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Abstract

Background: Necrotic enteritis (NE), caused by Clostridium perfringens, has cost the poultry industry $2 billion in
losses. This study aimed to investigate the effect of Bacillus licheniformis as dietary supplement on the growth,
serum antioxidant status, and expression of lipid-metabolism genes of broiler chickens with C. perfringens-
induced NE.

Methods: A total of 240 one-day-old broilers were randomly grouped into four: a negative control, an NE
experimental model (PC), chickens fed a diet supplemented with 30 % of fishmeal from day 14 onwards and
challenged with coccidiosis vaccine (FC), and NE group supplied with feed containing 1.0 × 106 CFU/g B.
licheniformis (BL).

Results: Body weight gain, feed conversion ratio, serum antioxidant status, and lipid-metabolism-gene expression
were analyzed. In the PC group, FCR increased significantly whereas serum catalase and glutathione peroxidase
activity decreased compared with NC group. Dietary B. licheniformis supplementation improved FCR and oxidative
stress in experimental avian NE. Using Bacillus licheniformis as a direct-fed microbial (DFM) could also significantly
upregulate catabolism-related genes, namely, peroxisome proliferator-activated receptor-α and carnitine
palmitoyltransferase-1, in livers and changed the expression of lipid-anabolism genes.

Conclusion: These results suggested that dietary B. licheniformis supplementation can enhance growth and
antioxidant ability, as well as change the expression of genes related to fatty-acid synthesis and oxidation in the
livers of NE-infected broilers.
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Background
Necrotic enteritis (NE) is a type of enterotoxemia caused
by Clostridium perfringens [1], it is a common disease af-
fecting the poultry industry and the high contamination
rates of poultry by C. perfringens can cause a threat to

public health through the food chain [2]. An NE out-
break in broiler chickens often results in high mortality
rates and reduced growth performance [3, 4]. Various
in-feed antibiotics have been used to prevent and control
this disease [4–6]. However, the use of a large amount of
antibiotics as growth promoters can cause antibiotic-
resistant genes to spread extensively by promoting the
selection of antibiotic-resistant bacteria in animals. In
view of this concern, many countries have limited the
use of non-therapeutic antibiotics in poultry feed; as a
result, NE incidences have increased significantly over
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the past decade [7, 8]. This disease costs the poultry in-
dustry $2 billion annually in the purchase of drugs to
treat NE and in the lost body weight gain (BWG) [9, 10].
With the banning of in-feed antibiotics use, alternative
methods of preventing NE outbreaks must be developed.
A potential approach to NE control is to supplement

probiotics in the diets of broiler chickens to manipulate
their gut ecosystems. Over the past few decades, Bacillus
spp., such as B. licheniformis and B. subtilis, have been
used in competitive exclusion experiments. B. subtilis
competitively exclude C. perfringens from broiler chicks;
in addition, these bacteria significantly improved body
weight and feed efficiency [11–15]. B. licheniformis,
which are “generally recognized as safe” bacteria, have
long been extensively used in the poultry industry. This
bacteria can serve as an alternative to antibiotics to en-
hance growth performance in poultry [16] and is a useful
prebiotic for overcoming NE in a commercial-like condi-
tion [17, 18].
In broilers, the intermediary metabolism of lipids and

energy usually occurs in the liver [19], as does the majority
of the de novo fatty acid synthesis process [20, 21]. In the
modern poultry industry, chickens are subject to various
stress factors that can thus influence lipid metabolism
[22–24]. Studies show that the livers of broilers suffering
from NE undergo pathological changes [4, 25, 26]; none-
theless, changes in the lipids of broilers infected with C.
perfringens are rarely investigated. At present, few studies
have demonstrated the efficacy of B. licheniformis as
prophylactic agents against NE in broilers. Therefore, the
objectives of our present study are to investigate the effect
of B. licheniformis on growth performance, on lipid me-
tabolism, and on the hepatic expression of lipogenic genes
in broilers infected with NE.

Results
Effect of Bacillus licheniformis on the growth performance
of broilers suffering from necrotic enteritis
The mean values of BWG, feed intake (FI), and feed
conversion ratio (FCR) are shown in Table 1. FI did not
vary across all of the groups throughout the experimen-
tal period; moreover, the B. licheniformis supplement
group significantly increased BWG and improved FCR
in the first two weeks (P < 0.05) in comparison with the
unsupplemented groups. In the final two-week period of
the trial, the BWG of the infected chickens in the NE ex-
perimental model group (PC) were significantly lower
than those of the negative control group (NC) by 11.5 %
(P < 0.05). In the same period, FCR impaired by approxi-
mately 12.4 points because of the NE infection in the PC
group compared with the negative control. The BWG of the
infected chickens supplemented with B. licheniformis in-
creased significantly over those of the PC group (P < 0.05).
Moreover, the FCR of the BL group did not differ

significantly throughout the final two-week period, from
that of the broilers in the NC group.

Effect of Bacillus licheniformis on the serum biochemical
parameters of broilers infected with necrotic enteritis
The serum lipid parameters are presented in Fig. 1. The
serum levels of triglycerides (TG) and low-density lipopro-
tein cholesterol (LDL-C) were unaffected by NE infection
(P > 0.05) in all groups. The NE-infected birds in the PC
group exhibited high glucose (GLU) and total cholesterol
(TC) levels (P < 0.05). The stricken birds in the BL group,
which were co-treated with B. licheniformis at a dose of
1.0 × 106 CFU/g, displayed a considerably lower serum
GLU level (P < 0.05) and a significantly higher high-
density lipoprotein cholesterol (HDL-C) level than the PC
group did (P < 0.05). The values of all of the serum lipid
statuses of the birds fed with a diet supplement containing
30 % fishmeal and a coccidiosis vaccine (FC group) did
not differ significantly from those of NC group.

Effect of Bacillus licheniformis on the serum antioxidant
statuses of broilers suffering necrotic enteritis
The serum antioxidant statuses of the broilers are
presented in Fig. 2. Serum superoxide dismutase (SOD)
activity did not vary significantly across all of the groups;
furthermore, the malondialdehyde (MDA) content in the
PC group that was infected with NE and was not supple-
mented with B. licheniformis was higher than that in the
NC group, although the difference was insignificant.
Serum catalase (CAT) activity was significantly lower

in the PC group that suffered from NE and was not

Table 1 The effect of Bacillus licheniformis on the growth
performance suffering from necrotic enteritis*

Parameter NC PC FC BL SEM P-value

Days 1 to 14

BWG (g) 361.33b 358.42b 367.13b 382.25a 4.32 0.026

FI (g) 519.84 521.70 523.92 522.25 2.63 0.194

FCR(g/g) 1.44a 1.46a 1.43a 1.37b 0.02 0.049

Days 14 to 28

BWG (g) 718.87a 636.3b 689.33ab 712.93a 10.76 0.023

FI (g) 1159.82 1149.27 1160.83 1161.40 15.41 0.968

FCR(g/g) 1.61b 1.81a 1.68ab 1.63b 0.03 0.027

Days 1 to 28

BWG (g) 1080.20a 994.67b 1056.67ab 1095.27a 13.15 0.032

FI(g) 1679.64 1670.90 1684.72 1683.65 15.58 0.991

FCR(g/g) 1.56b 1.69a 1.60ab 1.56b 0.02 0.034

NC negative control group, PC necrotic enteritis experimental model group, FC
fishmeal and coccidiosis vaccine challenge group, BL NE group supplied with
feed containing B. licheniformis
* Data are means for 5 replicates of 12 broiler chickens presented with
the means ± SEM
*a, b Means in the same column with different lower case letter differ
significantly (P <0.05)
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supplemented with B. licheniformis than in the NC
group (P < 0.05). The CAT activity of the chickens in the
BL group displayed an increasing trend (P > 0.05) but
did not differ from the NC and PC groups (P > 0.05).
NE infection considerably reduced the enzyme activity of

glutathione peroxidase (GSH-Px) in both the PC and BL
groups in comparison with the NC group (P < 0.05). The
NC and FC groups did not vary significantly (P > 0.05).

Effect of Bacillus licheniformis on the expression of lipid-
metabolism genes in the livers of broilers
As shown in Fig. 3, the mRNA level of acetyl-CoA carb-
oxylase (ACC) in the livers of birds in the BL group, who
were dosed with 1.0 × 106 CFU/g B. licheniformis, was
higher than those of the other three groups (P < 0.05). In
addition, B. licheniformis did not significantly affect the

expression of the fatty acid synthase (FAS) gene in the
liver although the BL group displayed the highest expres-
sion (P > 0.05) of all of the groups. In addition, sterol regu-
latory element-binding protein-1c (SREBP-1c) expression
was considerably lower in the BL group than in the NC
and PC groups (P < 0.05).
B. licheniformis supplementation can upregulate the

expression levels of genes related to fatty acid oxidation.
This bacteria significantly increased the mRNA level of
carnitine palmitoyltransferase-1 (CPT-1) and enhanced
the expression of peroxisome proliferator-activated
receptor-α (PPAR-α) in the BL group compared with the
PC group (P < 0.05). Acyl CoA oxidase 1 (ACOX1) ex-
pression did not differ significantly across all groups
(P > 0.05); nonetheless, that of the BL group was higher
than that of the PC group.

Fig. 1 The effect of Bacillus licheniformis on serum biochemical parameters of broilers infected with necrotic enteritis. NC: negative control group; PC:
necrotic enteritis experimental model group; FC: fishmeal and coccidiosis vaccine challenge group, BL: NE group supplied with feed containing B.
licheniformis. Data are with the means ± SEM (n= 10). a-c Means with different letter are significantly different (P <0.05)
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Discussion
In the present study, the growth performance of broilers
infected with C. perfringens was significantly poorer in
the PC group than in the other groups. The reduced
BWG and impaired FCR can be indicated by the dam-
aged intestinal mucosa that accompanies C. perfringens
infection [27, 28], and this damage can affect feed ab-
sorption and thus utilization [18].
Bacillus sp. microbes are among the most extensively

used, direct-fed growth promoters [15]. These bacteria
serve as an alternative to antibiotics. In the current experi-
ment, a diet supplemented with B. licheniformis can sig-
nificantly improve BWG and FCR despite C. perfringens
infection. These effects are mainly attributed to the fact
that B. licheniformis can enhance nutrient digestion and
utilization in broilers by producing several enzymes, such
as lipase, protease, and amylase [29, 30]. The diets supple-
mented with Bacillus sp. as a growth promoter can im-
prove BWG and feed efficiency [15, 24, 31, 32].
Nonetheless, the effects of B. licheniformis on positive re-
sponses to growth performance, such as changes in gut
flora, immunity responses, and direct substrate digestion,
remain unclear.
The level of fatty acid circulation between the liver

and adipose tissue is related to the containment of

serum lipids and lipoproteins [33]. Several studies ob-
served that probiotics can significantly reduce these
levels in broilers [34, 35]. These results may be attrib-
uted to the ability of probiotics to bind cholesterol in
guts; probiotics can remove cholesterol through bind-
ing onto cellular surfaces [36] and also can convert
cholesterol to coprostanol for direct excretion via
feces [37, 38]. Increased fecal-lipid and bile-acid out-
put can reduce accumulate serum levels and liver
lipids in the body [39].
The present data demonstrate that the birds infected

with NE exhibited the highest level of GLU, TC, and
LDL-C among those in all of the groups. NE-infected
birds that were co-treated with B. licheniformis in this
study had low concentrations of TC, GLU, and LDL-C
but high levels of HDL-C. This result agrees with the
finding presented by Yeon et al., who suggested that B.
licheniformis can improve lipid metabolism in mice who
were fed a high-fat diet [40].
Researchers hypothesize that oxidative stress influ-

ences growth performance and lipid metabolism in
animals [15, 24, 41, 42]. In the present study, SOD, CAT,
and GSH-Px serum activities were assayed as indices for
serum antioxidant capacity, whereas MDA content served
as an indicator to determine serum lipid peroxidation

Fig. 2 The effect of Bacillus licheniformis on the serum antioxidant status of broilers suffering necrotic enteritis. NC: negative control group; PC:
necrotic enteritis experimental model group; FC: fishmeal and coccidiosis vaccine challenge group, BL: NE group supplied with feed containing B.
licheniformis. Data are means for 5 replicates of 12 broiler chickens presented with the means ± SEM (n = 10). a, b Means with different letter are
significantly different (P <0.05)
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levels. MDA is among the most studied products of poly-
unsaturated fatty acid peroxidation, and its lipid peroxida-
tion is facilitated by reactive oxygen species (ROS). The
BL group in the current study displayed a low MDA level,
thus indicating that B. licheniformis treatment can reduce
oxidative stress. The inhibition of SOD, GSH-Px, and
CAT activities contributes to the onset of many diseases
[43]. In the present study, NE infection lowered CAT and
GSH-Px serum activities. This result is similar to that of
the research conducted by Lee et al., which postulated
that SOD, GSH-Px, and CAT activities were inhibited in
birds infected with NE [44]. In a previous study, dietary B.

licheniformis supplementation significantly enhanced the
antioxidant capability of triangular breams [45]. In this re-
search, BL group improved the antioxidant capacities in
the serum of broilers by increasing GSH-Px and CAT ac-
tivities and by decreasing MDA compared with the PC
group. This result showed that dietary B. licheniformis
supplementation is an effective strategy to reduce the oxi-
dative stress of experimental avian NE.
The liver is an important organ in which the majority

of lipid metabolism occurs. Thus, the gene expression in
livers, which can change the capacity of enzymes in rele-
vant metabolic pathways, plays an important role in

Fig. 3 Effect of Bacillus licheniformis on the expression of genes related to fatty acid synthesis (a) and oxidation (b) in the livers of broilers. NC: negative
control group; PC: necrotic enteritis experimental model group; FC: fishmeal and coccidiosis vaccine challenge group, BL: NE group supplied with feed
containing B. licheniformis. Data are the means ± SEM of five chicks in each group. a-c Means with different letters are significantly different (P <0.05)
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altering digestive capability [19]. ACC, which is the first
key enzyme in fatty acid synthesis and converts acetyl-
CoA into malonyl-CoA, plays an important role in the
regulation of fatty acid synthesis in animal tissues. This
enzyme often combines with FAS as rate-limiting lipo-
genesis enzyme [46]. In the current study, both ACC
and FAS levels increased in three of the groups, espe-
cially in the BL group, unlike in the NC group. This
phenomenon may be ascribed to the diet change made
to build the NE model. Huang et al. determined that di-
ets supplemented with 0.5–2 % soy lecithin can signifi-
cantly increase the expression of FAS and ACC and
change the biochemical status of serum lipids [47]. Zhao
et al. reported that C. butyricum supplementation is re-
lated to increased FAS and ME activities, enhanced FAS,
ME, and ACC mRNA levels in the liver, and increased
intramuscular fat content in broilers [48]. In the current
research, B. licheniformis supplementation can generate
the same effect, possibly because B. licheniformis can en-
hance the digestion and utilization of nutrients from a
diet containing a high percentage of fishmeal. This diet
was used in the NE experimental model and was difficult
for broilers to digest. SREBP-1c is a basic/helix-loop-
helix/leucine zipper transcription factor that contributes
to lipogenic enzyme expression [49]. This transcription
factor can bind to the promoters of several lipogenic
enzyme genes and induce their expression [50]. Re-
searchers also report that SREBP-1c is a lipogenic nu-
clear transcriptional regulator that can directly influence
the expressions of ACC, FAS, ME, and SCD [51]. In our
present study, however, SREBP-1c gene expression de-
creased significantly in contrast to the expression of
lipogenic enzyme genes. This result may be attributed to
the fact that fat composition is increasingly exuberant in
the subsequent growth stage of broilers [52], especially
as the diet changes and probiotics supplementation in-
creases nutrient digestion and utilization in these
chickens.
Different diets can alter the expression of PPARs in

broiler livers [53]. PPAR-α plays an important role in
lipid metabolism; an increase in the expression of this
isoform can upregulate the expression of fatty acid
catabolism-related genes (CPT-1, ACOX1) and enhance
fatty acid β-oxidation [54, 55]. In the present study, B.
licheniformis can increase both PPAR-α and CPT-1 ex-
pression. The expression of these genes was lowest in
the NE-infected birds.
In summary, the present study shows that NE infec-

tion can change the expression of genes related to
fatty acid synthesis and oxidation. B. licheniformis
supplementation can adjust the levels of these genes
by enhancing the expression of fatty acid β-oxidation-
related genes to alleviate the negative effects of such
infection.

Methods
Preparation of culture strains
B. licheniformis H2 (CCTCC NO:M2011133) isolated
from the ileums of healthy chickens was provided by the
Animal Microecological Research Center (College of
Veterinary Medicine, Sichuan Agricultural University,
Chengdu, China) and cultured at 37 °C at a shaking rate
of 180 rpm for 24 h. The culture was centrifuged at
2000 g for 20 min at 4 °C and then resuspended in LB
broth containing 1 × 109 colony-forming units (cfu)/mL.
The culture was mixed with a basal diet at a level of 1 g/
kg (0.1 %, m/m) per day to ensure the viability of bac-
teria cells throughout the trial period.
A C. perfringens type-A strain isolated from a chicken

clinically diagnosed with NE was obtained from China
Veterinary Culture Collection Center. The strain was
cultured in a cooked meat medium at 37 °C under an
anaerobic environment; then, the strain was aseptically
inoculated into thioglycollate broth overnight at the
same temperature and in the same condition.

Birds and housing
A total of 240 one-day-old broilers with similar body
masses (45.35 ± 0.45 g) were purchased from a local
commercial hatchery. All of the broilers were ran-
domly divided into four groups, with five replicates
per treatment. Each replicate was assigned to a pen
(12 chicks per pen). The four groups are as follows:
(1) a negative control group fed with corn-soybean
meal diet (NC, negative control); (2) an NE experimen-
tal model group (PC, positive control); (3) a group that
was fed a diet supplemented with 30 % of fishmeal from
day 14 onwards and challenged with coccidiosis vaccine
(FC, fishmeal and coccidia); and (4) an infected group
given a diet supplemented with B. licheniformis (BL, B.
licheniformis at a dose of 1.0 × 106 CFU/g). The compos-
ition of an un-medicated corn-soybean meal diet and high
fishmeal diet is shown in Table 2. The diets were formu-
lated according to NRC (1994) [56]. Feed and water were
provided ad libitum throughout the study, and all chickens
were fed in the same house under a relative humidity of
approximately 65 %. The temperature was 33 °C in the
first week and then decreased gradually to 24 °C by the
third week. Lighting was provided 24 h/day. To prevent
cross infection, the sides of the pens were composed of
metal. Furthermore, the infected groups were kept at least
4 m away from the healthy groups. All experimental pro-
cedures were performed in compliance with the laws and
guidelines of Sichuan Agricultural University Animal Care
and Use Committee.

Necrotic enteritis infection
The birds were fed with a basal diet from days 1 to 13.
From day 14 onward, the diets of all of the birds were
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changed to the basal diets supplemented with 30 % fish-
meal (w/w), except for that of the chickens in the NC
group. On day 15, all of the birds, with the exception of
those in the NC group, were inoculated with 10-fold
coccidiosis vaccine by oral gavage. The birds in the NC
group received sterile phosphate buffered saline instead.
On days 18, 19, and 20, the birds in the PC and BL
groups were individually infected with 1 mL of C.
perfringens through a plastic tube containing approxi-
mately 2.2 × 108 CFU/mL of this bacteria. The feed of
the BL group was dosed with 1.0 × 106 CFU/g B. licheni-
formis throughout the experiment, and samples were
collected on day 28.
On day 28, 2 birds per pen (10 birds/treatment) were

randomly selected and terminated. The blood for the
serum samples was sampled and incubated at 37 °C for
2 h and then centrifuged at 2000 g for 15 min. The
broilers were then killed by cervical dislocation and
necropsied. The liver samples were washed with ice-cold
sterilized saline and frozen in liquid nitrogen immediately.

The samples were then stored at −70 °C to determine lipid
metabolism mRNA.

Growth performance
The FI and BWG of the chickens in all pens were mea-
sured weekly. Moreover, FCR was calculated and ad-
justed for the dead broilers.

Determination of serum biochemical values
The serums TC, GLU, TG, HDL-C, and LDL-C were
measured on day 28 with a GS200 automatic biochem-
ical analyzer (Shenzhen Genius Electronics Co., Ltd.,
Shenzhen, China) according to the manufacturer’s
instructions.

Determination of serum antioxidative status
Activity of SOD, GSH-Px, and CAT activity, as well
as the MDA content in serum, were assayed with
commercially available assay kits (Nanjing Jiancheng
Bioengineering Institute) in accordance with the manu-
facturer’s instructions as indices for serum antioxidant
capacities. In brief, the colorimetric method was used to
measure CAT activity; SOD activity was calculated based
on an auto-oxidant using the hydroxylamine method;
GSH-Px activity was assayed according to a 5, 5’-dithiobis
(2-nitrobenzoic acid) method; and MDA content was
assayed via a thiobarbituric acid method and absorbance
measurement at 532 nm.

Real-time quantitative polymerase chain reaction (RT-
qPCR) analysis of gene expression
The total RNA was extracted from liver samples with
RNAiso Plus (TaKaRa, Dalian, China) according to the
manufacturer’s instructions. RNA quality was tested on
1.5 % agarose gel by electrophoresis, and the quantity of
RNA was determined by measuring the absorbance at 260
and 280 nm by using a spectrophotometer (Nanodrop
2000, Thermo Scientific, USA). A first-stand complemen-
tary DNA (cDNA) was reversed immediately with 1 μg of
total RNA using a Prime Script TM RT reagent kit (TaKaRa,
Dalian, China) according to the manufacturer’s instructions.
All cDNA were stored at −70 °C for further use.
RT-qPCR analysis was conducted by using a CFX96

Real-Time PCR detection system (Bio-Rad, Hercules,
CA, USA) with a SYBER Premix Ex TaqTM PCR kit
(TaKaRa, Dalian, China). The thermocycler protocol was
implemented at 95 °C for 5 min, followed by 40 cycles
with 15 s denaturation at 95 °C and 30 s annealing/ex-
tension at an optimized temperature. Finally, a melt
curve analysis was conducted to verify the purity of the
PCR products. The gene-related primers are listed in
Table 3. In this procedure, glyceraldehyde-3-phosphate
dehydrogenase (GADPH) was employed as a house-
keeping gene to normalize the expression data. The

Table 2 Composition of the diet and nutrient levels

Ingredient (g/kg) Corn-soybean meal
diet

High fishmeal
diet

Corn 51.64 53.8

Soybean (44.2 % crude
protein)

39.6 7.44

Fish meal(62.8 % crude
protein)

0.0 30.0

Colza oil 4.3 4.3

Dicalcium phosphate 1.85 1.85

Limestone 1.3 1.3

D,L-Methionine 0.2 0.2

Salt 0.4 0.4

Choline 0.18 0.18

Vitamin Premixa 0.03 0.03

Mineral Premixb 0.5 0.5

Nutrient Levelc

Crude protein 21.17 25.98

Metabolisable energy (MJ/kg) 14.16 14.31

Methionine 0.49 0.95

Lysine 1.03 1.6

Threonine 0.77 0.95

Calcium 1.07 2.11

Total phosphorous 0.71 1.35
aVitamin Premix provided the following per kilogram of complete feed:
vitamin A, 50 000 IU; vitamin D3, 10 000 IU; vitamin E, 25 IU; vitamin K3,
35 mg; vitamin B3, 25 mg; vitamin B2, 16 mg; vitamin B6, 6 mg; vitamin B1,
2 mg; vitamin B12, 0.03 mg; nicotinic, 25 mg; folic acid, 0.5 mg
bMineral Premix provided the following per kilogram of basal diet: Mn
(as manganese sulfate), 60.00 mg; Zinc (as zinc sulfate), 40.00 mg; Cu
(as copper sulfate), 8.00 mg;Fe (as ferrous sulfate), 80.00 mg;Se (as
sodium selenite), 0.15 mg; I (as potassium iodate), 0.35 mg
cNutrient levels were calculated composition
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ΔΔCt method was used to estimate mRNA abundance,
and Ct is determined by (Ct, target −Ct, GAPDH) treat-
ment − (Ct, target −Ct, GAPDH) control. All of the sam-
ples (n = 5) in each group were analyzed in triplicate,
and all gene expression results were presented as the
fold difference between the NC and the treated groups.

Statistical analysis
Data were expressed as the mean ± standard error of the
mean (SEM). All of these data were analyzed with SPSS Ver-
sion 20.0 for Windows (SPSS Inc., Chicago, Illinois, USA). A
homogeneity test of variance was performed and the re-
sults analyzed with one-way analysis of variance. Spe-
cific treatments were compared via the least significant
difference test at an assigned p-value of < 0.05. Differ-
ences between the means were considered significant
when P < 0.05.

Conclusion
The results of our present study showed that dietary B.
licheniformis supplementation effectively alleviates the
negative effects of NE infection. This supplement can
also reduce antioxidant stress, enhance growth perform-
ance, and adjust the expression levels of certain key
genes related to lipid metabolism. Furthermore, the
study data may provide a new insight into the preven-
tion and treatment of NE in broilers.
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