a very reliable parameter to assess the oxidative bur-
den in biological systems. In the present study, DM-1D
showed a marked increase in MDA level, by 44.10 %,
while DM-7D displayed an increase of 58.84 % compared

Fig. 3 Representative photographs from the vertical sections of the wound sites from diabetic (a) and diabetic-treated with CMP (b) rats one day
after incision (MTS × 400), and diabetic (c) and diabetic-treated with CMP (d) seven days after incision (MTS × 200), showing dermis (d), granulation
(g), inflammatory cells (ic), blood vessels (bv) and new epidermis (n-ep)

Table 1 The expression of different parameters in the dermis of the wounded region, one and seven days after wound incision

Groups Collagen fibres Hair follicles Dermal depth New blood vessels Number of Neutrophil Inflammatory cells

D1 D7 D1 D7 D1 D7 D1 D7 D1 D7 D1 D7

Control 2 3 1 3 1 3 1 3 4 1 4 1

DM 1 2 1 2 1 2 1 2 2 3 2 3

DM-CMSP 2 3 1 3 1 4 1 4 4 1 4 1

1 = low (<10 %), 2 =medium (10–25 %), 3 = high (26–70 %), 4 = very high (71 %)

Ebaid et al. Lipids in Health and Disease  (2015) 14:132 Page 5 of 10



to the control. Among the peptide treated groups, DM+
CMP-1D showed a decline in its level by 12.02 %, while
DM+CMP-7D demonstrated a 19.72 % decrease com-
pared to DM-1D (Fig. 4).

The effect of the camel milk peptide on TNF-α and
NF-kB protein levels
It was necessary to investigate the level of critical inflam-
matory cytokines like TNF-α and its initial molecule, NF-
kB in normal wound healing, since these are considered
to be strongly related to oxidative status. ELISA analysis
of serum TNF-α protein level showed that it was signifi-
cantly elevated in diabetic induced groups (DM-1D and
DM-7D) in comparison to the control in their serum
samples. While the TNF-α protein level remained consid-
erably higher in CMP- diabetic rats as well as in the
untreated diabetic group DM-1D and DM-7D compared
to the control. However, DM+CMP-1D and DM+CMP-
7D groups showed noticeable lower level of TNF- α with
respect to the DM-1D group (Fig. 5).
Besides, we estimated the level of NF-kB, which is the

initial molecule of TNF-α, in the liver samples. CMP
was found to elevate its level significantly after one day

of the incision (inflammatory phase) as shown by the
group- DM +CMP-1D in comparison to the control
group. Interestingly, the peptide of interest, CMP was
found to restore the level of the protein to the normal
level after seven days of the incision as evidenced in the
group- DM +CMP-7D (Fig. 5).

The effect of CMP on MIF and TNF-α RNA expression
After estimating TNF-α and its initial molecule, NF-kB
in the serum and tissues respectively, we were interested
to quantify the RNA expression of TNF-α and MIF in the
vicinity of wounded regions in the three groups- one and
seven days after incision. TNF-α and MIF are recognized
as critical molecules in arresting infections by modulation
of inflammatory responses. Thus, in the present study,
assessment of TNF-α and MIF was needed to evaluate the
inflammatory phase. Results of RT-PCR revealed that
there was down-regulation of the RNA expression of
TNF-α genes in diabetic rats after one and seven days of
incision of the wound in comparison to the control sam-
ples while MIF was found upregulated in CMP-treated
groups as compared to the DM-1D with a prominent
tendency towards the control levels. Hence, CMP was

Fig. 4 Specific activity of the enzymes-SOD and CAT, and level of MDA and reduced GSH (micromoles per mg of the protein in the samples). All
the values have been expressed as mean ± SEM for six different preparations. * indicates significantly different from the control group. # indicates
significantly different from the diabetic group (1D)
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found to restore the RNA expression of MIF gene compar-
able to the control but this trend was not consistent in
expression of TNF-α, however, group DM+CMP-1D
demonstrated the expression similar to the control (Fig. 6).

Discussion
Wound healing generally graduates into three phases: an
initial inflammatory phase followed by a proliferation
phase and finally extracellular matrix formation. Defects
in the inflammatory phase under the healing process can
cause a failure in the subsequent processes of fibroblast
growth and collagen synthesis [25, 26]. The inflamma-
tory phase recruits leukocytes that produce growth
factors and remove debris from the wound [27–30]. Our
data confirms that CMP has a promising role in the in-
flammatory phase of wound healing in diabetic models.

CMP was found to return wound healing in diabetic rats
to a similar level to that of normal rats.
The present investigation vividly demonstrates that dia-

betic rats have a highly altered redox status, as evidenced
by the significantly compromised activity of key antioxi-
dant enzymes/proteins (SOD, CAT and GSH) concomi-
tant with an elevated level of MDA. This clearly suggests
that oxidative stress plays a key role in the pathogenesis of
diabetes. The severity of this oxidative stress is further
exacerbatedin diabetic induced rats even seven days after
wounding, which suggests that this stress is also involved
in the progression and advancement of diabetes, and
potentially increases the suffering experienced by patients.
Intriguingly, the proposed peptide has shown a very strong
antioxidant potential. The peptide was found to restore
the normal redox status in the single dosed treated rats
and the situation was also observed to continue to

Fig. 5 ELISA estimation of both IL-1β and TNF-α levels at days 1, 7 in wounded normal rats, wounded diabetic rats (DM) and wounded diabetic
rats supplemented with CMP. All the values have been expressed as mean ± SEM for six different preparations. * indicates significantly different
from the control group. # indicates significantly different from the diabetic group (1D). + indicates significantly different from the diabetic
group (7D)
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improve in the rats treated with the peptide for a week,
such that many of the oxidative parameters were by then
near to the control values. It proves that the peptide has a
quite significant antioxidant potential although this claim
requires further investigation.
IL-1β, TNF-αmodulate the expression of the chemo-

kines and adhesion molecules necessary for the recruit-
ment of inflammatory cells to the site of injury [31].
ELISA analysis of serum TNF-α protein levels showed
that it was elevated by diabetes. However, RT-PCR ana-
lysis of locally wounded skin tissues revealed that dia-
betes down-regulated the RNA expression of TNF-α,
while CMP was found to significantly restore its RNA
expression. The increased TNF-α level in the serum of
diabetic wounds might be due to the systemic effect of
its pro-inflammatory activities in diabetes [32], while its

locally decreased RNA expression in diabetic wounds
might logically be responsible for impaired recruitment
of inflammatory cells. Similar results were found by
Grieb et al., [33] for MIF. Histological examination here
confirmed this explanation since the number of inflam-
matory cells and granulation cells was less in diabetic
wounds in comparison to those of the control. Although,
neutrophil infiltration peaks within the first six hours in
normal wounds [34] diabetes leads to a quantitative
reduction in the level of neutrophil infiltration into the
wound site up to 24 h after wounding [13]. Additionally,
delayed collagen production and only a small number of
newly formed blood vessels and disturbed dermis were
observed in diabetic wounds. Although it was elevated
one day after incision, the NF-kB protein level was
significantly decreased in DM+ CMP-7D seven days

Fig. 6 A: Histogram of real time PCR gene expression of both MIF (a) and TNF-α (b) levels at days 1, 7 in wounded normal rats, wounded diabetic
rats (DM) and wounded diabetic rats supplemented with CMP. * indicates significantly different from the control group. # indicates significantly
different from the diabetic group (1D)
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after incision, in comparison to the diabetic one. NF-kB
is required for the induction of pro-inflammatory cyto-
kines, such as IL-1β, TNF-α and IL-6 [9]. The oxidative
stability induced by CMP may, therefore, mediate the acti-
vation of NF-kB, leading to the activation of the inflamma-
tory cascade and the stimulation of wound healing,
resulting in faster wound closure rate in CMP rats.
In addition, we have found that diabetes down-regulated

the RNA expression of MIF genes both one and seven
days after incision in comparison to the control samples
under the present investigation. Grieb et al. [32] found
that locally decreased levels of MIF in chronic wound
exudates might be responsible for impaired recruitment of
endothelial progenitor cells. Accordingly, diabetic wounds
in this study were delayed in their closure rate in compari-
son to control wounds. This may be due to the fact that
MIF is a critical molecule in pro-inflammatory innate im-
mune responses, being involved in arresting infections
[35–38]. From another point of view, these two factors
can be considered as a diagnostic biomarker for auto-
immune and inflammatory diseases including diabetes
[39–41]. Therefore, prolonged elevation of MIF and in-
flammatory cytokines has been found to be responsible
for impaired healing [14].

Conclusion
CMP has a strong antioxidant potential that reduces the
effects of oxygen free radicals and lipid peroxidation by
orchestrating the overall antioxidant system to the
optimum in vivo. Moreover, CMP is a potential stimu-
lant in normalizing the inflammatory cytokines and
restoring high levels of TNF-α mediated by NF-kB in dia-
betic rats. An increase in neutrophil infiltration at wound
sites post CMP administration in diabetic rats speeded up
the normal inflammatory events of the healing process.
However, investigation of the deep mechanisms in wound
healing phases, as well as structural analysis, are necessary
to identify the mode of action of this peptide.
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