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Abstract

and GRP94 was detected by Western blot analyses.

mediated apoptosis of palmitic acid.

Background: We demonstrated growing evidence supports a protective role of chlorogenic acid of rat hepatocytes
elicited by two compounds, i.e. thapsigargin and palmitic acid. Nevertheless, little is known about the mechanisms
of palmitic acid induced endoplasmic reticulum (ER) stress and cell death.

Methods: The proliferation of primary rat hepatocytes was detected by MTT assay. The expression of GRP78, CHOP

Caspase-3 activity was detected by a Caspase-3 substrate kit. Cell apoptosis was detected by Hoechst 33342 staining.

Results: \We demonstrated that incubation of hepatocytes for 16 h with palmitic acid elevated cell death. Moreover,
Western blot analyses demonstrated increased levels of the endoplasmic reticulum stress markers — glucose regulated
protein 78 (GRP78), C/EBP homologous protein (CHOP), and glucose regulated protein 94 (GRP94). Chlorogenic acid
could inhibit ER stress induced cell death and levels of indicators of ER stress caused by palmitic acid. The effect of
thapsigargin, which evokes ER stress were reversed by chlorogenic acid.

Conclusions: Altogether, our data indicate that in primary rat hepatocytes, chlorogenic acid prevents ER stress-
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Introduction
Hepatocyte death is associated with almost every
hepatopathy.

In recent studies, thapsigargin (TG) has found such
widespread use since it pumps Ca®* from the cytosol
into the lumen of the endoplasmic reticulum (ER) in
cells [1].

During the last thirty years, the mechanism of TG ac-
tion has been illustrated thoroughly [2]. As we all know
that raising of intracellular free calcium([Ca**]i) may
cause cell death in many cells such as hepatocytes [3].

Saturated fatty acids (FA) including palmitic acid may
cause apoptosis and ER stress in rat and human liver cell
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lines [4-8], which will result in degeneration and/or
inflammation.

The assumption is confirmed by the fact that palmitic
acid induced ER stress and apoptosis are founded in
mice and rats [9, 10].

Mechanisms of hepatotoxicity are complex and one
drug may have several toxic mechanisms occurring at
the same time or sequentially.

Coffee has higher concentration of polyphenols among
the beverages [11] . Chlorogenic acid is the major poly-
phenol in coffee. There are a large number of phenolics
exited in promotive health foods and in the plant king-
dom, such as vegetables and fruits. Phenolics are also
commonly found in beverages made from plants, such
as tea, coffee, and wine [12]. In numerous biological
tests, Chlorogenic acid has been proved to have super-
oxide anion-scavenging effects, in other words, it has the
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ability to suppress hepatitis B virus and to restrain
lipid peroxidation. According to the study, the restric-
tion of ER stress may cause the protective effect of
chlorogenic acid in CCly-treated rats [13]. Chloro-
genic acid induce apoptosis in several types of cancer
cells in vitro [14-16]. However, until now, we have
very limited information to prove the toxicity of poly-
phenols and related phenolics to normal cells. Ac-
cording to recent studies, chlorogenic acid is likely to
reduce the risk of oxidative cell death [17-19].

In the present study, whether the chlorogenic acid
could protect rat primary hepatocytes and conduce
to clinically-relevant ER stress inducer such as pal-
mitic acid was examined. In this paper, we report
that: (1) palmitic acid could induce ER stress and
apoptosis in hepatocytes; (2) chlorogenic acid could
reduce cell death induced by palmitic acid; (3) with
specific attention given to GRP78, GRP94 and
CHOP, we can adjust the effects through alteration
of the ER stress.

Materials and methods

Materials and cells

Hepatocytes were prepared as previously described [20].
The cells were plated on 35-mm diameter culture plates
(1 x10° cells/plate) in M199 containing 1% (v/v) antibi-
otics (10 U/pug penicillin, 10 pg/pL streptomycin), 100
nM dexamethasone, 0.5 nM insulin and 4% (v/v) NCS.
After initial 4h incubation for the attachment of the
cells to the substratum, the medium was changed to
Williams” medium E 1% (v/v) antibiotics (10 U/ug peni-
cillin, 10 pg/pL streptomycin), 100 nM dexamethasone
and 0.5nM insulin without NCS. Experimental treat-
ments were performed after 44 h of culture in Williams’
medium E containing 1% (v/v) antibiotics and 100 nM
dexamethasone.

Incubation of hepatocytes

The cells at 85-95% confluence, were incubated with
palmitic acid (250 pmol/l) or thapsigargin (5 umol/l) for
up to 16 h. Then hepatocytes were incubated with pal-
mitic acid (250 pmol/l) with/without chlorogenic acid (1
or 5 umol/l) for up to 16 h.

Measurement of cell viability and death

Cell death was assessed by measurement of lactate
dehydrogenase (LDH) from lysed cells, Annexin V
Fluorescein (FITC) and propidium iodide (PI) double
staining assay (BD Biosciences, USA) was used to
quantify apoptosis rates using FACScan flow cyt-
ometer (Becton-Dickinson, USA). After treatment of
morphine and oxycodone alone or together with nal-
mefene for 48 h in 6-well plates, cells were collected
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and wash with cold PBS. After centrifugation with
1000r/3 min, cells were re-suspended using 100 pl
binding buffer with 1x10° cells each group. Then
Annexin V and PI were added according to instruc-
tion of test kits. After incubated for 15 mins at room
temperature in the dark, samples were analyzed by
flow cytometry. Cells without any treatment were
used as negative control. Data was attained by analyz-
ing early apoptotic rates (Annexin V+/PI-) and late
apoptotic rates (Annexin V+/PI+).

Measurement of caspase-3 activation

Caspase-3 activity was evaluated using a DEVD-Nuc-
ViewTM 488 Caspase-3 substrate kit (Biotium Inc.,
Cambridge, UK). In the presence of active caspase-3 en-
zyme, the substrate dissociates from its bound fluoro-
genic DNA-binding dye and the latter binds to DNA
and emits fluorescence. Caspase-3 was detected by
microscopic examination and also by adapting the kit
for microplate fluorescence reading. For this, cells were
incubated with 50 L of 5 pmol/L DEVD-NucView™ 488
Caspase-3 substrate for 30 min. Fluorescence was mea-
sured in a microplate reader (Cary Eclipse, Varian Inc.)
set at wavelengths of 490nm excitation and 520 nm
emission.

Western blot analysis

Cells were washed in ice-cold PBS twice, and lysed in
buffer with protease inhibitor, and phosphatase inhibitor,
and then centrifuged at 13000xg for 25 min at 4 °C. The
supernatant was collected and total proteins were quan-
tified using bicinchoninic acid (Pierce, Rockford, AL,
USA,) method. The protein samples were loaded onto
polyacrylamide gel and subjected to sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE).
Proteins were then transferred onto a polyvinylidenedi-
fluoride (PVDF) membrane. The membrane was blocked
with Tris-buffered saline and Tween 20 (TBST) contain-
ing 4% BSA for 1h at room temperature. The mem-
branes were incubated serially with primary antibodies
at 4 °Covernight. After washing with TBST 3 times for 8
min each, the membranes were incubated with second-
ary antibodies for 1+ 2h at room temperature. The
density of the corresponding bands was measured quan-
titatively using image analysis software (Bio-Red,
Hercules, CA, USA) and corrected by reference to the
value of B-actin.

Statistical analysis

All results were reported as mean + SD from three in-
dependent experiments. Cell survival, proliferation
and differentiation among different groups were com-
pared using SPSS statistical software (version 12.0).
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Statistical significance was determined using Student’s
t-test. P <0.05 was considered statistically significant.

Results

Chlorogenic acid inhibited palmitic acid induced cell

death

Primary rat hepatocytes treated with 250 pmol/l palmitic

and 5pmol/l chlorogenic acid presented restored cell

viability to levels observed in untreated cells (Fig. 1).
Compared with 5pmol/l chlorogenic acid, 1umol/l

chlorogenic acid showed weaker restored cell viability ef-

fects on primary rat hepatocytes.

Chlorogenic acid reduces ER stress mediated by palmitic
acid

The immunoblot analysis revealed the presence of
GRP78, GRP94 and CHOP After 16 h incubation with
palmitic acid (Fig. 2).
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We observed exposure of these cells to palmitic
acid promoted up-regulation of ER stress markers.
Co-incubation 1 or 5 pmol/l chlorogenic acid reduced
the levels of GRP78, GRP94 and CHOP after 16h
(Fig. 2).

Chlorogenic acid reduced death caused by thapsigargin

5 umol/l thapsigargin causes severe cell death (Fig. 3a).
Eighter 1 or 5pmol/l chlorogenic acid can significantly
enhance cell vitality (Fig. 3a) which was confirmed by
significant increases in both apoptosis and necrosis (Fig.
3b). 5 umol/l chlorogenic acid increased cell death medi-
ated by thapsigargin (Fig. 3b).

Effects of chlorogenic acid on ER stress induced by
thapsigargin

5 umol/l chlorogenic acid decreased the elevated CHOP
levels caused by 5 umol/l thapsigargin (Fig. 4a, c). Nei-
ther 5 pmol/l nor 1 pumol/l concentration of chlorogenic
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control (0 umol/I palmitic acid), **P< 0.05 vs. palmitic acid-only cells.
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Fig. 1 a Primary rat hepatocytes treated with 250 umol/I palmitic and 5 pumol/I chlorogenic acid presented restored cell viability to levels
observed in untreated cells on MTT reduction and LDH release. Data represent mean + SEM, n =5, *P<0.05 vs. control (0 umol/I palmitic acid),
*¥P<0.05 vs. palmitic acid-only cells. b Treatment of primary rat hepatocytes with 250 pmol/L palmitic acid produced a significant increase in
activity of caspase-3. For comparison, the effects of thapsigargin(Thap; 5umol/l)are also shown. Data represent mean+S.EM, n=5, *P< 0.05 vs.
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Fig. 2 Chlorogenic acid protects primary rat hepatocytes against ER
stress induced by palmitic acid. a Western blot and (b) densitometric
analysis demonstrating the reduction of palmitic acid (PA)-induced
GRP78 expression by 1 or 5 umol/I chlorogenic acid (CGA) after 16 h. a
Western blot and (c) densitometric analysis of GRP94 expression after
16 h incubation of cells with 250 umol/I palmitic acid (PA) in presence
of 1 or 5 umol/l chlorogenic acid (CGA). a Western blot and (d)
densitometric analysis demonstrating the reduction of palmitic
acid (PA)-induced CHOP expression by 1 or 5 umol/I chlorogenic
acid (CGA) after 16 h. Data represent mean + SEM,, n =5, *P<0.05
vs. LG, low glucose control (0 umol/I palmitic acid), **P<0.05 vs.
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acid could reduce GRP78 expression mediated by thapsi-
gargin (Fig. 4a, b).

Discussion

The objectives of this study were to find out whether
chlorogenic acid could prevent palmitic acid induced ER
stress and the cell death in liver cells. It has been re-
ported in many cell lines that apoptosis via endoplasmic
reticulum (ER) stress. ER stress plays a significant role in
many liver diseases.

We go into the effects of chlorogenic acid and pal-
mitic acid, and their combined action about resulting
in apoptosis, cell death, ER stress and caspase-3 activ-
ity in hepatocytes. We detected the three ER stress
markers.

This phenomenon, called lipotoxicity, has been related
to cardiac failure, NAFLD and diabetes [21-24] . UPR
activation was founded in NAFLD, cardiac dysfunction
and hyperadiposis [25, 26] .

Activation the UPR caused ER stress and cell
death, which is bring out by an excess of saturated
fatty acids in many cell types [4, 27-29]. Palmitic
acid activates ER stress and has been suggested to
play a crucial role in the NAFLD. Therefore, dam-
ages in ER stabilization is the cause of many dis-
eases and contributes to lipotoxicity. The purpose
of our study is to find out the relationship between
the saturated fatty acids and ER stress. Our study
indicates that (1) chlorogenic acid can reduce
cellular dysfunction and apoptosis caused by thapsi-
gargin. (2) chlorogenic acid can reduce cellular
dysfunction and apoptosis caused by palmitic acid.
(3) by reducing ER stress and apoptosis, chlorogenic
acid protects hepatocytes from palmitic acid’s
lipotoxicity.

Thapsigargin gives rise to necrosis and apoptosis in
many cells [30-32]. We are not clear about how the
thapsigargin works to give rise to necrosis and apoptosis.
It is possible that chlorogenic acid reduced damages of
primary rat hepatocytes by protecting cells against
thapsigargin-induced apoptosis.
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Fig. 3 Chlorogenic acid protects against dysfunction and apoptosis of primary rat hepatocytes induced by thapsigargin. a MTT reduction.
b Cell death. Relative cell death treated with 5 umol/I thapsigargin (Thap) for 16 h in presence of 1 or 5 umol/I chlorogenic acid (CGA). Data
represent mean = S.EM, n =5, *P<0.05 vs. LG, low glucose control set to 1 (0 pmol/I thapsigargin), **P<0.05 vs. thapsigargin-only cells

A number of recent studies have pointed out that
many ER stress markers were active during saturated
fatty acid-induced apoptosis [4, 33, 34].

Chlorogenic acid has been extensively studied since it
is widely distributed in plants, which is one of the main
polyphenols in the human diet, and it possesses many
health-promoting properties. So, it has the potential to
become a health product such as functional food and
nutraceuticals.

Functional food and nutraceuticals have the poten-
tial to become the future of primary prevention in
dyslipidaemia treatment in many diseases [35]. Be-
cause of the limited production conditions, it has not
been popularized in the market.

Chlorogenic acid has multifunctional properties as a
nutraceutical and food additive. As a nutraceutical,
chlorogenic acid has anti-oxidant, anti-inflammatory,

anti-obesity, antidyslipidemia, antidiabetic, and antihy-
pertensive properties, which can serve for the prevention
and treatment of metabolic syndrome and associated
disorders [36].

Our follow-up work will focus on animal experiments,
which will be done to prove that the in vitro results can be
reproduced in the animals. And lack of preclinical tox stud-
ies of cholorgenic acid is also a deficiency of our research
work. We will make up for it in the work of future research.

Conclusions

Chlorogenic acid, the major polyphenol in coffee can re-

duce ER stress produced by palmitic acid. Chlorogenic acid

afford protective effect by reduce ER stress. Caspase-3 and

CHOP was associated with lipotoxicity of palmitic acid.
Polyphenol such as chlorogenic acid may protect he-

patocytes against palmitic acid.
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Fig. 4 Chlorogenic acid (CGA) protects primary rat hepatocytes against ER stress induced by thapsigargin. a Western blot image and densitometric
analysis of (b) CHOP and (c) GRP78 expression in cells treated with thapsigargin (Thap; 5umol/l) in presence of increasing concentrations
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