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EPHA6 rs4857055 C > T polymorphism
associates with hypertension through
triglyceride and LDL particle size in the
Korean population
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Abstract

Background: Erythropoietin-producing human hepatocellular (Eph) receptors might contribute to the development
of atherosclerosis. A genome-wide association study indicated that the Eph receptor A6 gene (EPHA6) associated
with at least 1 blood pressure (BP) phenotype. The objective of the present study was to determine whether EPHA6
is a novel candidate gene for hypertension in a Korean population.

Methods: A total 2146 study participants with normotension and hypertension were included. Genotype data were
obtained using a Korean Chip. To assess the association between single-nucleotide polymorphisms (SNPs) and BP,
we performed a linear regression analysis, which showed that rs4850755 in the EPHA6 gene was the SNP most
highly associated with both systolic and diastolic BP.

Results: The presence of the TT genotype of the EPHA6 rs4857055 C > T SNP was associated with a higher risk of
hypertension after adjusting for age, sex, body mass index (BMI), smoking, and drinking [odds ratio 1.533, P = 0.001].
In the control group, significant associations were observed between systolic BP and the rs4857055 polymorphism
and between diastolic BP and the rs4857055 polymorphism. In the hypertension group, a significant association
was observed between systolic BP and the rs4857055 polymorphism. In the hypertension group, subjects with the
TT genotype showed significantly higher systolic BP than CC subjects. Additionally, in the hypertension group, TT carriers
showed a higher tendency of serum triglyceride (P = 0.069) and significantly higher apolipoprotein B (P = 0.015) and
smaller low-density lipoprotein (LDL) particle size (P < 0.001) than either TC or CC subjects.

Conclusions: These results could suggest that the EPHA6 rs4857055 C > T SNP is a novel candidate gene for
hypertension in the Korean population. Additionally, the TT genotype could be associated with hypertriglyceridemia
and small LDL particle size in hypertension.
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Background
Hypertension is one of the well-known risk factors for
atherosclerotic vascular diseases. As a complex trait,
hypertension develops due to both genetic and environ-
mental factors [1]. In fact, evidence from family studies

has indicated that more than 30% of blood pressure (BP)
variations could be attributed to genetics [2, 3]. Recently,
genome-wide association studies (GWAS) identified
more than 50 single-nucleotide polymorphisms (SNPs)
associated with an increased risk of hypertension [4–6].
Erythropoietin-producing human hepatocellular (Eph)

receptors are a group of receptors that are activated
in response to binding with Eph receptor-interacting
proteins (ephrins) [7, 8]. Ephs have important roles
in a variety of biological functions. For instance,
Sakamoto et al. [9] indicated that a wide variety of
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ephrins and Eph receptors might affect monocyte
chemotaxis, contributing to the development of
atherosclerosis. As such, the Eph/ephrin molecule is
important for the developing cardiovascular system,
as shown by the presence of heart and blood vessel
defects resulting from knockout of Eph receptors or
ephrins [10]. Eph receptors/ephrins expressed in
blood vessels and their counterparts in immune cells
are associated with inflammatory processes ranging
from increased endothelial permeability and the me-
diation of inflammatory cell adhesion and migration
to atherosclerotic plaque development [11–14]. Further-
more, EphB6, ephrin-B1, and ephrin-B3 expressed in vas-
cular smooth muscle cells (VSMCs) can contribute to BP
regulation [15, 16], and an Eph receptor B6 gene (Ephb6)
knockout mouse model exhibited higher BPs than their
wild-type counterparts [17]. A genome-wide gene-based
analysis identified the Eph receptor A6 gene (EPHA6) as
associated with at least 1 BP phenotype in a recent study
of genome-wide gene-sodium interaction analyses on BP
[18]. Because a close relationship exists between Ephs/
ephrins and BP, particularly between EPHA6 and BP [18],
specific EPHA6 SNP genotypes in humans could be asso-
ciated with BP. The Korean Chip (K-CHIP) was developed
as a low-cost customized chip that is optimized for genetic
studies on disease and complex traits in the Korean popu-
lation. Therefore, the objective of the present study was to
determine whether EPHA6 is a novel candidate gene for
hypertension in the Korean population.

Methods
Study population
A total of 2167 study participants with nondiabetic
normotension (systolic BP < 140 mmHg and diastolic
BP < 90 mmHg) and hypertension (systolic BP ≥ 140 mmHg
or diastolic BP ≥ 90 mmHg) aged 20–86 years were re-
cruited from the Health Service Center during routine
checkups at the National Health Insurance Corporation
Ilsan Hospital, Goyang, Korea (January 2010–March 2015),
for this study. Based on the data screened from the Health
Service Center, subjects who agreed to participate in the
study were referred to the Department of Family Medicine.
The health of potential subjects was reassessed, and sub-
jects who met the study criteria were included. The exclu-
sion criteria were a current diagnosis and/or history of
cardiovascular disease, liver disease, renal disease, pancrea-
titis, or cancer; pregnancy or lactation; and regular use of
any medication. The aim of the study was carefully ex-
plained to all of the participants, who provided their written
informed consent. The Institutional Review Board of
Yonsei University and the National Health Insurance
Corporation Ilsan Hospital approved the study protocol,
which complied with the Declaration of Helsinki.

Clinical and biochemical assessments
Detailed information on the clinical and biochemical as-
sessments is provided elsewhere [19]. The subjects’ body
weights, heights, and waist circumferences were mea-
sured, and their body mass indexes (BMIs) were calcu-
lated in units of kilograms per square meter (kg/m2). BP
was measured using a random-zero sphygmomanometer
(HM-1101, Hico Medical Co., Ltd., Chiba, Japan) with
appropriately sized cuffs after a rest period of at least
20 min in a seated position. BP was measured three
times in both arms. The differences between the three
BP measurements were always <2 mmHg, and the aver-
age values for the systolic BP and diastolic BP measure-
ments were used. Participants were instructed not to
smoke or drink alcohol for at least 30 min before each
BP measurement.
Blood samples were collected following an overnight

fast of at least 12 h. The levels of fasting triglycerides,
total cholesterol, high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein (LDL) cholesterol, glucose,
insulin, and LDL particle size were measured as previ-
ously described [19]. Insulin resistance (IR) was deter-
mined with the homeostasis model assessment (HOMA)
using the following equation: HOMA-IR = [fasting insu-
lin (μIU/mL) × fasting glucose (mmol/L)] / 22.5. Serum
apolipoprotein (apo) A-I and apo B levels were deter-
mined by turbidity at 340 nm using specific anti-serum
(Roche, Basel, Switzerland).

Affymetrix axiom™ KORV1.0–96 Array hybridization and
SNP selection
A total of 2167 samples were genotyped according to
the manufacturer’s protocol, which recommended the
Axiom® 2.0 Reagent Kit (Affymetrix Axiom® 2.0 Assay
User Guide; Affymetrix, Santa Clara, CA, USA). Approxi-
mately 200 ng of genomic DNA (gDNA) was amplified
and randomly fragmented into 25- to 125-base pair (bp)
fragments. The initial gDNA amplification was performed
in a 40-μL reaction volume containing 20 μL of genomic
DNA at a concentration of 10 ng/μL and 20 μL of a de-
naturation master mix. The initial amplification reaction
was conducted as follows: 10 min at room temperature
for the initial amplification; then, the incubated products
were amplified with 130 μL of Axiom 2.0 Neutral Soln,
225 μL of Axiom 2.0 Amp Soln and 5 μL of Axiom
2.0 Amp Enzyme. The amplification reactions were per-
formed for 23 ± 1 h at 37 °C. The amplification products
were analyzed in an optimized reaction to amplify
fragments between 200 and 1100 bp in length. A
fragmentation step reduced the amplified products to
segments approximately 25–50 bp in length, which
were end-labeled using biotinylated nucleotides. Fol-
lowing hybridization, the bound target was washed
under stringent conditions to remove non-specific
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background and to minimize the background noise caused
by random ligation events. Each polymorphic nucleotide
was queried via a multi-color ligation event conducted on
the array surface. After ligation, the arrays were stained
and imaged on a GeneTitan MC Instrument (Affymetrix,
Santa Clara, CA, USA). The images were analyzed using
the Genotyping Console™ Software (Affymetrix, Santa
Clara, CA, USA). The genotype data were produced
using the K-CHIP available through the K-CHIP con-
sortium. The K-CHIP was designed by the Center for
Genome Science at the Korea National Institute of
Health (4845–301, 3000–3031).
Samples that revealed the following inclusion thresh-

olds were excluded: sex inconsistency, markers with a
high missing rate (>5%), individuals with a high miss-
ing rate (>10%), minor allele frequency < 0.01, and a
significant deviation from Hardy-Weinberg equilib-
rium (HWE) (P < 0.001). In addition, SNPs that were
related to each other in linkage disequilibrium were ex-
cluded. The remaining 394,222 SNPs and 2146 samples
were used in the subsequent association analyses.

Statistical analysis
Descriptive statistical analyses were performed using
SPSS version 23.0 (IBM, Chicago, IL, USA). The skewed
variables were transformed to logarithmic form, and a
two-tailed P-value <0.05 was considered statistically sig-
nificant. An independent t-test was performed on the

continuous variables to compare the parameters between
the control group and patients with hypertension. HWE
was assessed using PLINK version 1.9 (https://www.cog-
genomics.org/plink2). The association between SNPs
and BP were evaluated with a linear regression analysis.
The frequency was tested using a chi-square test. The
association of hypertension with a genotype was calcu-
lated using the odds ratio (OR) [95% confidence interval
(CI)] of a logistic regression model with an adjustment
for confounding factors. A one-way ANOVA followed by
a Bonferroni post hoc test was performed to compare the
differences among the EPHA6 rs4857055 C > T genotype
groups in the control group and patients with
hypertension.

Results
The clinical and biochemical characteristics of normo-
tensive controls (n = 1605) and hypertensive patients
(n = 541) are shown in Table 1. Case subjects were
significantly older and heavier and had significantly
higher systolic and diastolic BP, triglyceride, glucose,
insulin, and HOMA-IR and lower HDL-cholesterol
than controls (Table 1). After adjusting for age, sex,
and BMI, hypertensive patients showed significantly
higher systolic and diastolic BP, triglyceride, total
cholesterol, apo B, and glucose and lower apo A-I
than normotensive controls (Table 1).

Table 1 Clinical and biochemical characteristics in normotensive controls and hypertension patients

Normotensive controls Hypertension group Adjusted

(n = 1605) (n = 541) P-value

Age (year) 48.0 ± 10.9 54.3 ± 11.6** –

BMI (kg/m2) 23.7 ± 2.91 25.4 ± 3.20** –

Weight (kg) 63.0 ± 10.2 68.1 ± 11.9** 0.092

Waist (cm) 83.5 ± 7.79 87.8 ± 8.70** 0.690

Waist hip ratio 0.88 ± 0.06 0.90 ± 0.06** 0.130

Systolic BP (mmHg) 116.4 ± 11.5 138.5 ± 15.3** < 0.001

Diastolic BP (mmHg) 72.7 ± 8.72 87.4 ± 10.7** < 0.001

Triglyceride (mg/dL)a 119.7 ± 73.9 148.4 ± 87.5** 0.005

Total cholesterol (mg/dL)a 198.0 ± 36.0 198.3 ± 36.0 0.017

HDL cholesterol (mg/dL)a 53.9 ± 13.5 50.4 ± 12.8** 0.450

LDL cholesterol (mg/dL)a 121.0 ± 32.7 119.1 ± 32.7 0.050

Apolipoprotein A-I (mg/dL)a 156.1 ± 28.2 155.4 ± 27.9 0.023

Apolipoprotein B (mg/dL)a 104.4 ± 29.3 104.6 ± 27.7 0.049

Glucose (mg/dL)a 95.7 ± 20.7 103.9 ± 25.8** 0.002

Insulin (μIU/dL)a 9.08 ± 4.66 9.83 ± 5.76* 0.609

HOMA-IRa 2.15 ± 1.29 2.55 ± 2.03** 0.143

LDL particle size (nm)a 23.9 ± 1.07 23.9 ± 0.80 0.327

Mean ± SD. atested by logarithmic transformation. *P < 0.05, **P < 0.001 derived from an independent t-test between two groups. Adjusted P-value derived after
adjusting for age, sex, and BMI

Kim et al. Lipids in Health and Disease  (2017) 16:230 Page 3 of 7

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2


The 394,222 SNPs and 2146 samples were used in sub-
sequent analyses. The associations between genotypes
and BPs were evaluated with linear regression analysis
after adjusting for age and sex. From the twenty-five
most strongly associated SNPs for hypertension, EPHA6
rs4850755 was the most highly associated SNP with both
systolic BP (P = 2.63E-08) and diastolic BP (P = 3.67E-
05); therefore, we performed an association analysis on
rs4857055 in EPHA6 (Additional file 1: Table S1).

Distributions of the EPHA6 rs4850755 C > T polymorphism
The genotype distributions of EPHA6 rs4857055 C > T
polymorphism were in HWE. Among 1605 control sub-
jects, 446 individuals (27.8%) had the CC genotype, 829
(51.7%) had the CT genotype, and 330 (20.6%) had the
TT genotype. The allele frequency of the T allele was
0.464 in normotensive controls, while among 541 case
subjects, 135 individuals (25.0%) had the CC genotype,
261 (48.2%) had the CT genotype, and 145 (26.8%) had
the TT genotype. The allele frequency of the T allele was
0.509 in hypertensive cases. The relative EPHA6
rs4857055 C > T genotype (P = 0.010) and allele frequen-
cies (P = 0.010) in hypertension patients differed signifi-
cantly from those in the controls.
The presence of the TT genotype of the EPHA6

rs4857055 C > T SNP was associated with a higher risk of
hypertension [OR 1.415 (95% CI 1.129–1.733), P = 0.003]
(Table 2). The significance of association remained after
adjusting for age, sex, BMI, smoking, and drinking
[OR 1.533 (95% CI 1.200–1.959), P = 0.001].

BP associated with the EPHA6 rs4857055 C > T genotype
There were no significant genotype-related differences
among control subjects or hypertensive patients treated
without or with antihypertensive therapy according to
the EPHA6 rs4857055 C > T genotype with respect to
age, sex, BMI, smoking, and drinking (data not shown).

In the control group, significant associations were ob-
served between systolic BP and the EPHA6 rs4857055
C > T polymorphism (P < 0.001) and between diastolic
BP and the rs4857055 C > T (P = 0.016). In the control
group, subjects with rs4857055 TT or the CT genotype
showed significantly higher systolic and diastolic BP than
CC subjects (all P < 0.05). In the hypertension group, a
significant association was observed between systolic BP
and the EPHA6 rs4857055 C > T polymorphism (P =
0.022). In addition, subjects with the rs4857055 TT
genotype showed significantly higher systolic BP than
CC subjects (P = 0.023).

Lipid profiles, apolipoproteins, and LDL particle size
according to the EPHA6 rs4857055 C > T genotype
In the hypertension group, trends toward associations
were observed between serum triglyceride and the
EPHA6 rs4857055 C > T polymorphism (P = 0.069), be-
tween serum apo B and the rs4857055 C > T polymorph-
ism (P = 0.015), and between LDL particle size and the
rs4857055 C > T polymorphism (P < 0.001). In the hyper-
tension group, subjects with the rs4857055 TT genotype
showed significantly higher apo B levels and smaller
LDL particle sizes than those with the TC or CC poly-
morphisms (all P < 0.05) (Table 3).

Discussion
The major finding of this study is that the frequency of
the EPHA6 rs4857055 TT genotype was significantly
higher in hypertensive patients than in controls, suggest-
ing an association between the EPHA6 rs4857055 C > T
SNP and hypertension. This observation is consistent
with the GWAS data for hypertension, which showed an
association with EPHA6 in a recent study of genome-
wide gene-sodium interaction analyses on BP [18].
Ephrins, which are cell surface molecules, are ligands

of Eph receptors and are classified as A and B subfam-
ilies. Ephrin-As and ephrin-Bs attach to cell surfaces in
different ways [20–22]; in general, Eph receptor A mem-
bers bind preferentially with ephrin-As and Eph receptor
Bs with ephrin-Bs. The Eph/ephrin system regulates
blood vessel remodeling and stabilization by regulating
endothelial cells. EphA2 regulates angiogenesis and vas-
cular permeability mainly in concert with ephrin-A1
through interactions with vascular endothelial growth
factor [23, 24]. These findings support the idea that
EphA receptors and ephrin-As are involved in blood
vessel regulation and suggest that the EphA/ephrin-A
system represents a target for the inhibition of angiogen-
esis via reductions in hypoxia and the vascular changes
caused by inflammatory cytokines [11, 12, 25]. Increas-
ing evidence demonstrates an association between Eph/
ephrin and neovascularization [26]. A recent microarray
analysis on the gene expression profiles of Eph receptors

Table 2 Unadjusted and adjusted odds ratios for all of the
patients with hypertension according to the EPHA6 rs4857055
genotypes

Hypertension (n = 541) P-value

EPHA6 rs4857055 OR (95% CI)

Model 1

Ca compared with T 1.199 (1.045, 1.377) 0.010

CC + CTa compared with TT 1.415 (1.129, 1.773) 0.003

CCa compared with CT + TT 1.157 (0.926, 1.447) 0.200

Model 2

Ca compared with T 1.220 (1.052, 1.415) 0.009

CC + CTa compared with TT 1.533 (1.200, 1.959) 0.001

CCa compared with CT + TT 1.134 (0.892, 1.442) 0.305
aReference. CI Confidence interval. Model 1: unadjusted; Model 2: adjusted for
age, sex, BMI, smoking status, and drinking status
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demonstrates that EphA6 mRNA levels are higher in
adult human peripheral blood monocytes [9]. These re-
sults indicate that a wide variety of ephrins and Eph re-
ceptors might affect monocyte chemotaxis, contributing
to the development of atherosclerosis. Furthermore, pre-
vious studies have identified associations of EPHA6 with
obesity-related traits [27], and the control of glucose
homeostasis has emerged as a role of the EphA/ephrin-
A system [21].
Hypertensive subjects with the EPHA6 rs4857055 TT

genotype showed higher systolic BP than those with the
CC genotype in this study. Hypertension is known to
contribute to atherosclerosis and endothelial cell dys-
function, with associated risk factors that influence LDL
size [28]. Small LDL particle size and high serum trigly-
ceride or triglyceride-rich lipoproteins and apo B were
reported to be found in nondiabetic subjects with essen-
tial hypertension [29, 30]. In the hypertension group of
this study, subjects with the EPHA6 rs4857055 TT geno-
type showed a higher tendency of serum triglyceride and
significant increases in apo B than those with the CC or
CT genotype.
Endothelial cell dysfunction has been suggested as the

initiating process in the development of cardiovascular
disease and is considered to be closely related to the
pathophysiology of hypertension. Accumulating evidence
suggests that hepatocyte growth factor (HGF) plays an

important role in endothelial cell dysfunction. The asso-
ciation between HGF and hypertension severity has been
established in several human studies [31, 32]. Linked
with those previous studies, a Japanese study revealed
the association between HGF polymorphisms and BP or
atherosclerosis and suggested that the HGF located at
chromosome 7q11.2-q21 is a candidate gene for athero-
sclerosis [33]. In addition, the interleukin-6 gene plays a
role in BP regulation and the progression of atheroscler-
osis in Japanese individuals [34] by stimulating the pro-
liferation of VSMCs [35], indicating that this cytokine
may play an important role in the development of
arteriosclerosis.
Most reported functions of Ephs occur in the central

nervous system, and some are expressed in endothelial
cells [17]. Accumulating studies have demonstrated that
VSMCs are the major targets through which Ephs/ephrins
exhibit their effect on BP modulation [17, 36–39]. EphB6
and EphB4 regulate VSMC contractility and modulate BP
[17], and EphB4 deletion results in hypotension in an ani-
mal model [37]. EphA2 and EphA4 are also expressed on
VSMCs, with possible effects on endothelial cells and
other surrounding cells [40, 41]. EphA6 and EphA7,
expressed on vascular endothelium, are also involved in
angiogenesis [42, 43]. However, to date, there are no
studies on the exact function of EphA6 in VSMC con-
tractility and BP regulation. Based on several studies that

Table 3 Clinical and biochemical characteristics in normotensive controls and subgroups of hypertension patients according to
EPHA6 genotype

EPHA6 Normotensive controls (n = 1605) Hypertension group (n = 541)

CC (n = 446) CT allele (n = 829) TT (n = 330) CC (n = 135) CT allele (n = 261) TT (n = 145)

Age (year) 47.9 ± 10.9 48.4 ± 10.8 47.4 ± 11.3 54.6 ± 11.1 54.8 ± 11.8 53.1 ± 11.8

Weight (kg) 63.4 ± 9.98 62.7 ± 10.3 63.4 ± 10.6 66.8 ± 11.3 68.7 ± 12.2 68.1 ± 11.7

BMI (kg/m2) 23.8 ± 2.89 23.7 ± 2.94 23.8 ± 2.87 25.0 ± 3.21 25.5 ± 3.23 25.5 ± 3.14

Waist (cm) 83.6 ± 7.75 83.4 ± 7.84 83.6 ± 7.71 87.0 ± 8.76 88.1 ± 8.79 88.1 ± 8.48

Waist hip ratio 0.88 ± 0.06 0.88 ± 0.06 0.89 ± 0.06 0.90 ± 0.06 0.90 ± 0.05 0.91 ± 0.07

Systolic BP (mmHg) 114.5 ± 11.5b 117.0 ± 11.5a 117.4 ± 11.2a 136.4 ± 15.9b 138.0 ± 14.6a,b 141.3 ± 15.9a

Diastolic BP (mmHg) 71.7 ± 8.67b 73.0 ± 8.63a 73.1 ± 8.95a,b 86.5 ± 11.0 87.2 ± 10.6 88.7 ± 10.3

Triglyceride (mg/dL)∮ 115.4 ± 64.3 122.3 ± 77.8 119.1 ± 75.9 144.5 ± 79.5a,b 141.2 ± 78.7b 165.0 ± 106.2a

Total cholesterol (mg/dL)∮ 200.0 ± 37.3 197.2 ± 36.2 197.4 ± 33.8 196.0 ± 33.7 198.5 ± 38.5 200.0 ± 33.2

HDL cholesterol (mg/dL)∮ 54.2 ± 12.8 53.7 ± 13.9 54.0 ± 13.6 51.0 ± 12.8 50.8 ± 13.4 49.1 ± 11.7

LDL cholesterol (mg/dL)∮ 122.9 ± 33.3 120.1 ± 33.1 120.7 ± 30.6 116.2 ± 29.2 120.1 ± 35.3 120.1 ± 31.0

Apolipoprotein A-I (mg/dL)∮ 157.3 ± 26.3 155.9 ± 29.6 155.0 ± 27.1 154.1 ± 25.6 155.8 ± 30.2 156.1 ± 25.6

Apolipoprotein B (mg/dL)∮ 107.6 ± 29.3 103.3 ± 29.4 102.9 ± 28.6 100.8 ± 27.2b 103.2 ± 28.6b 110.6 ± 25.9a

Glucose (mg/dL)∮ 95.0 ± 20.1 95.7 ± 19.7 96.4 ± 23.7 104.4 ± 23.9 104.0 ± 27.6 103.5 ± 24.5

Insulin (μIU/dL)∮ 9.32 ± 4.91 8.97 ± 4.64 9.04 ± 4.32 8.99 ± 4.33 10.1 ± 6.39 10.2 ± 5.67

HOMA-IR∮ 2.18 ± 1.24 2.13 ± 1.35 2.15 ± 1.17 2.30 ± 1.32 2.63 ± 2.42 2.63 ± 1.77

LDL particle size (nm)∮ 24.0 ± 0.81 23.9 ± 1.27 24.0 ± 0.77 24.0 ± 0.94b 24.0 ± 0.66b 23.5 ± 0.85a

Mean ± SD. ∮tested by logarithmic transformation. P-values derived from a One-way ANOVA. All alphabetical P < 0.05 derived from Bonferroni post hoc tests; no
significant differences are marked with the same alphabet and significant differences are marked with a different alphabet
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have shown that Ephs, particularly Eph A members, are
key modulators of BP, we could presume that EphA6 is
another important protein for hypertension development.
Gordillo-Moscoso et al. [44] demonstrated the positive as-
sociation between serum levels of triglycerides and vascu-
lar inflammation, measured as cyclooxygenase-2, which is
highly expressed in VSMCs [45]. Wang et al. [38] revealed
that ephrin-B3 knockout in VSMCs leads to attenuated
myosin light chain kinase phosphorylation in which en-
hances Ca2+ sensitivity of VSMCs. Recently, the ephrin-B3
gene (EFNB3) has been suggested to be a hypertension
risk gene in certain individuals [36]. Through previous
studies, we can conclude that VSMCs are a target tissue
for EphA6 function in BP regulation. In the present
study, the EPHA6 rs4857055 TT genotype showed
markedly higher triglyceride levels, a phenomenon
(hypertriglyceridemia) that could result in strong
VSMC contraction, leading to increased BP.
When interpreting the present findings, it should be

noted that our results share the limitations of cross-
sectional observational studies, by which we only evalu-
ated associations rather than prospective predictions.
Additionally, we specifically focused on a representative
group of Korean subjects; therefore, our results cannot
be generalized to other ethnic, age, or geographical
groups. Further studies are needed to provide a better
understanding of the physiological relevance and exact
mechanisms of this molecule and its role in BP regulation,
which could represent a novel personalized therapeutic
approach to BP management. Despite these limitation,
our results show an intriguing association between the
EPHA6 rs4857055 TT genotype and increased risk of
hypertension.

Conclusion
The results of this study suggest that the EPHA6
rs4857055 C > T SNP could be a novel candidate gene
for hypertension; moreover, the EPHA6 rs4857055 TT
genotype could be associated with hypertriglyceridemia
and small LDL particle size in hypertension.

Additional file

Additional file 1: Table S1. Top twenty-five SNPs associated with sys-
tolic and diastolic BP. (DOCX 17 kb)
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