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Abstract

Background: Cereal crops and oilseeds provide diverse pool of fatty acids with characteristic properties. Sorghum
(Sorghum bicolor (L.) Moench) provides the staple food with serving as main source of energy and protein. Germination
of sorghum generally increases the nutritive value of seeds and the effects of germination on lipids composition of
seeds vary greatly with processing conditions. Therefore, the current study was conducted to compare the effect of
emerging processing techniques such as ultrasound (US) and microwave (MW) on fatty acids composition and oil yield
of sorghum seeds before and after germination.

Methods: Initially sorghum grains were soaked with 5% NaOCl (sodium hypochlorite) for surface sterilization. Afterwards,
grains were soaked in excess water for 22 h at room temperature and were divided into four portions. The first portion
(100 g grains) was subjected to germination without applying any microwave and ultrasonic treatment (T0). Second
portion was further divided into four groups (T1, T2, T3, T4) (100 g of each group) and grains were subjected to ultrasonic
treatments using two different ultrasonic intensities (US1: 40%; US2: 60%) within range of 0–100% and with two different
time durations (tUS1: 5 min; tUS2: 10 min) at constant temperature. Third portion was also divided into four groups (T1, T2,
T3, T4) (100 g of each group) and exposed to microwave treatments at two different power levels (MW1: 450 watt; MW2:
700 watt) within the range of 100-900 W for two different time durations (tMW1: 15 s; tMW2: 30s). Similarly, fourth portion
was divided into four groups (T1, T2, T3, T4) (100 g of each group). Each group was exposed to both MW (MW1, MW2)
(100–900 watt power) & US (US1, US2) (0–100% intensity) treatments at two different time levels (tUS, tMW). Then,
germination was carried out and pre-treated raw and pre-treated germinated sorghum grains were analyzed for total oil
yield, fatty acid composition and unsaturated fatty acids (Un-SFA)/saturated fatty acids (SFA) ratio by gas chromatography.

Results: The results revealed that oil yield in sorghum before and after germination ranged from 6.55 to 7.84% and 6.28
to 7.57%, respectively. All the microwave and ultrasound processed samples showed significant difference in oil yield than
the raw sorghum grains. The highest tested yield was 7.84 ± 0.31% when combination of microwave power (700 W) and
ultrasound intensity (60%) was applied for 30s and 10 min, respectively. The results further demonstrate that the raw
sorghum contained palmitic (13.73 ± 0.10%), palmitoleic (0.43 ± 0.02%), stearic (1.07 ± 0.04%), oleic (37.15 ± 0.10%),
linoleic (43.33 ± 0.21%), linolenic (1.55 ± 0.04%), arachidic acid (0.13 ± 0.01%) and eicosenoic acid (0.37 ± 0.02%),
respectively. The highest fatty acid percentage for palmitic, stearic and arachidic acid was 13.75 ± 0.07%, 1.11 ± 0.09% and
0.15 ± 0.03% at 60% US intensity for 10 min (T4), respectively. Maximum amount observed was 1.60 ± 0.09% of linolenic
acid while amount of eicosenoic acid decreased from 0.37 ± 0.02% to 0.31 ± 0.01% after processing. In case of applying
combination of microwave and sonication treatments, the change in eicosenoic acid increased from 0.35 ± 0.02% to 0.
40 ± 0.04% while there was no significant change in other fatty acids. The ungerminated sorghum oil possessed 14.93–
15.05% and 82.83–83.12% of SFA and Un-SFA, respectively. After germination, percentage of saturated fatty acids
increased (16.4–16.55%) while decreased for unsaturated fatty acids (80.13–80.56%) were noted.
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Conclusions: The results of the present study conclude that the yield of oil from sorghum grains increased by emerging
processing. Fatty acid analysis of sorghum oil suggested that pre-treatment strategies will not affect the quality of the oil
with respect to essential fatty acids content. Overall, the composition of saturated fatty acid in germinated grain is
improved than ungerminated grains after processing.

Keywords: Sorghum, Germination, Microwave, Ultrasonic, Oil content, Fatty acid composition

Background
Lipids as constituent of diet and may perform essential
role regarding human health and disease prevention [1].
They perform a variety of functions in a biological sys-
tem as source of energy, essential fatty acids, sterols,
structural components of membranes, transport medium
of metabolic fuel, provide protective covering and carriers
of lipophilic vitamins. Dietary lipids perform regulatory
actions in nutrient metabolism and cell functions through
controlling gene expression [2]. Such regulatory lipids
have been categorized as “functional lipids” including
omega-3 and omega-6 fatty acids, conjugated linoleic
acids, medium chain triglycerides and phytosterols. These
lipids have many beneficial effects on human health such
as in obesity, bone health, managing depression, blood
pressure and cardiovascular health [1].
Cereal grains such as wheat, rice, maize, sorghum, mil-

let, barley and rye in their natural form (as whole grain)
are rich source of vitamins, minerals, carbohydrates, fats,
oils and protein [3]. Whole grain cereals containing nu-
trients and bioactive substances have health-promoting
effects and the evidence for this association is largely
supported by observational studies [4]. The consumption
of three or more servings of whole grains is associated
with a positive impact on body mass index (BMI),
abdominal obesity, cardiovascular disease risk reduction
and glucose homeostasis [5]. For centuries, germination
process has been used for the purpose to soften the
grain structure, improvement in nutritional value, anti-
nutritional compounds reduction and enhancement in
functionality of seed components [6, 7]. Seed germin-
ation causes different biochemical activities thus result-
ing in chemical composition changes [8]. In the last
decades, experts dealing with the healthy nutrition
turned their attention towards the determination of the
biological value of the nutritional sprouts [9]. The im-
proved food value of sprouting grains has been used for
human consumption in Asian countries [10]. Besides the
nutrients, sprouts are also considered as the source of
phytochemicals, vitamins, minerals, amino acids and en-
zymes for contribution in improved human health [11].
To improve bioevaluation and bioavailability perform-

ance, seed pretreatments including physical and chem-
ical treatments are widely used. Physical treatments such

as irradiation and electrical are known to improve seed per-
formance and germination [12]. During germination, lipids,
carbohydrates and proteins within the seed are broken
down into essential compounds while some nutrients also
transform to bioactive components [13]. However, among
the different emerging novel techniques of pre-treatment
gaining interest such as ultrasound (US) and microwave
(MW) assisted processes are playing the leading role. The
use of US and MW assisted process reduces energy con-
sumption and also favors safe, robust and controlled pro-
cesses [14]. Therefore, the main mandate of the research
was to determine the effect of US and MW processing con-
ditions on fatty acids composition and oil yield of sorghum
seeds before and after germination.

Methods
Raw materials
Sorghum (Sorghum bicolor (L.) Moench) grains selected
for this study were purchased from a local grain market of
Faisalabad (Pakistan). Sorghum grains were cleaned to re-
move stones, dust glumes, stalks, light materials, broken,
undersized and immature grains. Cleaning was done by
hand sorting and winnowing. Sorted and cleaned grains
were kept in high density polyethylene to avoid moisture
uptake and contamination before use.

Seed treatments
Grains were soaked with 5% NaOCl (sodium hypochlor-
ite) for surface sterilization upto 5 min to avoid fungal in-
vasion, followed by washing with distilled water until they
reached neutral pH [15]. Afterwards, grains were soaked
in excess water for 22 h at room temperature. The steep-
ing water was drained off and the soaked sorghum grains
were washed twice using distilled water. The soaked sor-
ghum grains were divided into four portions.

Control
The first portion (100 g grains) was subjected to germin-
ation without applying any microwave and ultrasonic
treatment (served as control: T0).

Ultrasonic (US) treatment
Second portion was further divided into four groups (T1,
T2, T3, T4) (100 g of each group) and grains were
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subjected to ultrasonic treatments using two different
ultrasonic intensities (US1: 40%; US2: 60%) within range
of 0–100% and with two different time durations (tUS1:
5 min; tUS2: 10 min) at constant temperature [16]. All
ultrasonic treatments were carried out through ultra-
sonic processor of SONICS & MATERIALS. INC
(model: VCX750) having power of 750 W, frequency
20 kHz and volts 230 VAC ~ 50/60 Hz NOM.

Microwave (MW) treatment
Third portion was also divided into four groups (T1, T2,
T3, T4) (100 g of each group) and exposed to microwave
treatments at two different power levels (MW1: 450
watt; MW2: 700 watt) within the range of 100-900 W for
two different time durations (tMW1: 15 s; tMW2: 30s) [17].
All microwave treatments were carried out with HOM-
AGE microwave oven (model: HDSO234S) having cap-
acity of 23 L with rated voltage of 230 V~, rated
frequency 50 Hz, rated input 1250 W, rated output
800 W and microwave frequency of 2450 MHz.

US & MW treatment
Similarly fourth portion was also divided into four
groups (T1, T2, T3, T4) (100 g of each group). Each group
was exposed to both MW (MW1, MW2) (100-900 W
power) & US (US1, US2) (0–100% intensity) treatments
at two different time levels (tUS, tMW).
The detailed treatment plan has been presented in

Table 1.

Germination and fat extraction
To conduct germination all the untreated (control sam-
ple) and treated grains (100 seeds of each group) were
subjected to germination. Grains were placed on moist
paper towel sheet and covered with another sheet of
paper towel. The germination trays were placed in an in-
cubator at 25 ± 2 °C, germinated for 48 h and watered
2–3 times a day to enhance the germination process

[18]. The seed was considered to have germinated when
both the plumule and radicle had emerged >0.5 cm [19].
After germination, raw seed, control germinated sam-

ple and all treated samples were washed using running
distilled water and dried in a drying oven at 55 °C for
24 h then pulverized into a fine powder by using a stain-
less steel blender. The oil was removed from the sample
using a Soxhlet apparatus (hexane 8 h). Two different
treatments were used to extract the fat: in the first, the
fat was extracted directly from the powder, while in the
second the powder was hydrolyzed using an aqueous so-
lution of HCL 6 N in reflux during 8 h before the extrac-
tion with the hexane [20]. The oil samples were stored
at 4 °C in an amber bottle. Percentage of seed oil yield
was calculated as follows.
Yield of seed extract (%) = (Oil extract from seeds (g)

/ Initial weight of seeds (g)) × 100.

Total fatty acid analysis
The fatty acids profile of extracted oil samples was de-
termined by the method Ce 1f–96 given in AOCS [21].
The oil sample (50 μL) was methyated in the presence of
4 mL KOH (1 M) at room temperature for 1 h in order
to convert fatty acids into their respective methyl esters.
The resultant fatty acid methyl esters (FAMEs) were ex-
tracted with GC grade n–hexane and analyzed by Gas
Chromatograph apparatus equipped with an auto sam-
pler, flame–ionization detector (FID) and supelco wax
column. The samples (1 μL) were injected with Helium
(1 mL/min) as a carrier gas onto the column, which was
programmed for operating conditions such as column
oven temperature 160 °C at 0 min with subsequent in-
crease of 3 °C/min until 180 °C. The column oven
temperature was increased from 180 °C to 220 °C at 1 °
C/min and was held for 7.5 min at 220 °C. Split ratio
was 50% with injector 240 °C and detector 250 °C tem-
peratures. The peak areas and total fatty acids compos-
ition were calculated for each sample by retention time
using Varian Chem Station software. The standards of

Table 1 Ultrasound and microwave treatment layout for sorghum grains

Treatments Processing type

Ultrasonic treated (sprouts) B1 Microwave treated (sprouts) B2 Ultrasonic & Microwave treated (sprouts) B3

Time tUS (min) US Intensity (%) Time tMW (sec) MW Power (watt) Time tUS + tMW US Intensity (%) + MW Power (watt)

Raw seed —— —— —— —— —— ———————

T0 —— —— —— —— —— ———————

T1 tUS1 5 min US1 40% tMW1 15 s MW1 450 W tUS1 + tMWI 5 min + 15 s US1 + MW1 40% + 450 W

T2 tUS1 5 min US2 60% tMW1 15 s MW2 700 W tUS1 + tMWI 5 min + 15 s US2 + MW2 60% + 700 W

T3 tUS2 10 min US1 40% tMW2 30s MW1 450 W tUS2 + tMW2 10 min + 30s US1 + MW1 40% + 450 W

T4 tUS2 10 min US2 60% tMW2 30s MW2 700 W tUS2 + tMW2 10 min + 30s US2 + MW2 60% + 700 W

T0: Control germinated sample; T1, T2, T3, T4: Different treatments
MW1, MW2: Microwave power levels; US1, US2: Ultrasonic intensity levels
tUS1, tUS2, tMW1, tMW2: Time duration levels
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fatty acids methyl esters purchased from Sigma-Aldrich
were also run under the same conditions for comparison
with experimental samples.

Statistical analysis
The data of oil yield and fatty acids composition ob-
tained for each treatment was subjected to statistical
analysis to determine the level of significance by using
the software package (Statistic 8.1) according to the
method described [22]. The average of the three runs
was reported as the measured value with standard devi-
ation. The Duncan’s multiple range (DMR) test was used
to estimate the level of significance that existed between
the mean values at a probability level of 5%.

Results
The average oil content in raw sorghum was found
6.55 ± 0.25%. The oil extraction yield before and after
germination by applying different processing pre-
treatments have been presented in Table 2. It was found
that oil extraction yield was increased slightly when
microwave pretreatment power level and time was in-
creased. The optimum condition for microwave pretreat-
ment was 450 W (T3) and 700 W (T4) which resulted in
the highest oil yield 7.54 ± 0.31% and 7.79 ± 0.32%,
respectively (p ≤ 0.05). Ultrasonic intensity 40% (T3) and
60% (T4) showed highest oil yield 7.39 ± 0.21% and
7.58 ± 0.28% for samples, respectively (p ≤ 0.05). Both
intensity and pretreatment time had a positive effect on
extraction oil yield from sorghum grains. The combin-
ation of microwave and ultrasound pretreatments showed
significant difference in oil yield than the raw sorghum
grains. The highest oil yield 7.84 ± 0.31% was observed
when combination of microwave power (700 W) and
ultrasound intensity (60%) was applied for 30s and
10 min, respectively (p ≤ 0.05).
The raw sorghum contained palmitic (13.73 ± 0.10%),

stearic (1.07 ± 0.04%) and arachidic acid (0.13 ± 0.01%)
(Table 3). The difference in the fatty acid composition of
sorghum oil was observed between an untreated sample
and a MW-treated sample. Palmitic, stearic and arachi-
dic acids were found 13.76 ± 0.08%, 1.11 ± 0.11% and
0.15 ± 0.03% for MW pretreatment seeds (T4), respect-
ively (p ≤ 0.05). Similarly, the ultrasonic intensity and
pretreatment time also showed effect on the fatty acid
percentage. The highest fatty acid % for palmitic, stearic
and arachidic acid was 13.75 ± 0.07%, 1.11 ± 0.09% and
0.15 ± 0.03% at 60% US intensity for 10 min (T4), re-
spectively (p ≤ 0.05). The increase in pretreatment time
improved fatty acid composition, however, pretreatment
time of 5 min did not significantly affect. The change of
1.13 ± 0.10% in stearic acid was observed in case of ap-
plying combination of microwave and sonication treat-
ments while there was no significant change in palmitic

and arachidic acid. The result showed that the compos-
ition of saturated fatty acid in germinated grain was im-
proved than ungerminated grains. The germinated
grains (T4) showed high results of palmitic, stearic and
arachidic acids. For the saturated fatty acids (SFA),
palmitic acid was the most dominant fatty acids
(14.56 ± 0.12%), while arachidic acid was the least
(0.21 ± 0.01%) (p ≤ 0.05).
Table 4 presents sorghum unsaturated fatty acid before

and after germination by applying different pretreat-
ments. The results indicated that raw sorghum con-
tained palmitoleic (0.43 ± 0.02%), oleic (37.15 ± 0.10%),
linoleic (43.33 ± 0.21%), linolenic (1.55 ± 0.04%) and
eicosenoic acid (0.37 ± 0.02%), respectively. Fatty acid
compositions of oils did not change much with micro-
wave and ultrasound treatment. The results show that
the major fatty acids in sorghum seed oils were linoleic
acid (43.53 ± 0.30%) and oleic acid (37.17 ± 0.15%) for
microwave treatments, respectively. The ultrasound proc-
essed sorghum samples contained maximum amount of
linolenic acid 1.60 ± 0.09% while amount of eicosenoic
acid decreased from 0.37 ± 0.02% to 0.31 ± 0.01%, respect-
ively (p ≤ 0.05). The eicosenoic acid increased from
0.35 ± 0.02% to 0.40 ± 0.04% as a result of applying micro-
wave and sonication combined treatments while there was
no significant change in other fatty acids (p ≥ 0.05). The
germination caused marked changes in the percentage of
palmitoleic acid (0.49 ± 0.05%), linolenic acid (1.96 ± 0.12%)
and eicosenoic acid (0.39 ± 0.04%), respectively (Table 4).
While the maximum decrease in unsaturated fatty acid
was observed in oleic acid (34.04 ± 0.10%) (p ≤ 0.05)
which may be due to its decomposition by the lipolytic
enzymes.
Table 5 shows percentage of saturated fatty acids

(SFA), unsaturated fatty acids (Un-SFA) and Un-SFA/
SFA ratio before and after germination by applying dif-
ferent pre-treatments. The results indicated that unger-
minated sorghum oil contained 14.93–15.05% and
82.83–83.12% of SFA and Un-SFA, respectively. After
germination, the percentage of saturated fatty acids in-
creased 16.4–16.55% while decreased for unsaturated
fatty acids 80.13–80.56% was observed (p ≤ 0.05).

Discussion
Oils contents of sorghum grains before and after
germination
The results of oil extraction yield are in agreement with
previous findings [23–25]. By using microwave radiation
in oil seeds, a higher extraction yield and an increase in
mass transfer coefficients can be obtained because the
cell membrane is more severely ruptured. Apart from
this, permanent pores are generated as accordingly and
this enables the oil to move through permeable cell walls
[26]. Similarly, different research studies found increased
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in oil yield with high ultrasound amplitude level [27, 28].
This increase in yield for ultrasound treatment has been
proposed due to the effect of ultrasonic cavitation. The
physical effects of cavitation immediately disrupt intact
biological cells in the hot spots by rupturing biological
membranes and cell walls. Thus, cellular material pours
out into the liquid medium made up of the solvent and
lipids are selectively dissolved in it. This process forms
the basis for ultrasound-assisted solvent extraction and
is responsible for the much higher oil yields from ultra-
sonic treatment in comparison with other methods [29,
30]. The combination of ultrasound pretreatment with
other physical methods could weaken the particle sur-
face bonds and enhance the extraction yield effectively
[31]. In the present study, germination significantly de-
creased crude oil content of raw and pretreated sorghum
flours, which was in agreement with results of previous
investigation [18, 32, 33]. The reduction may be due to
the fact that biochemical and physiological changes oc-
curred during germination and such changes required
energy to proceed and therefore part of the seed oil was
utilized for the production of this energy. The observed
decrease in fat content of sorghum flour during germin-
ation might be attributed to the increased activities of
the lipolytic enzymes during germination, which
hydrolyze fats to fatty acids and glycerol [18, 33]. From a

nutritional point of view, food-grade sorghum flour
turns out to be a very interesting product. In fact, its nu-
tritional value is comparable to those belonging to the
ordinary flours obtained from the noble cereals [34, 35].

Sorghum saturated fatty acids (SFA) before and after
germination
The fatty acid composition of sorghum seed is very simi-
lar to previous reported composition [36, 37]. Yoshida et
al. [38], Anjum et al. [39] and Yoshida et al. [40] studied
the effect of microwave treatment on peanut seeds (Ara-
chis hypogaea L.), sunflower seed (Heliantus annuus L.)
and pumpkin seeds (Cucurbita spp.), respectively. These
authors reported a change in the fatty acid composition
of vegetable oils through the effect of microwave treat-
ment. Changes in the fatty acid composition after MW
pretreatment of oilseeds have been reported by Yoshida
et al. [41]. The findings of US treatments were in agree-
ment with those reported by Luque–Garcia and Luque
de Castro [42]. The slight increase might be due to non-
conversion of free fatty acids to carbohydrates which
may lead to increase in fat composition during germin-
ation [43]. The increased intake of saturated fatty acids
leads towards the risks of cardiovascular diseases, cancer
and autoimmune disorders [44]. Palmitic acid and ste-
aric acids are some of the main fatty acids present in

Table 5 Percentage of saturated fatty acids (SFA), unsaturated fatty acids (Un-SFA) and Un-SFA/SFA ratio of sorghum at different
pre-treatments before and after germination

Processing type Growth conditions & treatments

Before germination After germination

Raw seed T1 T2 T3 T4 T0 T1 T2 T3 T4

Saturated fatty acids

Untreated 14.93b - - - - 16.42a - - - -

MW - 14.93b 14.94b 14.99b 15.02b - 16.42a 16.44a 16.48a 16.53a

US - 14.91b 14.93b 14.99b 15.01b - 16.4a 16.43a 16.45a 16.52a

MW & US - 14.96b 14.97b 15.0b 15.05b - 16..41a 16.46a 16.5a 16.55a

Unsaturated fatty acids

Untreated 82.83a - - - - 80.26b - - - -

MW - 82.85a 82.94a 83.0a 83.12a - 80.18b 80.3b 80.39b 80.49b

US - 82.77a 82.8a 83.02a 83.06a - 80.13b 80.16b 80.32b 80.4b

MW & US - 82.94a 82.99a 83.1a 83.11a - 80.24b 80.32b 80.53b 80.56b

Un-SFA/SFA ratio

Untreated 5.54a - - - - 4.88b - - - -

MW - 5.54a 5.55a 5.53a 5.53a - 4.88b 4.88b 4.87b 4.86b

US - 5.55a 5.54a 5.53a 5.53a - 4.88b 4.87b 4.88b 4.86b

MW & US - 5.54a 5.54a 5.54a 5.52a - 4.88b 4.87b 4.88b 4.86b

Values are mean ± SEM (n = 3). Values in same row within each processing parameter with different letters were significantly different from each other (p ≤ 0. 05)
T0: Control germinated sample; T1, T2, T3, T4: Different treatments
MW: microwave processing; US: ultrasonic processing
MW & US: Microwave & ultrasonic combined processing
SFA: Saturated fatty acids; Un-SFA: Unsaturated fatty acids
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animals, vegetables and human milk fats. Several contro-
versies are there about health and adverse impact of pal-
mitic and stearic acid on human health, particularly
about role of palmitic acid in cardiovascular disease and
carcinogenicity [45, 46].

Sorghum unsaturated fatty acid (un-SFA) before and after
germination
The results for unsaturated fatty acids present in sor-
ghum grains are well correlated with previous investiga-
tions [36, 37]. Seed oils undergo changes in terms of
chemical and physical properties when they interact with
the food or the atmosphere. The fatty acid composition
of oil can be an indicator of its stability, physical proper-
ties and nutritional value. Some food processing tech-
niques can affect fatty acid composition of oils when
hardly subjected to successive heating [42, 47, 48].
Cravotto et al. [49] reported the non-significant changes
in polyunsaturated fatty acids of seaweed oil obtained
under conventional and ultrasonic conditions. Kang et
al. [50] mentioned that oleic acid was decreased by 50%,
whereas those of linoleic and linolenic acid were in-
creased by 1.3 and 5.4 times, respectively after 7 days of
germination. Hahm et al. [51] reported the germinated
derooted sesame rich in linolenic acid. Some studies
suggested that linolenic acid intakes reduce the risk of
cardiovascular diseases [52, 53]. An interaction between
dietary linolenic acid intake and cardiovascular health in
humans was reviewed [54, 55].

Percentage of saturated fatty acids (SFA), unsaturated
fatty acids (un-SFA) and un-SFA/SFA ratio
The polyunsaturated fatty acids in most of sorghum var-
ieties were found higher than monounsaturated fatty
acids [36]. The white sorghum oil contained 12.40% total
saturated fatty acid and 87.60% total unsaturated fatty
acid, respectively [56]. The unsaturated fatty acids level
of sorghum decreased on germination. The observed de-
crease might be due to the increased activities of the
lipolytic enzymes during germination, which hydrolyze
oils to fatty acids and glycerol [57]. The simpler prod-
ucts can be used for synthesis of carbohydrate and pro-
tein or as a source of energy for developing embryo.
Similar observation was made by other researchers [58].
Oils being source of lipids, are of more nutritional value
if they have more unsaturated to saturated fatty acid ra-
tio [59].

Conclusions
Lipids composition due to their pharmacological signifi-
cance has caught the attention of both consumer and in-
dustries. The presence of all saturated and unsaturated
fatty acids essential for human health in sorghum oil
could be alternative source of edible oil. It can be

concluded that the germination of sorghum grains
caused marked reduction in oil content. Moreover, also
showed a decrease in total unsaturated fatty acids while
the total saturated fatty acids increased by germination
of seeds. Fatty acid analysis of sorghum oil suggested
that pre-treatment strategies will not affect the quality of
the oil with respect to essential fatty acid content. Every
pre-treatment has some positive and negative impact on
the quality and character of the extracted oils. Thus,
selection of appropriate pre-treatment strategies will
help to achieve enhanced seed oil with desired quality.
The results of present study suggested that combination
of microwave and ultrasonic treatment was best method
for extracting high quality sorghum oil.
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