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Green leafy vegetables in diets with a 25:1
omega-6/omega-3 fatty acid ratio modify
the erythrocyte fatty acid profile of
spontaneously hypertensive rats
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Abstract

Background: In addition to the actual composition of the diet (i.e. nutrient composition, food groups), the omega-
6/omega-3 fatty acid ratio has been demonstrated to influence the tissue fatty acid profile and subsequently the
risk for cardiovascular and other diseases. Likewise, the consumption of green leafy vegetables (GLVs) may favorably
reduce the risks associated with disease. Although an ~ 3:1 omega-6/omega-3 fatty acid ratio (ω-6/ω-3 FAR) is
recommended, the typical American diet has an ~ 25:1 ω-6/ω-3 FAR. Previous research affirms the ability of
collard greens (CG), purslane (PL), and sweet potato greens (SPG) to improve the hepatic profile of spontaneously
hypertensive rats (SHRs). The aim of the present study was to determine the influence of GLVs, incorporated (4%) into
diets with a 25:1 ω-6/ω-3 FAR, on the erythrocyte fatty acid profile of male SHRs.

Methods: SHRs (N = 50) were randomly assigned to one of five dietary groups – standardized control (AIN-76A), Control
(25:1 ω-6/ω-3 FAR), CG (25:1 ω-6/ω-3 FAR + 4% CG), PL (25:1 ω-6/ω-3 FAR + 4% PL) or SPG (25:1 ω-6/ω-3 FAR + 4% SPG).
Following 6 weeks consumption of diets, SHRs erythrocyte fatty acid profiles were determined by gas-liquid
chromatography.

Results: Significantly lower percentages of total saturated fatty acids (p < 0.05) and greater percentages of
polyunsaturated fatty acids were present among SHR erythrocytes following the consumption of diets containing CG,
PL and SPG. Total polyunsaturated fatty acids were greatest among SHRs consuming diets containing purslane.

Conclusions: The present study demonstrates the ability of GLVs to mitigate the potential effects of an elevated ω-6/
ω-3 FAR, which may contribute to an atherogenic fatty acid profile, inflammation and disease pathogenesis. Dietary
recommendations for disease prevention should consider the inclusion of these GLVs, particularly among those
consuming diets with an ω-6/ω-3 FAR that may promote disease.
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Background
Epidemiological and clinical evidence affirms that the
consumption of diets with elevated omega-6/omega-3
fatty acid ratios (ω-6/ω-3 FARs) to be associated with an
increased risk for hypertension, cardiovascular disease
(CVD), diabetes and other chronic diseases [1–3]. Further,
the dietary ω-6/ω-3 FAR has been demonstrated to influ-
ence tissue fatty acid compositions [4, 5]. Although an
~ 3:1 ω-6/ω-3 FAR is recommended, the typical American
(i.e. Western) diet has an ~ 25:1 ω-6/ω-3 FAR [6, 7]. The
excessive consumption of vegetable oils, processed foods
and refined products, such as those observed in Western
cultures, are believed to contribute to elevations in the
dietary ω-6/ω-3 FAR [8, 9]. Conversely, plant-based
diets, particularly those containing vegetables abundant
in α-linolenic acid, have lower ω-6/ω-3 FARs [10] and
are plentiful in antioxidant and bioactive compounds
that have been associated with decrease risk for chronic
disease [11–13].
Green, leafy vegetables (GLVs), rich of sources of antiox-

idants and bioactive compounds, have been demonstrated
to improve antioxidant status and reduce the risks asso-
ciated with disease [14]. Further, dietary patterns that
promote the increased consumption of GLVs, such as
the Mediterranean diet, may be beneficial in reducing
the risks associated with disease pathogenesis [15–18]. In
addition, the Dietary Approaches to Stop Hypertension
(DASH) diet endorses the consumption of plants commonly
found in the African American diet such as collard greens
and sweet potatoes, for the reduction of the risks associated
with hypertension and other chronic diseases [19–22].
Collard greens (Brassica oleracea), a traditional GLV

with the diet of Americans living in the southern United
States, in addition to purslane (Portulaca oleracea) and
sweet potato greens (Ipomoea batatas L.), novel GLVs
within the diet, are potent dietary reservoirs of antioxidant
and bioactive compounds that may decrease disease risk
[23, 24]. Previous research has demonstrated the ability of
collard greens, purslane and sweet potato greens to favor-
able modify the hepatic fatty acid profile of spontaneously
hypertensive rats after 4 weeks consumption [25]. The
aim of the present research study was to evaluate the
influence of collard greens (CG), purslane (PL) and
sweet potato greens (SPG), supplemented into diets with a
25:1 ω-6/ω-3 FAR, on the erythrocyte fatty acid profiles of
male spontaneously hypertensive rats.

Methods
Animals and diets
Fifty (N = 50) male spontaneously hypertensive rats (SHRs)
, 4 weeks of age, were housed individually in clear polypro-
pylene cages (43x27x15cm), with temperature and relative
humidity controlled at 70-72 °C and 50–55%, respectively.
SHRs were maintained on a 12:12 h light-dark photoperiod

cycle. Following a 10 day acclimation period, SHRs were
randomly assigned to one of four experimental dietary
groups with a 25:1 ω-6/ω-3 FAR: 1) Control, 2) 4% CG, 3)
4% PL, 4) 4% SPG; 10 SHRs were assigned to the standard-
ized control dietary group and received the AIN-76A diet
for the duration of the research study. SHRs consumed the
diets for 6 weeks. The compositions of the experimental
diets are presented in Table 1. Animals were paid fed based
on the average previous day’s intake of SHRs consuming
the experimental diets containing CG, PL and SPG. SHRs
were allowed to consume water ad libitum.
Following a 24 h fast animals were anesthetized using

a Ketamine-Acepromazine combination cocktail and
then euthanatized via over-inhalation of carbon dioxide.
Blood was collected via cardiac puncture, collected in
heparin-coated tubes and centrifuged at 2500 rpm at
10 °C for 30 min to separate plasma and erythrocytes.
Following centrifugation, samples were stored at − 80 °C
prior to analyses. Eight (n = 8) SHRs were randomly
selected from each dietary group for the erythrocyte
fatty acid profile analysis. The procedures involved in
the care and use of the animals were approved by the
Tuskegee University Animal Care and Use Committee.

Table 1 Ingredient composition of standardized control and
experimental diets fed to SHRs for 6 weeksa

Dietary Group

Ingredient (%) AIN-76A C CG PL SPG

Sucrose 50.00 41.96 39.27 39.49 39.39

Casein (Vitamin Free) 20.00 18.00 16.82 16.53 16.68

Corn Starch 15.00 15.00 15.00 15.00 15.00

Powdered Cellulose 5.00 5.00 5.00 5.00 5.00

AIN-76 Mineral Mix 3.50 3.50 3.50 3.50 3.50

AIN-76 Vitamin Mix 1.00 1.00 1.00 1.00 1.00

DL-Methionine 0.30 0.30 0.30 0.30 0.30

Choline Bitartrate 0.20 0.20 0.20 0.20 0.20

Ethoxyquinb 0.00 0.00 0.00 0.00 0.00

Corn Oil 5.00 12.06 11.96 12.01 11.97

Soybean oil – 2.91 2.88 2.89 2.89

Fish Oil – – – – –

Cholesterol – 0.07 0.07 0.07 0.07

Collard Greens – – 4.00 – –

Purslane – – – 4.00 –

Sweet potato Greens – – – – 4.00
aDiets formulated and manufactured by the Division of Land O’Lakes Purina
Feed, LLC, Richmond, IN. C, control; CG collard greens, PL purslane; SPG sweet
potato greens; bEthoxyquin content = 0.0010%
AIN-76A = AIN -76, standard rodent chow; C (control diet) = AIN-76A diet with
a 25:1 ω-6/ω-3 FAR; CG = AIN-76A diet with a 25:1 ω-6/ω-3 FAR + 4% collard
green powder; PL = AIN-76A diet with a 25:1 ω-6/ω-3 FAR + 4% purslane powder;
SPG = AIN-76A diet with a 25:1 ω-6/ω-3 FAR + 4% sweet potato green powder
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Erythrocyte fatty acid extraction
Erythrocyte fatty acid methyl esters (FAMEs) were pre-
pared following transesterification with boron trifluoride
(BF3, cat# 3–3021, 12% methanol, Supelco, Inc., Bellefonte,
PA) using the procedures previously described by Masood
et al. [26]. To approximately 0.01 g of SHR erythrocytes,
100 μl of nonadecanoic acid (C19:0, Nu-Chek Prep, Inc.,
Elysian, MN), dissolved in hexane (1.0 ml), and BF3
(1.0 ml) was added. Fatty acid methyl esters (FAMEs)
were prepared by heating the mixture in a hot water bath
at 55 °C for 90 min and subsequently placed in an ice bath
for 5 min. Hexane (2.0 ml) and deionized water (1.0 ml)
were added, Pyrex glass culture tubes were flushed with
nitrogen and vortexed for 15 s. Following centrifugation at
2000 rpm for 5 min, the top organic layer, containing the
FAMEs were collected and placed in gas chromatography
(GC) vials for GC analysis. Samples were analyzed in
duplicate.

GC analysis of FAMEs
Erythrocyte FAMEs were isolated and quantified using a
HP 6890 N network gas chromatograph system (Agilent
Technologies, Santa Clara, CA) equipped with a HP 7683
series automated injector, flame ionization detector and a
DB23 fused silica capillary high resolution gas chromato-
graph column (60 m, 0.25 mm, i.d., 0.25 μm film thickness,
J&W Scientific, Folsom, CA). Data are expressed as
percentages of total fatty acid.

Statistical analysis
Statistical analyses were conducted using analysis of vari-
ance software (SAS Software, Cary, NC). Duncan’s post

hoc procedures were performed to test if differences
existed among SHRs consuming the different diets.
Statistical significance was determined at p < 0.05.

Results
Erythrocyte saturated fatty acid (SFA) concentrations
(% total fatty acids) of SHRs consuming diets with a 25:1
ω-6/ω-3 FAR are presented in Table 2. Erythrocyte SFA
concentrations were less among SHRs consuming diets
containing CG (41.72 ± 2.71), PL (39.65 ± 1.41) and SPG
(38.63 ± 0.80) in comparison to the standardized control
(71.82 ± 3.43) and control (45.25 ± 2.36) diets. Palmitic
acid was the most abundant erythrocyte SFA among
SHRs, with SHRs consuming diets containing CG (24.71±
1.60), PL (23.77± 0.90) and SPG (23.05 ± 0.46) - demon-
strating lower percentages of this fatty acid in comparison
to the standardized control (60.05 ± 5.47; p < 0.05) and
control (27.08± 1.61) diets.
Total monounsaturated fatty acids (MUFAs) among

SHRs consuming diets containing GLVs ranged from
13.11 ± 0.35 (CG) to 14.98 ± 0.70 (SPG) and were slightly
less than consuming the control diet (15.10 ± 0.25)
(Table 3). Oleic acid, the most abundant MUFA present,
was greatest among SHRs assigned to the control (9.41 ±
0.33), CG (8.56 ± 0.35) and PL (8.55 ± 0.25) dietary
groups. Significantly greater amounts of nervonic acid
were present following the consumption of diets containing
the GLVs in comparison to the standardized control diet; a
slightly greater percentage of nervonic acid was present in
the erythrocytes of SHRs consuming the control diet.
A significantly greater percentage of polyunsaturated

fatty acids (PUFAs) were present in the erythrocytes of

Table 2 SHR erythrocyte saturated fatty acid composition (%total fatty acids) following the consumption of diets with a 25:1 ω-6/ω-3
FAR for 6 weeks§

Dietary Group

Fatty acid Structure AIN-76A C CG PL SPG

Capric C10:0 nd nd nd nd nd

Undecanoic C11:0 nd nd nd nd nd

Lauric C12:0 0.24 ± 0.00a 0.43 ± 0.22ab 0.06 ± 0.01a 0.12 ± 0.04ab 0.16 ± 0.06b

Tridecyclic C13:0 nd nd nd nd nd

Myristic C14:0 0.17 ± 0.02a 0.23 ± 0.05ab 0.15 ± 0.03a 0.20 ± 0.03ab 0.29 ± 0.04b

Pentadecanoic C15:0 0.12 ± 0.01a 0.14 ± 0.01ab 0.13 ± 0.01ab 0.17 ± 0.02ab 0.18 ± 0.01b

Palmitic C16:0 60.08 ± 5.47a 27.08 ± 1.61b 24.71 ± 1.60b 23.77 ± 0.90b 23.05 ± 0.46b

Heptadecanoic C17:0 nd nd nd nd nd

Stearic C18:0 11.15 ± 2.80a 16.80 ± 1.04b 16.33 ± 1.05b 15.01 ± 0.52ab 14.52 ± 0.29ab

Arachidic C20:0 nd 0.20 ± 0.01 nd nd nd

Behenic C22:0 nd nd nd nd nd

Lignoceric C24:0 nd nd nd nd nd

Total SFAs 71.82 ± 3.43 a 45.25 ± 2.36b 41.72 ± 2.71b 39.65 ± 1.41b 38.63 ± 0.80b

§Data are (expressed as) mean percentage ± SE. Values in the same row that do not share the same superscript letter are significantly different according to
analysis of variance and Duncan’s post hoc procedures (p < .05); nd not detected
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SHRs assigned to the control (40.30 ± 2.91), CG (45.50 ±
2.95), PL (46.70 ± 1.49) and SPG (46.51 ± 1.04) diets versus
the standardized control diet (19.32 ± 2.81) (Table 4). In
comparison to the control diet, slightly lower percentages
of linoleic acid were present in the erythrocytes of
SHRs consuming diets containing CG (8.69 ± 0.12) and
PL (9.15 ± 0.19), while a significantly greater percentage of
this fatty acid was present following the consumption of
the diet containing SPG (10.3 ± 0.37). A greater percentage
of α-linolenic acid was found in the erythrocytes of SHRs
consuming diets containing CG (0.24 ± 0.07), PL (0.48 ±
0.22) and SPG (0.31± 0.02) in contrast to those consuming
the standardized control and control diet.

Discussion
To evaluate the hypothesis that the addition of collard
greens (CG), purslane (PL) or sweet potato greens (SPG)
into diets with a 25:1 ω-6/ω-3 FAR will favorably modify
the erythrocyte fatty acid profile, the present research was
undertaken to determine the effects of the consumption
of these GLVs on erythrocyte fatty acid profiles of spon-
taneously hypertensive rats (SHRs). Remarkably, diets
supplemented with these GLVs mediated an increase in
both erythrocyte mono- and polyunsaturated fatty acids,

which may be beneficial in reducing the risk associated
with chronic disease.
Previous research has demonstrated the ability of the

ω-6/ω-3 FAR (i.e. linoleic acid:α-linolenic acid) to influ-
ence plasma docosahexaenoic acid (DHA) concentrations
[27]. In a study by Ponder et al., erythrocyte DHA concen-
tration increased by 20% when the linoleic: alpha linolenic
acid (LA:ALA) ratio was decreased [28]. In addition to the
ω-6/ω-3 FAR, dietary fatty acids are able to influence the
erythrocyte fatty acid composition [29], which in turn is
believed to be a customary indicator of long-term fatty
acid intake [30]. Earlier studies found the induction of
marginal changes in erythrocyte fatty acid composition by
dietary fat [31]. This relationship becomes even more
pronounced as the erythrocyte fatty acid composition may
be an indicator of disease risk, with the PUFA content of
erythrocytes being inversely associated with metabolic
syndrome [32]. Reductions in erythrocyte omega-3 fatty
acids have been associated with depression [33], attention
deficit disorder [34] and other common mood disorders
[35, 36]. Further, it has been suggested that omega-3
fatty acid deficiency may serve as a critical element in
understanding the relationship between depression and
cardiovascular diseases [37, 38]. Epidemiological evidence

Table 3 SHR erythrocyte monounsaturated fatty acid composition (%total fatty acids) following the consumption of diets with a
25:1 ω-6/ω-3 FAR for 6 weeks§

Dietary Group

Fatty acid Structure AIN-76A C CG PL SPG

Undecenoic C11:1 nd nd nd nd nd

Dodecenoic C12:1 nd nd nd nd nd

Tridecanoic C13:1 nd nd nd nd nd

Myristoleic C14:1n5 nd nd nd nd nd

Pentadecenoic C15:1n5 0.58 ± 0.08a 0.04 ± 0.00b 0.06 ± 0.00b 0.06 ± 0.01b 0.06 ± 0.00b

Palmitoleic C16:1n7 0.28 ± 0.05a 0.14 ± 0.01b 0.16 ± 0.01b 0.15 ± 0.02b 0.10 ± 0.02b

Palmitelaidic C16:1n7t 0.43 ± 0.04a 0.41 ± 0.05a 0.35 ± 0.05a 0.37 ± 0.04a 0.56 ± 0.03b

Heptadecenoic C17:1n7 nd nd nd nd nd

Elaidic C18:1n9t nd nd nd nd nd

Vaccenic C18:1n11c nd nd nd nd nd

Trans-vaccenic C18:1n7t nd nd nd nd nd

Oleic C18:1n9c 5.60 ± 0.61a 9.41 ± 0.33c 8.56 ± 0.35bc 8.55 ± 0.25bc 7.76 ± 0.23b

Cis-vaccenic C18:1n7c 1.30 ± 0.17a 1.88 ± 0.08b 1.71 ± 0.07b 1.78 ± 0.06b 2.31 ± 0.09c

cis-5 Eicosenoic C20:1n15 nd 0.31 ± 0.04 nd nd nd

cis-8-Eicosenoic C20:1n12 nd 0.26 ± 0.03 nd nd nd

Eicosenoic C20:1n9 0.07 ± 0.00a 0.26 ± 0.03b 0.23 ± 0.04b 0.19 ± 0.03ab 0.22 ± 0.02b

Erucic C22:1n9 nd nd nd nd nd

Nervonic C24:1n9 0.90 ± 0.20a 2.38 ± 0.23b 2.03 ± 0.19b 2.61 ± 0.41b 4.08 ± 0.40c

Total MUFAs 9.09 ± 1.01a 15.10 ± 0.25c 13.11 ± 0.35b 13.64 ± 0.39bc 14.98 ± 0.70c

§Data are (expressed as) mean percentage ± SE. Values in the same row that do not share the same superscript letter are significantly different according to
analysis of variance and Duncan’s post hoc procedures (p < .05); nd not detected
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has affirmed that there exists an inverse relationship
between omega-3 polyunsaturated fatty acid levels and
cardiovascular disease [39–42]. However, others found
omega-3 polyunsaturated fatty acid supplementation to
not be associated with reductions in cardiovascular disease
risk, morbidities and mortalities [43]. Further, inflammation
and autoimmune diseases are believed to be exacerbated
when there is insufficient omega-3 polyunsaturated fatty
acids to combat the deleterious effects of pro-inflammatory
cytokines and agents [44, 45].
Correcting the dietary deficiency of omega-3 fatty

acids was found to favorably influence the fatty acid
composition of erythrocytes in monkeys by increasing DHA
content [46]. Supplementing omega-3 polyunsaturated fatty
acids into the diets of pregnant women, resulted in increases
in both maternal and neonatal erythrocyte concentrations of
eicosapentaenoic acid (EPA) and DHA [47]. Lower levels of
erythrocyte omega-3 fatty acids coupled with subsequent
higher ω-6/ω-3 FARs significantly increased the risk for
preeclampsia among pregnant women [48]. In addition, the
source of omega-3 fatty acids was found to alter erythrocyte
omega-3 fatty acid composition, with fish oil yielding a more
pronounced increase in erythrocyte DHA and total omega-3
fatty acids than flaxseed oil [32].
In addition to a reduction in the ω-6/ω-3 FAR, the egg

yolk omega-3 fatty acid content was increased among
chickens fed diets supplemented with purslane for
84 days [49]. In another study, the inclusion of purslane
and/or flaxseed oil into the diets of laying hens yielded

similar results, with the purslane resulting in increased
egg yolk omega-3 fatty acids [50]. Modifying the ω-6/ω-3
FAR has also been demonstrated to improve egg quality
characteristics (e.g. egg weight, yolk weight, shell weight)
in hens, as well as facilitating the production of eggs with
higher omega-3 and other polyunsaturated fatty acid
contents [51]. In this same study, greater dietary ω-6/ω-3
FARs yielded unfavorable egg characteristics that may have
an adverse impact on consumer health. Increased percent-
ages of these fatty acids may act as cellular antioxidants
thwarting oxidative and inflammatory pathways implicated
in disease pathogenesis [52, 53].
Lower ω-6/ω-3 FARs are desirable in reducing the risks

associated with cardiovascular and other diseases [54, 55];
it has been suggested that increasing the dietary intake of
omega-3 fatty acids is a viable option for optimizing tissue
ω-6/ω-3 FARs [2, 56]. In the current research study a 25:1
ω-6/ω-3 FAR was examined, as this is the ratio found in
the typical Western diet (i.e. American). Collard greens,
purslane and sweet potato greens, incorporated into the
experimental diets of the current study, have demon-
strated beneficial cardioprotective, chemopreventive and
anti-inflammatory effects in previous studies [57–63]. The
inclusion of these GLVs resulted in increased mono- and
polyunsaturated fatty acid percentages within the SHR
erythrocyte, which may in turn decrease the risks
associated with disease pathogenesis in an animal
model predisposed to developing hypertension and
other associated comorbidities.

Table 4 SHR erythrocyte polyunsaturated fatty acid composition (%total fatty acids) following the consumption of diets with a 25:1
ω-6/ω-3 FAR for 6 weeks§

Dietary Group

Fatty acid Structure AIN-76A C CG PL SPG

Linoelaidic C18:2n6t nd nd nd nd nd

Linoleic C18:2n6c 3.68 ± 0.31a 9.26 ± 0.25b 8.69 ± 0.12b 9.15 ± 0.19b 10.31 ± 0.37c

γ-Linolenic C18:3n6 0.23 ± 0.02a 0.63 ± 0.31a 8.48 ± 1.29b 6.43 ± 2.09b 5.07 ± 1.55b

α-Linolenic C18:3n3 0.10 ± 0.04a 0.09 ± 0.02a 0.24 ± 0.07a 0.48 ± 0.22a 0.31 ± 0.02a

Eicosadienoic C20:2n6 0.20 ± 0.03a nd 0.51 ± 0.02bc 0.56 ± 0.03c 0.44 ± 0.03b

Eicosatrienoic C20:3n6 0.19 ± 0.05a 0.43 ± 0.01b 0.40 ± 0.03b 0.40 ± 0.02b 0.57 ± 0.03c

Arachidonic C20:4n6 12.25 ± 2.11a 22.65 ± 2.37b 22.41 ± 1.69b 22.09 ± 1.76b 21.67 ± 0.87b

Eicosatrienoic C20:3n3 nd 0.16 ± 0.03a 0.17 ± 0.01a nd nd

Eicosapentaenoic C20:5n3 nd 0.29 ± 0.07a nd nd 1.41 ± 0.23b

Docosadienoic C22:2n6 nd nd nd nd nd

Docosatetraenoic C22:4n6 1.30 ± 0.24a 2.26 ± 0.60b 2.02 ± 0.17 ab 2.79 ± 0.34b 1.67 ± 0.33ab

Docosatrienoic C22:3n3 0.78 ± 0.23a 1.12 ± 0.12a 0.84 ± 0.08a 1.07 ± 0.18a 0.71 ± 0.12a

Docosapentaenoic C22:5n3 nd nd nd nd nd

Docosahexaenoic C22:6n3 0.68 ± 0.08a 3.19 ± 0.52bc 1.78 ± 0.15ab 3.86 ± 1.61c 4.48 ± 0.67c

Total PUFAs 19.32 ± 2.81a 40.30 ± 2.91b 45.50 ± 2.95b 46.70 ± 1.49b 46.51 ± 1.04b

§Data are (expressed as) mean percentage ± SE. Values in the same row that do not share the same superscript letter are significantly different according to
analysis of variance and Duncan’s post hoc procedures (p < .05); nd not detected

Johnson et al. Lipids in Health and Disease  (2018) 17:140 Page 5 of 7



Conclusions
The findings of this research study provide evidence of
the ability of collard greens, purslane and sweet potato
greens to modify the erythrocyte fatty acid profile, even in
the presence of diets with an elevated omega-6/omega-3
fatty acid ratio. The inclusion of GLVs into diets with
greater than recommended omega-6/omega-3 fatty acid
ratios may be useful in amending tissue and cellular fatty
acid profiles in ways that may be useful in mitigating
disease risk. Further, the increased PUFA and omega-3
fatty acid content of SHR erythrocytes consuming diets
containing these green leafy vegetables suggest the anti-
oxidant and erythroprotective nature of these vegetables
and their potential use as a functional food with therapeutic
consequences.
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