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Vitamin D receptor gene polymorphisms
are associated with triceps skin fold
thickness and body fat percentage but not
with body mass index or waist
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Abstract

Background: Evidence shows that low serum vitamin D concentrations account for an increased risk of obesity by
inducing vitamin D receptor (VDR) hypofunction. Although the correlation between single nucleotide
polymorphisms (SNPs) of VDR gene and obesity-related anthropometric measures (such as body mass index [BMI]
and waist circumference[WC]) has already been tested, there are only few studies on the association between direct
measures of body fat percentage (BFP) and triceps skinfold thickness and the SNPs of VDR. The aim of the present
study was to evaluate the effect of VDR gene polymorphism on multiple obesity indexes in Han Chinese, including
BMI, WC, BFP and triceps skinfold thickness.

Methods: In this cross-sectional study, five hundred and seventeen healthy Chinese adults were enrolled in the
trial. Four loci in VDR gene (rs2228570 [FokI], rs2189480, rs2239179 and rs7975232[ApaI]) were genotyped by
TaqMan probe assays. Obesity indexes including BMI, WC, BFP and triceps skinfold thickness were used to evaluate
the relationship to the VDR SNPs. Multiple logistic regression, linear regression and general multifactor
dimensionality reduction (GMDR) were performed to analyze the correlation of VDR gene and obesity indexes.

Results: None of the VDR SNPs were associated with BMI and WC, the C allele of FokI and the T allele of ApaI were
associated with an increase in BFP (β = 0.069,P = 0.007; β = 0.087, P = 0.022 respectively); the G allele of rs2239179
and the T allele of ApaI were associated with an increase in triceps skin fold thickness (β = 0.074, P = 0.001; β = 0.
122, P < 0.001 respectively). In regards to adiposity-related metabolic parameters, we found that the GT genotype of
ApaI was associated with higher level of total cholesterol (TC) (P = 0.013) and Low-density lipoprotein cholesterol
(LDL-C) (P = 0.001).

Conclusions: Though we failed to prove that VDR SNPs were in correlation with BMI and WC, we did establish the
association between VDR variants and BFP, as well as triceps skinfold thickness. Data obtained suggested that the
VDR variants play an important role in regulating adipose tissue activity and adiposity among Han Chinese.
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Introduction
Worldwide obesity has nearly tripled since 1975. In
2016, more than 1.9 billion adults (aged 18 and older)
were overweight, among which more than 30% were
obese, triggering a pandemic [1]. Due to rapid changes
in social politics, economy, culture, (For instance, ex-
periencing a “nutrition transition”) obesity has become a
serious issue for China in the past decades [2]. The ac-
cumulation of excess body fat contributes to higher mor-
bidity and mortality rates of non-communicable diseases
(NCDs), such as cardiovascular disease, chronic ob-
structive pulmonary disease, lung cancer, and diabetes
[3, 4]. In order to assess the magnitude of the problem,
the relevance between adiposity and NCDs are described
using various anthropometric indicators such as body
mass index (BMI), waist circumference (WC) and skin-
fold thickness. Previous studies have shown that high
subcutaneous fat increases the risk of cardio-metabolic
diseases independently [5, 6]. Meanwhile, individuals
with a healthy body composition prefer to gain a health-
ier cardio-metabolic profile later on in life, and similar
situations could be found in adult population with dia-
betes mellitus, hypertension, metabolic syndrome, and
several of cancer [7–9].
Both vitamin D deficiency and insufficiency are com-

mon in China [10, 11]. Since negative correlation be-
tween serum 25(OH)D3 level and high adiposity has
been well established [12–14], recent studies have fo-
cused on the physiological functions of vitamin D in adi-
pose tissue [15–17]. It is well known that adipose tissue
plays a pivotal role in energy balance and glucose
homeostasis and serves as the main storage site for vita-
min D [18]. Even human SAT (Subcutaneous adipose
tissue) and VAT (Visceral adipose tissue) express VDR
and enzymes involved in vitamin D metabolism [19].
Vitamin D is active in adipose tissues and act as a key
regulator of gene expression, as well as signal transduc-
tions [20]. It is worth noting that vitamin D couples with
its receptor (VDR) to exerts multiple biological functions
and the binding of vitamin D to VDR plays an important
role in regulating adipogenesis both in vivo and invitro
[21, 22].
A body of studies have been conducted to investigate

the association between VDR variants and different adi-
posity phenotypes [23–27], so far failed to reach a con-
sensus. Furthermore, most of these studies were
involved in anthropometric measurements (BMI and
WC), but not obesity biomarkers of regional fat accumu-
lation such as subcutaneous fat (skinfold thickness) or
total fat accumulation such as body fat percentage[BFP].
As BMI and WC cannot distinguish fat from lean mass,
explicit understanding of these two obesity biomarkers
may provide important insights into the association be-
tween VDR variants and BMI or WC in different studies.

To our knowledge, the relationship between VDR vari-
ants and adiposity in Han Chinese are rarely investi-
gated, let alone the regional and total body composition.
Therefore, the possible relationships between
single-nucleotide polymorphisms (SNPs) in VDR and
multiple adiposity traits like BMI, WC, BFP and skin
fold thickness are discussed in the study, Aiming to il-
lustrate the biological significance of VDR polymor-
phisms on adiposity and may contribute to the
identification of novel therapeutic strategies to prevent
or treat adiposity and adiposity-related disorders among
Han Chinese.

Materials and methods
Study population
Between June and July of 2013, a total of 1851 subjects
were selected in the present cross-sectional study, which
was conducted in Henan Province, a central area of
China. Participants’ age ranged between 18 and 90 years.
Exclusion criteria was chronic non-communicable dis-
eases, acute diseases, taking vitamin D or calcium sup-
plementation, and cholesterol-lowering medications.
Finally, 517 (259 women and 258 men) subjects were eli-
gible for analysis. The study was conducted in accord-
ance with the guidelines set out in the Declaration of
Helsinki and was approved by the Zhengzhou University
Medical Ethics Committee. All the participants were
given written informed consent before any collection of
samples and data.

Data collection
At enrollment, all participants received clinical examin-
ation and anthropometric measurements undertaken by
trained observers. Additionally, a standard questionnaire
was used to obtain sociodemographic data regarding
age, dietary intake, physical activity, family history of
obesity, and medication use. Height, WC and hip cir-
cumference were measured to the nearest 0.1 cm by
using a metric scale; WC was measured at the midpoint
between the last rib and the iliac crest. Triceps skinfold
thickness was measured from the left side of the body to
the nearest 0.1 mm, using a Holtain skinfold caliper
(Holtain Ltd., Crymych, UK), at the flowing sites: half-
way between the acromion process and the olecranon
process. Weight and BFP were assessed by bioelectrical
impedance analysis using the InBody 230 bioimpedance
analyzer (Biospace CO Ltd., 518–10 Dogok2-dong,
Gangnam-gu, Seoul, Korea). Weight was measured to
the nearest 0.1 kg when the subjects were in their under-
wear and were not wearing shoes. BMI, waist-hip-ratio
(WHR), waist-height-ratio (WHtR) were calculated as
follows:

BMI ¼ weightðkgÞ=ðheight�heightðmÞÞ
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WHR ¼ WC cmð Þð Þ= Hip cmð Þð Þ

WHtR ¼ WC cmð Þð Þ= height cmð Þð Þ

On the basis of Chinese BMI categories, subjects were
divided into four groups: underweight (< 18.50 kg/m2),
normal weight (18.50–23.99 kg/m2), overweight (24.00–
27.99 kg/m2), and obesity (≥ 28.00 kg/m2) [28]. Abdom-
inal obesity was defined as ≥90 cm for men and ≥ 80 cm
for women [29].
Furthermore, after an overnight fast of at least 8 h,

blood tests were used to determine the lipid profile (tri-
glyceride [TG], total cholesterol [TC], high-density lipo-
protein cholesterol [HDL-C]) by using an automatic
biochemical analyzer (Shanghai Kehua Bio-engineering
Co, Ltd. (KHB), Shanghai, China). Low-density lipopro-
tein cholesterol (LDL-C) was calculated based on the
Friedewald equation.

Selection and genotyping of SNPs
SNPs were screened from SNP haplotype map, NCBI
database and a numerous review of literature. In
addition, the selection of particular SNPs was based on
the minor allele frequency (MAF) > 0.05, possible func-
tional consequences and previous association with vita-
min D level or indices of obesity or adiposity. Finally, we
selected four SNPs, namely rs2228570 (FokI), rs2189480,
rs2239179, rs7975232 (ApaI). Genomic DNA from per-
ipheral blood was isolated by the standard procedures
(DNA blood kit; Bioteke, Beijing, China). Genotyping in-
volved use of an Applied Biosystems (7500 FAST
Real-Time PCR system; Applied Biosystems, Foster City,
USA).

Statistical analysis
Continuous variables (normal distributed) were repre-
sented as mean ± standard deviation and were analyzed
by student′s t-test, while quantitative data because of
skewed distribution were illustrated as medians with
corresponding quartile range and were analyzed by
Mann-Whitney U-test. The Chi-squared test was used
for categorical data. Departure from the
Hardy-Weinberg equilibrium (HWE) was assessed in
controls by using online software (http://shesisplus.bio-
x.cn/SHEsis.html#).
Logistic regression for multivariate analyses was used

to examine association between VDR variants and risk
of overweight/obesity and abdominal obesity with ad-
justment for age, gender, family history of obesity, alco-
hol use, high-fat diet, vegetables consumption, and
physical activity, assuming additive and dominant
models of inheritance. Linear regression analysis was
then used to examine the genetic association with the
continuous outcomes (BFP, triceps skinfold thickness)

with adjustment for age, gender, alcohol, high-fat diet,
vegetable consumption, physical activity and the family
history of obesity. One of the four possible models (addi-
tive, codominant, dominant and recessive) in the linear
model, we selected the additive model because it gener-
ally reflects the additive contribution to risk for complex
diseases. The relationship between the VDR polymorph-
ism and adiposity-related metabolic parameters was ana-
lyzed by Analyses of Variance (ANOVA). Statistical
values were performed with SPSS version 21.0 (IBM
Corp., Chicago, IL, USA).
Generalized multifactor dimensionality reduction

(GMDR) method permits adjustment for discrete and
quantitative covariates and is applicable to both dichot-
omous and continuous phenotypes in various
population-based study designs [30]. Analysis of the
interaction on continuous phenotype (BFP and triceps
skinfold thickness) between gene and gene, gene and en-
vironment was performed by GMDR (GMDR, version
0.7, University of Virginia, USA). The model with high-
est cross-validation consistency (CVC) and the max-
imum testing balanced accuracy was considered as a
best model. Statistical tests were two-sided and P-values
of < 0.05 were considered significantly.

Results
Basic characteristics
Clinical features and anthropometric measurements of
the study subjects are shown in Table 1. Overweight and
obesity group had higher levels of BMI, WC, WHR,
WHtR, triceps skin fold thickness, BFP, LDL-C, TC, and
TG than the normal weight group. Conversely, HDL-C
was significantly lower in overweight and obesity group
than normal weight group.
Data are given as the mean ± SD, as n (%) or median

(quartile range). BMI, body mass index; WC, waist cir-
cumference; WHR, waist-hip-ratio; WHtR,
waist-height-ratio; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol;
TC, total cholesterol; TG, triglyceride.

Association analysis of overweight/obesity and abdominal
obesity and the distribution of the VDR SNPs
The allele and genotype distribution of FokI, rs2189480,
rs2239179, and ApaI are given in Additional file 1: Table
S1 and S2. The distribution of VDR polymorphisms in
the control group obeyed HWE (P > 0.05). There were
no significant differences in the frequency of genotypes
at selected VDR polymorphisms. The covariate-adjusted
associations of VDR SNPs with overweight/obesity and
abdominal obesity are presented in Fig. 1 Under additive
model and dominant models, none of the SNPs showed
significant association with BMI or WC in the studied
population.
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Linear regression-derived association of selected tagging
VDR SNPs with BFP and triceps skinfold thickness in Han
Chinese
The association of selected VDR SNPs with BFP and tri-
ceps skinfold thickness are presented in Table 2. Two
SNPs (FokI and ApaI, rs2239179 and ApaI respectively)
were significantly associated with BFP and triceps skin-
fold thickness. Assuming an additive genetic model on
inheritance, for FokI (β ± SE = 0.069 ± 0.031, P = 0.007),
we observed that each additional rare allele resulted in a
6.9% increase in BFP, and for ApaI (β ± SE = 0.087 ±

0.039, P = 0.022), each additional rare allele resulted in a
8.7% increase in BFP; simultaneously, for rs2239179 (β ±
SE = 0.074 ± 0.028, P = 0.001), each additional rare allele
resulted in a ~ 0.074-mm increase in triceps skinfold
thickness, and for ApaI (β ± SE = 0.122 ± 0.034, P <
0.001), each additional rare allele resulted in a ~
0.122-mm increase in triceps skinfold thickness.
Results are presented as β ± SE, β coefficients repre-

sent the mean difference in body fat percentage and tri-
ceps skinfold thickness for each additional rare allele of
the corresponding SNP. Linear regression analyses were

Table 1 Basic characteristics of the study participants

Parameter Normal Overweight/obesity χ2/Z/t P

253 264

Gender 0.855 0.353

Male 121(47.8%) 137(51.9%)

Female 132(52.2%) 127(48.1%)

Age 9.819 0.002

≤45 172(68.0%) 144(54.5%)

> 45 81(32.0%) 120(45.5%)

BMI (kg/m2) 21.55(19.81,22.80) 26.51(25.10,28.22) −19.67 < 0.001

WC (cm) 75.71 ± 6.91 90.20 ± 8.12 −21.821 < 0.001

WHR 0.83 ± 0.06 0.91 ± 0.06 −14.53 < 0.001

WHtR 0.47 ± 0.05 0.56 ± 0.05 −22.52 < 0.001

Triceps skin fold thickness (mm) 15.48 ± 7.75 21.57 ± 8.29 −8.584 < 0.001

Body fat percentage (%) 19.05 ± 6.45 26.09 ± 6.49 −12.174 < 0.001

HDL-C (mmol/L) 1.42 ± 0.29 1.31 ± 08.27 3.656 < 0.001

LDL-C (mmol/L) 2.16 ± 0.73 2.39 ± 0.71 −3.500 0.001

TC (mmol/L) 4.04 ± 0.95 4.49 ± 1.04 −5.170 < 0.001

TG (mmol/L) 0.78(0.58,1.19) 1.33(0.84,2.14) −8.127 < 0.001

Data are given as the mean ± SD, as n (%) or median (quartile range). BMI, body mass index; WC, waist circumference; WHR, waist-hip-ratio; WHtR, waist-height-
ratio; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride

Fig. 1 Forest plot of association between VDR polymorphisms and overweight/obesity and abdominal obesity. Logistic regression analyses were
adjusted for age, gender, alcohol, high-fat diet, vegetable consumption, physical activity and the family history of obesity.
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adjusted for age, gender, alcohol, high-fat diet, vegetable
consumption, physical activity and the family history of
obesity.

Higher BFP and triceps skinfold thickness susceptibility is
due to the SNPs in VDR gene
Analysis of inter-gene (4SNPs) interaction obtained from
GMDR was summarized in Table 3. The interaction
model composed of FokI, rs2239179 and ApaI on the
high BFP susceptibility was the best model (P < 0.001).
Overall, the cross-validation consistency of this
three-locus model was 10/10, and the testing accuracy
was 57.5%. Also, we found the best interaction combin-
ation involving these four SNPs on the risk of higher
skinfold thickness. Overall, the cross-validation
consistency of this four-locus model was 10/10, and the
testing accuracy was 54.1%. However, we did not find
any significant interaction between the four SNPs and
environmental factors (alcohol, high-fat dietary, exercise
and family history of obesity) on these two phenotypes.

Adiposity-related metabolic parameters according to
genotypes of VDR polymorphism
The effects of the genotype distributions of the four
SNPs on metabolic parameters were presented in Table 4.
The results revealed that GT genotype of ApaI was asso-
ciated with higher TC (P = 0.013) and LDL-C (P = 0.001).

Discussion
In the present study, we investigated the effect of the ex-
ternal environment and inherent variations of VDR on
obesity-related traits in humans. We found no significant
link between VDR SNPs and anthropometric measures
(BMI and WC), but positive associations of VDR SNPs
with BFP and triceps skinfold thickness, FokI and ApaI
for BFP, as well as rs2239179 and ApaI for triceps skin-
fold thickness. Furthermore, we identified significant
gene-gene interactions with susceptibility to adiposity,
three-locus model for BFP and four-locus model for tri-
ceps skinfold thickness. In addition, we found that VDR
variants were related to adiposity-related metabolic com-
plications. Hence, our study provides evidence that poly-
morphisms in VDR gene might play a role in regulating
adipose tissue activity and susceptibility to adiposity
among Han Chinese.
VDR is expressed in various types of adipose tissues

such as 3 T3-L1 adipocyte, human preadipocytes, differ-
entiated adipocyte, human SAT and VAT [31–33]. Adi-
pose tissue has multiple functions of lipids synthesizing,
fatty acids transporting and adipokine secretions [15]. It
is reported that vitamin D treatment blocked

Table 2 Selected tagging VDR SNPs significantly associated
with body fat percentage and triceps skin fold thickness

Body fat percentage (%) Triceps skinfold thickness (mm)

SNPs β ± SE P β ± SE P

FokI 0.069 ± 0.031 0.007 0.051 ± 0.030 0.053

rs2189480 0.041 ± 0.029 0.148 0.049 ± 0.029 0.065

rs2239179 −0.030 ± 0.052 0.560 0.074 ± 0.028 0.001

ApaI 0.087 ± 0.039 0.022 0.122 ± 0.034 < 0.001

Results are presented as β ± SE, β coefficients represent the mean difference in
body fat percentage and triceps skinfold thickness for each additional rare
allele of the corresponding SNP. Linear regression analyses were adjusted for
age, gender, alcohol, high-fat diet, vegetable consumption, physical activity
and the family history of obesity

Table 3 GMDR models of gene-gene interactions on body fat
percentage and triceps skin fold thickness

Models TBA1 TBA2 CVC P sign

Gene-gene interaction for body fat percentagea

ApaI 0.569 0.511 6/10 0.172

FokI, ApaI 0.602 0.524 6/10 0.055

FokI, ApaI, rs2239179 0.632 0.575 10/10 0.010

FokI, ApaI, rs2239179, rs2189480 0.657 0.553 10/10 0.055

Gene-gene interaction for triceps skin fold thicknessa

ApaI 0.593 0.595 10/10 0.001

FokI, ApaI 0.607 0.525 5/10 0.055

FokI, ApaI, rs2189480 0.643 0.578 6/10 0.001

FokI, ApaI rs2239179, rs2189480 0.655 0.541 10/10 0.001

GMDR Generalized multifactor dimensionality reduction, TBA1 Training
balanced accuracy, TBA2 Testing balanced accuracy, CVC Cross-validation
consistency. P sign = P value from sign test. a Adjusted for age, sex, alcohol,
high-fat diet and the family history of obesity

Table 4 Association of VDR polymorphisms with metabolic
parameters

SNP TG TC HDL-C LDL-C

FokI P = 0.924 P = 0.809 P = 0.611 P = 0.410

TT 1.385 ± 1.091 4.218 ± 0.983 1.348 ± 1.091 2.199 ± 0.695

CT 1.400 ± 1.310 4.293 ± 1.049 1.357 ± 0.283 2.312 ± 0.732

CC 1.445 ± 1.379 4.272 ± 1.012 1.382 ± 0.295 2.277 ± 0.751

rs2189480 P = 0.778 P = 0.948 P = 0.992 P = 0.231

CC 1.034 ± 1.075 4.290 ± 1.027 1.364 ± 0.296 2.378 ± 0.731

CA 1.425 ± 1.411 4.254 ± 1.027 1.360 ± 0.297 2.218 ± 0.665

AA 1.425 ± 1.220 4.282 ± 1.024 1.363 ± 0.272 2.306 ± 0.782

rs2239179 P = 0.093 P = 0.205 P = 0.611 P = 0.877

AA 1.357 ± 1.138 4.241 ± 1.019 1.353 ± 0.277 2.279 ± 0.734

AG 1.552 ± 1.551 4.361 ± 1.034 1.377 ± 0.292 2.290 ± 0.725

GG 1.015 ± 0.608 4.005 ± 0.976 1.399 ± 0.353 2.204 ± 0.733

ApaI P = 0.933 P = 0.013 P = 0.961 P = 0.001

GG 1.426 ± 1.414 4.195 ± 0.998 1.363 ± 0.277 2.199 ± 0.670

GT 1.389 ± 0.992 4.437 ± 1.076a 1.363 ± 0.309 2.432 ± 0.822*

TT 1.358 ± 1.550 3.989 ± 0.783 1.347 ± 0.220 2.088 ± 0.461

Data are represented the mean ± SD. aThe second genotype is significantly
different from the first genotype
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adipogenesis in VDR+/+ cells but failed to do so in
VDR−/−, indicating that VDR might be required for adi-
pogenesis [34]. Also, previous studies have shown that
VDR knockout mice shared lean phenotype and were re-
sistance to diet-induced obesity, supporting the idea that
1α,25(OH)2-D3/VDR system modulates appetite and en-
ergy homeostasis [35, 36].
The association between VDR genetic variants and an-

thropometric measures (BMI and WC) have been previ-
ously investigated mainly on British, Polish, American,
Spanish and Saudi Arabian population. However, the re-
sults remained inconclusive [23, 24, 26, 37]. It is noted
that a study involving 5224 participants in the 1958 Brit-
ish birth cohort did not find any link between VDR
SNPs and BMI and WC [23]. On the contrary, homozy-
gous rare genotype was related to an increase in larger
WC compared to common homozygous genotype in a
sample of 1773 healthy American females [38]. In our
study, there was no significant association between VDR
SNPs and BMI and WC in Han Chinese. Such differ-
ences may be attributed to different ethnic backgrounds
[39]. Alternatively, different disease-causing alleles pre-
dominate in different study populations or variation ex-
ists in the degree of linkage disequilibrium between the
markers and the disease alleles [40].
From the physiological point of view, it is not the de-

gree of excess weight (as is measured by, for example
BMI and WC), but the degree of body fatness acted as
the risk factor. Evidence has been reported that skinfolds
maybe more sensitive than BMI in detecting adiposity
[41], as skinfolds are more directly associated than BMI
with subcutaneous fat. Moreover, BFP had significantly
stronger associations with obesity-related biomarkers
than BMI did [42]. Previous study proved that VDR het-
erozygous mice showed significantly less fat accumula-
tion than wild-type mice [43], so we hypothesized that
VDR SNPs may affect directly on body compositions
(such as skinfold thickness and BFP) compared to indir-
ect parameters (such as BMI and WC), which was veri-
fied by our results. We observed that the T allele of FokI
and the T allele of ApaI were associated with an increase
in BFP; the G allele of rs2239179 and the T allele of ApaI
were associated with an increase in triceps skin fold
thickness. Several lines of evidence should be considered
while assessing the role of VDR in adipogenesis. One
possible explanation is that animal study suggest that
1,25(OH)2D3/VDR signaling exert suppressive effect on
brown adipocyte differentiation, whereas brown adipose
tissue is expressed in adult humans, functioning in
non-shivering thermogenesis by uncoupling ATP synthe-
sis from respiration, which plays an important role in
energy expenditure [22]. Another underlying mechanism
was that 1,25-dihydroxyvitamin D stimulates adipose
leptin production in a VDR-dependent manner, and

protected transgenic mice from body adipose accumula-
tion [44].
ApaI, rs2189480 and rs2239179 are located in the 3′

untranslated region (UTR) or intron region and are un-
likely to cause a disease. The FokI variants, located in
the codon initiating translation that results in a smaller
protein with increased capacity of 1,25-dihydroxyvitamin
D binding [45], and accelerating adipogenesis in primary
mouse and human preadipocytes, which was evidenced
by increased expressions of adipogenic markers and lipid
accumulation [46]. Therefore, analyses on VDR SNPs
and their interrelations are being demanded as they may
affect expression and activity of VDR. Our results sug-
gested that the interactions between these four SNPs
variants may lead to adiposity through linkage disequi-
librium (LD), which may extend into 3’regulatory region
(containing of the UTR); whereas polymorphisms in the
3’UTR region regulate gene expression by modulating
messenger RNA stability and hence likely to affect the
intracellular level of VDR [47]. Meanwhile the vitamin D
signaling and adipogenesis are affected by VDR expres-
sion in a concentration-depending manner [21]. The re-
lationship has established between SNPs in VDR gene
and the body compositions so far, and the mechanism of
which needs to be verified in future studies.
Emerging evidence indicates that variations in the

VDR polymorphisms may contribute to dyslipidemia. In
the present study, the ApaI homozygous rare genotype
displayed a significant association with increased levels
of TC and LDL-C. Also supported by Jia et al’ s conclu-
sion as VDR SNPs are significantly correlated with risk
of dyslipidemia and serum LDL levels in Chinese Han
population [48]. In obese people, enhanced secretion of
triglyceride-rich lipoprotein and impaired clearance of
these lipoproteins increase the accumulation of visceral
adiposity [49]. Furthermore, VDR mutational alleles car-
riers are commonly related to lower levels of serum
25(OH)D, higher lipid parameters and abnormal inflam-
matory biomarker in obese individuals [50]. The action
of vitamin D is mediated through vitamin D receptor, a
nuclear transcription-regulating factor that regulates de
novo lipid synthesis, thereby contributing to the devel-
opment of obesity [51]. Hence, VDR gene may influence
the progression of adiposity activity via dyslipidemia.
There are several limitations to the present study in-

cluding a lack of other genes that contribute to synthe-
sis, transportation and degradation form of vitamin D
such as CYP2R1, GC, CYP27B1 and CYP24A1. Another
potential limitation is that associations with intermediate
parameters such as adipokine secretion including leptin
and adiponectin could have strengthened our findings;
however, we did not have such data. Nevertheless, our
study do have some strengths. First of all, our partici-
pants were all Han Chinese, eliminating population
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admixture as a potential drawback. Then, we excluded
participants who had taken vitamin D/calcium supple-
ments, avoiding external environmental interference.
Last of all, one of the main strengths of our study was
that we measured skinfold thickness and BFP which dir-
ectly reflect adiposity accumulation. Thus we were able
to study the association between VDR polymorphisms
and the most active form of adiposity, which is not fo-
cused on by previous studies. The findings of this study
may provide a new insight for association of VDR poly-
morphism and adiposity.

Conclusions
In summary, our study suggests that VDR variants are
associated with susceptibility to adiposity in Han Chin-
ese. The genetic factors that contribute to adiposity are
certainly more complex than to be explained entirely by
variations in a single gene. We acknowledge that the re-
sults are limited by ethnic specificity and relatively small
sample size, so these results need to be replicated and
confirmed in a large-scale study and more potential
functional VDR polymorphisms should be detected.
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