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Background: Overexpression of apolipoprotein Clll (ApoClll) leads to hypertriglyceridemia (HTG) which promotes
atherosclerosis development. However, it remains unclear whether ApoClll affects the atherosclerosis alone by
promoting the inflammation and endoplasmic reticulum (ER) stress, or in combination with HTG.

Methods: Transgenic (ApoCllitg) mouse models were used to investigate the atherogenic role of ApoClll. Since
endothelial cells and macrophages play crucial roles in atherosclerosis, we examined whether triglyceride-rich
lipoproteins (TRLs), the major lipoproteins, in plasma of ApoCliltg mice affect inflammation and ER stress levels in
these cells. To further investigate the role of ApoClll and triglyceride, we incubated HUVECs cells and peritoneal

Results: Increased inflammation and ER stress were found in the aorta of ApoCllltg mice. TRLs increased ER stress
and oxidative stress in HUVECs and macrophages in a dose dependent. Moreover, TRLs together with ApoClil could
induce a higher inflammation level than TRLs alone in these cells.

Conclusions: Both TRLs and ApoClll contribute to the progression of atherosclerosis, and the modulation of TRLs
and ApoClll may represent a novel therapeutic approach against HTG induced atherosclerosis.
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Background

Cardiovascular disease is a major cause of death globally.
Atherosclerosis begins with vascular endothelial dysfunc-
tion, activation and recruitment of monocytes to the
vascular wall, differentiation into macrophages, uptake
of cholesterol and other lipoproteins, and formation of
foam cells [1]. It is widely known that LDL, especially
oxidative LDL, plays a major role in the initiation and
development of atherosclerosis, and the molecular mech-
anism has also been studied extensively [2]. However, in
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recent years, it has become more evident that postprandial
hyperlipidemia, large numbers of triglyceride-rich
lipoproteins (TRLs), is also a significant risk factor for
atherosclerotic cardiovascular disease [3-5]. Emerging
evidence has shown that postprandial hyperlipidemia is a
pro-inflammatory factor and TRLs participate in a large
number of inflammation related processes, including ex-
cessive free radical production, leukocyte activation, endo-
thelial dysfunction and the formation of foam cells [6, 7].
Regulation of plasma triglyceride homeostasis relies on
a variety of enzymes and proteins including lipoprotein
lipase (LPL), hepatic lipase, ApoCIIl, ApoClIl, and ApoAV
[8]. An important regulator of triglyceride metabolism,
the glycoprotein ApoCIII contains 79 amino acids,
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and is mainly synthesized by the liver and small intes-
tine [9]. Plasma ApoCIIl could inhibit LPL activity
and interfere the liver uptake of TRLs by receptor
dependent and independent pathways [10]. In
addition, ApoCIII promotes the assembly and secre-
tion of VLDL in the liver [11]. ApoCIII mainly dis-
tributes in TRLs at hypertriglyceridemia condition.

Surprisingly, in vitro experiments from our group [12]
and others show that ApoCIIl directly promotes the
expression and activation of VCAM-1 in HUVECs and
induces monocyte adhesion, thereby increasing the in-
flammatory response [10—12], indicating the significant
effect of ApoCIII protein. Furthermore, two large genetic
studies, one conducted in Denmark on people of mainly
European origin [13] and the other in the United States
on people of European and African origin [14], showed
that people with loss-of-function mutations in the
ApoCIII gene have a significantly reduced risk of having
atherosclerotic cardiovascular disease.

Recently, we showed that ApoCIII induces hypertri-
glyceridemia which leads to aggravation of aortic athero-
sclerosis. Increased inflammation and oxidation level in
vascular smooth muscle cells (VSMCs) play an import-
ant role in atherosclerosis progression [12]. Since both
endothelial cells and macrophages are also involved in
the initiation and development of atherosclerosis [15],
we investigated the effect of TRLs to endothelial cells
and macrophages and demonstrated the effect of triglyc-
erides and ApoClIII in this process.

Materials and methods

Animals

The human ApoCllIltg, ApoCIIl-/-, LDLR-/- and
GPIHBP1-/- mouse models were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA). The study
was approved by the Animal Care Committee of Peking
University Health Science Center and in agreement with
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH
Publication, 8th Edition, 2011).

The ApoCllltg/LDLR-/~ and ApoCllltg/GPIHBP1-/~
mice were generated by crossing ApoClIltg mice with
LDLR-/- and GPIHBP1-/- Mice, respectively. The
ApoCIII/GPIHBP1 DKO mice were generated by cross-
ing ApoCIII-/- with GPIHBP1-/- mice.

Eight-week old male LDLR-/- (controls) and ApoC-
[Itg/LDLR-/- mice were fed with a high-fat,
cholesterol-rich diet (20% lard and 0.5% cholesterol) for
3 months to develop atherosclerosis.

Tissue harvesting and processing

After 3 months of pro-atherogenic diet, LDLR-/-
(controls) and ApoCIIItgLDLR-/- mice were sacrificed.
After the left ventricle after a right atrium cut was rinsed
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slowly with 1 x phosphate-buffered saline (PBS), the
aorta was harvested for Western blotting. The heart was
post-fixed with 4% paraformaldehyde for 2 h and
immersed in 30% sucrose overnight. The top part of the
heart was embedded in OCT, snap-frozen in liquid ni-
trogen, and stored at — 80 °C prior to sectioning. 10 um
cryosections of aortic sinus sections were then subjected
to immunohistochemistry and ORO staining.

Isolation of TRLs

Plasma of heparin-treated whole blood from ApoClIIltg/
GPIHBP1-/- and ApoCIII/GPIHBP1 DKO mice was
separated by centrifugation (4000 rpm, 4 °C, 10 min).
TRLs, consisting of CMs and VLDLs, were isolated from
plasma by ultracentrifugal spin (42,000 rpm, 10 °C, 3 h)
at density 1.006 g/ml in a Hitachi P42AT rotor. Trigly-
ceride contents in TRLs were measured by a kit from
Sigma (TR0100).

Cell culture

HUVECs cells were isolated from umbilical cords by
collagenase digestion and cultured on plates coated with
50 mg/ml collagen as described [12]. Cells were main-
tained in M-199 medium supplemented with 20 mmol/L
HEPES, pH 7.4, 20% fetal bovine serum (FBS), 5 ng/ml re-
combinant human fibroblast growth factor, antibiotics/
antimycotics, and 90 mg/ml heparin (EC medium).
Passages 3 to 5 were used and cell were treated when
HUVECs were grown to 70-80% confluency. HUVECs
were starved for 4 h before adding TRLs into the medium.
For inflammation, ER stress or oxidative stress, HUVECs
were treated with TRLs (100 pg/ml TG concentration or
indicated concentration) for 24 or 48 h, and the cells were
harvested. For inflammation, 1 pg/ml lipopolysaccharide
(LPS) was added 6 h before RNA or protein extraction.

Female BALB/c mice (8—14 weeks of age) were intraper-
itoneally administered 2 ml of a 4.05% solution of Thiogly-
colate (Sigma, USA). Four days later, the mice were
euthanized, and the peritoneal macrophages were col-
lected in cold phosphate-buffered saline (PBS). The cells
were cultured in Dulbecco’s modified Eagle’s medium
(Gibco, USA) supplemented with 10% FBS and 2 mM I-glu-
tamine. Two hours later, the medium was replaced with
fresh medium to remove non-adherent cells. Fresh
medium was added to the wells, and the cells were cul-
tured at 37 °C for 24 h. To obtain sufficient numbers of
cells, macrophages were collected from 2 to 3 mice and
pooled for some experiments. Macrophages were treated
with TRLs (100 pg/ml TG concentration) for 24 h.

Rat VSMCs were isolated from aortas of 80-100 g male
Sprague-Dawley rats anesthetized intraperitoneally with so-
dium pentobarbital (50 mg/kg body weight). Rats were hu-
manely sacrificed by cervical dislocation in order to obtain
tissues to harvest VSMCs. All VSMCs experiments were
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performed on primary culture and passages 3—5 were used.
VSMCs were treated with TRLs (100 pg/ml TG concentra-
tion) for 24 h.

Immunohistochemistry (IHC)

For THC analysis, cryosections were fixed (10 min) in cold
4% paraformaldehyde solution and rinsed (10 min) with
PBS (0.1 M, pH 7.4) supplemented with 3% hydrogen per-
oxide. After washing and incubation (30 min) in blocking
solution (PBS containing 10% goat serum), the sections
were incubated overnight at 4 °C with 1:200 rabbit
anti-VCAM-1 antibody (ab134047, Abcam), 1:400 rabbit
anti-Mac2 antibody (sc-53,127, Santa Cruz) or 1:400
rabbit anti-4HNE antibody (ab46545, Abcam) diluted in
blocking solution, washed three times with PBS, incubated
with HRP-conjugated secondary antibody (for VCAM-1,
Mac2, 4HNE) for 1 h at 37 °C, rinsed with PBS, counter-
stained with hematoxylin if needed and examined by light
microscopy with diaminobenzidine (DAB) as chromogen.

Western blot

Cells in culture plates were washed in ice-cold PBS twice
and lysed in RIPA buffer (Cell Signaling Technology,
#9806) containing complete protease inhibitor cocktail tab-
lets (Roche). Protein lysates (2040 pg) were resolved using
SDS/PAGE and transferred to nitrocellulose membranes
(Millipore). Primary antibody incubations were performed
at 4 °C overnight using a 1:1000 dilution for
anti-VCAM-1 antibody (ab134047, Abcam), anti-ICAM-1
antibody (ab171123, Abcam), or anti-GRP78 antibody
(#3177, Cell Signaling Technology). Secondary antibody
incubation was performed using a 1:5000 dilution of goat
anti-rabbit HRP conjugate antibody (#7074, Cell Signaling
Technology). Protein bands were visualized by LumiGLO®
Reagent (#7003, Cell Signaling Technology).

RNA isolation and quantitative real-time PCR

Total RNA from aorta and cells were extracted using Tri
Reagent (Molecular Research Center), and first-strand
cDNA was generated using an RT kit (Invitrogen).
Quantitative real-time PCR was performed using primer
sets shown in Table 1. Amplifications were performed in
35 cycles using an opticon continuous fluorescence
detection system (M] Research) with SYBR Green
fluorescence (Molecular Probes, Eugene, OR). Each cycle
consisted of heating denaturation for 30 s at 94 °C, an-
nealing for 30 s at 55 °C, and extension for 30 s at 72 °C.
All samples were quantified using the comparative Cr
method for relative quantitation of gene expression,
normalized to B-actin.

Statistical analysis
All data are presented as mean + SEM. Statistical compari-
son between two groups was performed using Student’s
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Table 1 Sequences of primers used for PCR
Gene Primer sequences (5'— 3)
Human
MCP1 (Forward) GCTCATAGCAGCCACCTT
(Reverse) GGAATCCTGAACCCACTT
Chop (Forward) GGAAACAGAGTGGTCATTCCC
(Reverse) CTGCTTGAGCCGTTCATTCTC
HO-1 (Forward) TTTGAGGAGTTGCAGGAGC
(Reverse) AGGACCCATCGGAGAAGC
GRP78 (Forward) TCCTATGTCGCCTTCACT
(Reverse) ACAGACGGGTCATTCCAC
GRP94 (Forward) GTTTGGTGTCGGTTTCTA
(Reverse) GAGTGTTTCCTCTTGGGT
B-actin (Forward) CGTGGGCCGCCCTAGGCACCA
(Reverse) TTGGCCTTAGGGTTCAGGGGGG
Mouse
p47 (Forward) ACACCTTCATTCGCCATATTGC
(Reverse) TCGGTGAATTTTCTGTAGACCAC
p67 (Forward) GCTGCGTGAACACTATCCTGG
(Reverse) AGGTCGTACTTCTTCATTCTGTA
NOX-2 (Forward) CCAAGGTATCCAAGTT
(Reverse) TCCAGTCTCCCACAAT
NOX4 (Forward) TAAGCCATCACCATCAT
(Reverse) TGGAGGCAGTAGTAAATC
Catalase(Forward) AGCGACCAGATGAAGCAG
(Reverse) TTCCCACAAGATCCCAGT
SOD-1 (Forward) TCCGTCGGCTTCTCGTCT
(Reverse) ACCGCTTGCCTTCTGCTC
GRP78 (Forward) ACTTGGGGACCACCTATTCCT
(Reverse) GTTGCCCTGATCGTTGGCTA
IL-6 (Forward) TTCTTGGGACTGATGCTG
(Reverse) CTGGCTTTGTCTTTCTTGTT
TNF-a (Forward) CTGTGAAGGGAATGGGTGTT
(Reverse) CAGGGAAGAATCTGGAAAGGTC
IL-10 (Forward) ACCTGGTAGAAGTGATGC
(Reverse) AAGGAGTTGTTTCCGTTA
TGFB-1 (Forward) GGCGGTGCTCGCTTTGTA
(Reverse) TCCCGAATGTCTGACGTATTGA

t-test or one-way ANOVA. A value of P < 0.05 was consid-
ered statistically significant.

Results

Inflammation, oxidative stress and ER stress in vivo

To investigate the atherogenic role of ApoCIIl, ApoC-
Itg/LDLR-/- and LDLR-/- littermates were fed with
an atherogenic diet for 12 weeks. Atherosclerotic lesion
size in the aorta root was then measured by ORO



Yingchun et al. Lipids in Health and Disease (2018) 17:220

staining. Consistent with our previous report [12],
ApoCIIl increases atherosclerotic lesions. Immuno-
histochemistry (IHC) staining for Mac2, a macrophage
marker, indicated an increased macrophage infiltration
in the lesion area. Staining of 4HNE, the product of lipid
peroxidation that can be used to evaluate the oxidation
level, showed that lipid peroxidation accumulated in the
aorta of ApoCllltg mice (Fig. la). IHC staining and
Western blotting showed that VCAM-1 and ICAM-1
increased in aorta suggesting elevated inflammation
(Fig. 1b). ER stress is involved in the initiation and
development of atherosclerosis. We also detected that
GRP78, an important chaperone molecule related to
ER stress, significantly increases in the aorta (Fig. 1c).
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Thus, compared to the control LDLR-/- littermates,
ApoCIlItg/LDLR-/- mice showed increased inflam-
mation, oxidative stress and ER stress in local aorta.

Inflammation in HUVECs and macrophages

Atherosclerosis is an inflammatory disease, starting from
endothelial dysfunction, infiltration of macrophages in
the vessel wall, and then the formation of foam cells
[15]. ApoCIII transgene increased infiltration of macro-
phages and VCAM-1 expression, suggesting increased
inflammation (Fig. 1a and b). It is reported that ApoCIII
and VLDL containing ApoCIII could promote the ex-
pression of VCAM-1 and increase the adhesion of
monocytes via a PKCbeta and NF-kB dependent pathway
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Fig. 1 Increased inflammation, ER stress and oxidative stress in aorta of ApoCllltgLDLR—/— mice comparing to LDLR—/— mice. (a) Representative
images of Oil Red O (ORO) stained aortic roots and immunohistochemical staining of aortic sinus sections of Mac2, 4HNE and VCAM-1 expression
in LDLR—/— and ApoCliltgLDLR—/— mice. (b) Representative Western blot images of VCAM-1 and ICAM-1 protein expression in aortas of LDLR—/—
and ApoCliltgLDLR—/— mice and the protein quantification by densitometry (n =4). (c) Representative Western blot images of GRP78 protein
expression in aortas of LDLR—/— and ApoCllitgLDLR—/— mice and the protein quantification by densitometry (n =4). Values are expressed as
mean + SEM, *p < 0.05 **p < 0.01
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[6, 7]. Therefore, we examined whether authentic TRLs
with or without ApoCIII have pro-inflammatory effects.
Because the triglyceride level in the plasma of ApoCIII-/-
mice is low, it is difficult to obtain the TRLs without
ApoClIIl (TRLs-ApoClIIl). Therefore, we crossed ApoC-
IIItg mice and ApoCIII-/— mice with GPIHBP1-/- mice,
another extreme hypertriglyceridemia mouse model, to
generate two hyperlipidemia mice models: ApoCIIItgG-
PIHBP1-/- and ApoCIII/GPIHBP1 DKO mice, respect-
ively. TRLs+/-ApoCIIl were then separated from these
two mice models. We found that TRLs+ApoCIII could in-
duce MCP1 expression in HUVECs (Fig. 2a) and under
the stimulation of 1 pg/ml LPS, TRLs+ApoCIII can also
promote the expression of VCAM-1, reflecting the proin-
flammatory effects (Fig. 2b). Consistently, comparing to
TRLs-ApoCIll, TRLs+ApoCIII promots the expression of
IL6 and MCP1 also in peritoneal macrophages (Fig. 2c).
These data suggested TRLs could aggravate inflammation
depending on ApoCIIL

ER stress and oxidative stress in HUVECs cells
In vivo data showed increased expression of ER stress
related proteins in ApoClIIltg mouse aorta (Fig. 1c). To
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investigate the effect of TRLs on ER stress in HUVECs
cells, we used different doses of TRLs to incubate
HUVECs. The result showed that TRLs-ApoCIII induces
the expression of oxidative stress and ER stress related
proteins in a dose-dependent fashion (Fig. 3a and b),
although there was no significant difference between
two types of TRLs (Fig. 3c and d). Therefore, our results
established that TRLs increase oxidative stress and ER
stress level independent of ApoCIII in HUVECs cells.

ER stress and oxidative stress in macrophages

To investigate the effect of TRLs on oxidative stress and
ER stress in macrophages, we incubated rat VSMCs and
mouse peritoneal macrophage cells with TRLs. TRLs
+/-ApoCIII markedly increased the protein expression
of PDI (protein disulfide isomerase) and PERK in
VSMCs, but there was no significant difference between
the two types of TRLs (Fig. 4a). Similarly, both types of
TRLs promote the expression of the proteins related to
oxidative stress in macrophage cells, and there was
no significant difference between these two TRLs
types (Fig. 4b). However, unlike endothelial cells and
VSMCs, no TRLs could induce the expression of GRP78,
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Fig. 2 TRLs increase inflammation in HUVECs and macrophages dependent on ApoClil. (@) MCP1 expression in HUVECs incubated with 100 pg/ml
TRLs for 48 h (n=4), **p < 0.01. (b) Western blot images (up) and the protein quantification (down) of VCAM-1 in HUVECs after the incubation
with 20 pg/ml TRLs for 24 h and 1 pg/ml LPS for 6 h before the analysis (n = 4). (c) Expression of inflammation related genes in peritoneal
macrophages after the incubation with 100 ug/ml TRLs for 24 h and an 1 ug/ml LPS stimulation for the last 6 h (n=4)
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*p < 0.05 vs. PBS. (d) Western blot images of GRP78 after the incubation of TRLs with or without ApoClll (n =4)

GRP94, and HO-1 genes, suggesting that TRLs have no
effect on ER stress in macrophages (Fig. 4c and d).

Discussion

Zilversmit first proposed that postprandial hyperlipid-
emia may play an important role in atherosclerosis thirty
years ago [16]. In recent years, lines of evidence from
epidemiological investigations, clinical and experimental
research emerged showing that non-fasting TRLs level
as a risk factor for atherosclerosis and cardiovascular
disease [17]. “Residual risk” in statin therapy also sup-
ports TRLs as a risk factor in atherosclerosis [18].

TRLs can indirectly promote atherosclerosis. Hypertri-
glyceridemia is often associated with the atherosclerosis
prone lipid profile. Increased small dense LDL is much
more easily oxidized and adhered to the vessel wall, and
is harder to remove; and increased lipid transferring
to TRLs from HDL leads to lower HDL cholesterol
[19, 20]. Elevated triglycerides, small dense LDL and re-
duced HDL form the lipid distribution of atherosclerosis.

TRLs can also directly promote atherosclerosis. It has
shown that remnant like lipoprotein (RLP) in human
atherosclerotic plaques and chylomicron remnants
(CMR) enter and remain in the blood vessel wall. CMR
and TRLs contribute to endothelial dysfunction, macro-
phage foam cell formation, and the proliferation of
vascular smooth muscle cells [21]. TRLs can increase

the expression of coagulation factor VII and plasmino-
gen activator inhibitor I (PAI-1) therefore promoting
coagulation, including platelet aggregation [22].

As the dominating apolipoprotein in TRLs, whether
ApoCIII directly promotes atherosclerosis still remains
to be determined. Here, to separate the effect of ApoCIII
and TRLs, we isolated biologically active TRLs+/-ApoC-
I from the plasma of ApoCIIItgGPIHPB1-/- and
ApoCIII/GPIHBP1 DKO mice. Our previous data
showed that TRLs could induce proliferation and inflam-
mation in VSMCs dependent on ApoCIII [12]. In the
present study, we mainly focused on the endothelial cells
and macrophages.

In vivo immunohistochemistry and Western blot ex-
periments showed that ApoCIII overexpression increases
the inflammation level in aorta. In our in vitro experi-
ments, we used the natural TRLs+/-ApoCIIl and
confirmed that ApoCIII can promote the expression of
inflammatory factors in endothelial cells and macro-
phages. The pro-inflammation effect of ApoCIII involves
the Akt pathway in VSMCs as we reported previously
[12], and the mechanism of ApoCIII in endothelial cell
needs to be investigated in the future.

Compared to control mice, ApoCIIltg mice showed
higher ER stress level in aorta (Fig. 1c). Incubated with
TRLs, HUVECs showed dose dependent increase of ER
stress level (Fig. 3a and b). However, there was no
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difference between effects of TRLs with and without
ApoCIII (Fig. 3c and d). It has been reported that TRLs
induce ER stress and oxidative stress in endothelial cells
[23]. Here, we confirmed that, unlike inflammation, ER
stress and oxidative stress are induced by TRLs inde-
pendent of ApoCIII.

A targeted approach to reduce plasma levels of ApoC-
III can be achieved by providing an antisense inhibitor
of ApoCIIl synthase (ApoCIII-ASO) [24-26]. When
people with severe hypertriglyceridemia were treated
with ApoCIII-ASO, the resulting decrease of ApoClIII in
the plasma was accompanied by a major reduction of
triglyceride in the plasma and a substantial increase of
HDL-C [25]. However, the effects of inhibiting ApoCIII
synthesis on ASCVD risk are not known.

Conclusions
In conclusion, our data showed that ApoCIII promotes
inflammation in endothelial cells and macrophages and

that TRLs from ApoCIIl induced HTG could lead to
high ER stress level in endothelial cells which may
contribute to the progression of atherosclerosis. These
results suggest that ApoCIII-ASO may represent a novel
therapeutic approach against ASCVD.
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OCT: Optimal cutting temperature; ORO: Qil red O; P47: NADPH oxidase p47;
P67: NADPH oxidase p67; PBS: Phosphate-buffered saline; PDI: Protein
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disulfide isomerase; PERK: Protein kinase R (PKR)-like endoplasmic reticulum
kinase; PKC: Protein kinase C; RLP: Remnant like lipoprotein; SODT: Superoxide
dismutase1; TGFbeta: Transforming growth factor-@3; TNF: Tumor Necrosis
Factor; TRLs: Triglyceride-rich lipoproteins; VCAM-1: Vascular cell adhesion
molecule 1; VLDL: Very lowdensity lipoproteins; VSMCs: Vascular smooth
muscle cells
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