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Role of ω3 polyunsaturated fatty acids in
diabetic retinopathy: a morphological and
metabolically cross talk among blood retina
barriers damage, autoimmunity and
chronic inflammation
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Abstract

Vision disorders are one of the most serious complications of diabetes mellitus (DM) affecting the quality of life of
patients and eventually cause blindness. The ocular lesions in diabetes mellitus are located mainly in the blood
vessels and retina layers. Different retina lesions could be grouped under the umbrella term of diabetic
retinopathies (DMRP).
We propose that one of the main causes in the etiopathogenesis of the DMRP consists of a progressive loss of the
selective permeability of blood retinal barriers (BRB). The loss of selective permeability of blood retinal barriers will
cause a progressive autoimmune process. Prolonged autoimmune injures in the retinal territory will triggers and
maintains a low-grade chronic inflammation process, microvascular alterations, glial proliferation and subsequent
fibrosis and worse, progressive apoptosis of the photoreceptor neurons.
Patients with long-standing DM disturbances in retinal BRBs suffer of alterations in the enzymatic pathways of
polyunsaturated fatty acids (PUFAs), increase release of free radicals and pro-inflammatory molecules and
subsequently incremented levels of vascular endothelial growth factor. These facts can produce retinal edema and
photoreceptor apoptosis.
Experimental, clinical and epidemiological evidences showing that adequate metabolic and alimentary controls and
constant practices of healthy life may avoid, retard or make less severe the appearance of DMRP. Considering the
high demand for PUFAs ω3 by photoreceptor complexes of the retina, it seems advisable to take fish oil
supplements (2 g per day). The cellular, subcellular and molecular basis of the propositions exposed above is
developed in this article.
Synthesizer drawings the most relevant findings of the ultrastructural pathology, as well as the main metabolic
pathways of the PUFAs involved in balance and disbalanced conditions are provided.
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Introduction
Diabetes Mellitus (DM) involving progressive alterations
in metabolic and inflammatory indices comprising pertur-
bations of the metabolism of glucose, lipids and proteins.
Increases in the oxidative stress and alterations in glucose
metabolism result in elevation of some inflammatory
markers as leukotrienes (LTB4), interleukins-2 and 6 (IL-2
and IL-6), activation of toll-like receptor 4 and C reactive
protein [1–3].
The global increasing incidence of DM not only impacts

the health of the affected individual but also enhances the
cost of health care thus having implications for political,
economic and social concerns for the society mainly in
long standing aged diabetic patients [4, 5]. DM is esti-
mated to affect about 422 million people in the world ac-
tually and 1.6 million deaths worldwide were directly
caused by diabetes in 2016 [6].
DM seems to be closely linked to scarce physical activity

and inappropriate food intake resulting in obesity, insulin
resistance, and eventually in metabolic syndrome [7]. One
of the latest severe complication of DM in long standing
patients is partial or total blindness preceded by others
visual perturbations englobed in this article under the
term DM-linked retinopathy (DMRP) [8, 9].
Increasing number of reports coincidently point out that a

disbalance in the metabolism of ω3, ω6 and ω9 polyunsatur-
ated fatty acids (PUFAs) occurs in obesity, insulin resistance,
metabolic syndrome and DM [1, 10, 11]. In this regards it is
comparatively less known the role played by disturbed
PUFA metabolism in the DMRP-affected eye [8, 12]. The
role of disbalanced metabolism of ω3 and ω6 PUFAs and
their metabolites as lipoxins, resolvins, protectins and mare-
sins in the development of a low grade chronic inflamma-
tion (LGCI) and its impact on the pathophysiology of
DMRP have comprehensively been revised [13–15].
Plasma membranes (PM) of highly differentiated sacs and

vesicles of retinal cones and rods of outer segment (OS) are
unusually rich in long chain highly unsaturated-PUFAs
(LCHU-PUFA) mainly ω3-docohexaenoic (DHA) and
ω3-eicosapentaenoic (EPA) and ω6-arachidonic (AA) [16,
17]. Phospholipids (PL) containing these LCHU-PUFAs are
heavily concentrated in PMs of OS which are in risk of be-
coming abnormal because relative deficiency of ω3
LCHU-PUFAs [18, 19].
Human retina is a privileged and “sequestrated” highly

differentiated neural cell populations without further con-
tacts with the own immunological system (IS) of each in-
dividual [20, 21] precluding a significative role for
autoimmune responses in the pathophysiology of DMRP.
This possibility have been earlier proposed by Rahi and
Addison in 1983 [22] and others whom critically discussed
cardinal findings in DMRP [21]. Frequent abnormalities in
retinal tissues of DM subjects comprise higher levels of
anti-pericyte and anti-endothelial cell autoantibodies,

increased levels of tumor necrosis factor-alpha (TNF-α),
several pro-inflammatory interleukins and lymphokines in
the serum and vitreous, increased deposits of immuno-
globulins in pre-retinal membranes and activation of com-
plement system [23]. DM subjects showed higher values of
several leukocyte antigens and their receptors on retinal
blood vessels and pigmented epithelial cells (PEC). De-
scribed elevated levels of autoantigens against retinal epi-
topes and increased expression of their receptors observed
on DMRP are similar to those registered in many other
nonlymphoid cells populations in several autoimmune dis-
eases [24], including type 1 DM [25]. Hence this abnormal
expression of neo-antigens in retinal neuron cells seems to
be part of a progressive autoimmune response [26].
The role played by abnormal metabolism of PUFAs ω3

and ω6 and their metabolites and their impact on develop-
ment of LGCI on DMRP have been discussed [8, 27, 28]. In
this review the aim is highlight the morphological-linked
perturbations in retina as a whole, and particularly those
changes observed in the inner and outer blood retina bar-
rier (BRB) and photoreceptors, in the framework of a func-
tional/ metabolically deficiency of ω3 LCHU-PUFAs, topics
scarcely integrated in these issues.

Human retina
Histogenesis and neural cell populations in human retina
The histogenesis of the human neural retina involves
complex genetic and epigenetic sequential processes con-
trolled by on/off switching of genes groups modulating
waves of neuroblasts proliferation, differentiation, migra-
tion, selective apoptosis and angiogenesis being some of
these stages bizarrely reactivated in DMRP [29, 30].
Genetic planification and expression of human retina de-

velopment involve several progenitor genes (such as
LIN28B, FGF19, PRTG, and SFRP2) [31]. Interestingly,
SFRP2 overexpression has been linked to obesity, insulin re-
sistance and increased vascular endothelial growth factor
(VEGF) [32]. Since human retina is a prolongation of the
central nervous system (CNS) its highly differentiated neural
cell populations and their bulk of expressed new molecules
(potential epitopes) will remain sequestrated within their
own compartments and without further contacts with the
still maturating IS of each individual [20, 21, 33]. Eventual
leakage of these molecules in after born life (by trauma, dis-
eases, infections, inflammation, etc.), some of them having
antigenic capability against the IS, may start a slow and sub-
tle autoimmune-like response [21, 22] thus becoming one of
the events contributing to the LGCI which strongly lies in
the pathophysiology of DMPR [14, 15].

Morphological bases of the major components of the inner
and outer blood retina barrier (iBRB and oBRB)
Human retina is isolated from the rest of eye cell popu-
lations by an elaborated continuous blood retina barriers
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which may be divided into inner, or vitreal side (iBRB)
composed by Müller cell layer and the inner limiting
membrane and the choroidal side or outer (oBRB), built
by PEC, Bruch membrane and basal membranes and
endothelia of choriocapillaris. The boundaries are sealed
by the ora serrata in the periphery as described below.

Ultrastructure of Müller cells and its BM, the major
components of the inner limiting membrane: Among
the somae and their intricated prolongations of different
neuronal populations, there are intermixed the glial projec-
tions of Müller cells, whose dendriform projections play a
very important role isolating neurons somae and their pro-
longations thus establishing the precise neuronal distribu-
tion in the different layers of the neural retina. Projections
of Müller cells sealed by tight junctions (zonulae occludens,
ZO) zonulae adherens (ZA) and gap junctions plus its own
BM (inner limiting membrane) conform the morphological
base of iBRB, sequestering retina cell populations from the
vitreal environment (Fig. 1) [34–37].

Ultrastructure of pigment epithelium cells (PEC) and
choriocapillaries, main components of the outer
limiting membrane: A single layer of PEC lies on Bruch
membrane being this its own basal membrane (BM). BM
of PEC is in close contact with small blood vessels and ca-
pillaries running throughout the choroid choriocapillaris
network whose endothelial cells are fully sealed by con-
tinuous ZO and ZA turning not permeable this boundary
as also happens with those capillaries forming the basis of
the whole hemato-CNS barrier [38, 39] (Fig. 2). It is worth
to mentioning that, in contrast, there is not BM between
PEC projections and photoreceptors (PRs) outer segments
of rod and cones [40]. PEC are tall and very thin with nu-
merous prolongations having a supranuclear Golgi. Both
PEC and Bruch’s membrane are as slender as 15–20 μm
thick. PEC is a very particular population since has highly
specific appetite to continuously phagocyte aged, worn
out or damaged membranous disc tips of the OS of PRs
[41]. Prolongations of PEC build up a dense net of inter-
digitations among the OS of cone and rods. Cytoplasm of
projections are filled with mitochondria indicating a high
demand of energy for active molecules traffic. Contiguous
surfaces of PEC digitations are continuously sealed by ar-
rays of junctional complexes (ZO, ZA and gap junctions)
[34, 35, 42]. These ultrastructural differentiations are
strongly reminiscent to the assemble of junctional com-
plexes observed in Sertoli cells surrounding maturing
spermatogonia progenies, where reside the morphological
bases of the hematotesticular barrier [43]. The apex of
PECs prolongations totally stuff the interstitium among
the slender OS of rods and cones building capsule-like cy-
lindrical processes and intricated delicate prolongations.
These PEC processes contain abundant melanin bodies

and variable amounts of myelin-like (lamellar) bodies
which are debris of phagocytosed aged OS rests of rod
and cones in variables processes of digestion, having phos-
pholipases activities [44–46] releasing LCHU-PUFAs to be
reutilized in plasma membrane synthesis as well as
pro-oxidant moieties [47]. PEC prolongations show a rich
network of cisternae of agranular ER. Hence, the BM of
PEC plus the complex array of ZO, ZA and tight junctions
which seal the intercellular spaces conform one the major
barrier of the retina on the choroidal side. In addition,
choriocapillaris possesses continuous endothelial cells and
BM, without fenestrations being per se highly imperme-
able. Prolongations of PEC and BM of choriocapillaris are
in closed and uninterrupted contact thus fully sealing ret-
ina with respect the choroidal side (Fig. 3) [34, 35, 42, 48,
49]. So, leakage in and out from choroid blood vessels and
retina is normally avoided. This is important since many
retinal antigenic determinants expressed in later prenatal
period and many others molecules to be eventually
expressed along the life span of the subject [22, 33, 41, 50]
will remain sequestrated within retina environment with-
out further contact with the IS of the individual in normal
conditions.

Disruption of BRBs in DMRP
Several research shows that PEC becomes altered in DM
allowing increased leakage from choroid blood vessels
together with delayed reabsorption of extracellular fluids
being this one of the causes of retinal edema [51]. It is
generally assumed that the disruption of the iBRB is a
major cause of DMRP [36, 52] but there is also evi-
dences that the disruption of the external limiting mem-
brane and PEC causing oBRB damage also contributes
to the pathogenesis of DMRP as observed in diabetic
models [53–55]. In an experimental model of type 2
DM, the GK rats, oBRB damage is linked to the forma-
tion of clefts through the PEC prolongations which en-
ables diapedesis of inflammatory cell between the retina
boundary and choroid [50]. In addition Müller glial cells
show increased ballooning [56] due to ER and mito-
chondrial swelling which are constant ultrastructural
findings in DM [57] and also when ω3 and ω6 PUFA de-
ficiency (w3/w6D) occurs [58]. Actually, slow dissolution
of inter-vascular junctions, which result in vascular leak-
age and retinal edema favors LGCI [59].

w3/w6D induces disruption of several cellular
barriers increasing the leakage of macromolecules
from blood vessels into extravascular environment:
Consistent research in animals and humans suffering of
variables degrees of nutritional or metabolically w3/w6D
result in a wide cellular and molecular abnormalities of
key molecules involved in several cell–cell, cell-BM ad-
hesion and consequently breakdown of several limiting
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barriers also linked to the appearance of abnormal fatty
acids (FA) as previously reported [58, 60–63].
Once metabolically, or nutritional, w3/w6D is estab-

lished, a progressive breakdown and leakage appears in
many epithelial/stromata barriers, which in turn become
propitious scenarios to the slow developing of LGCI [64].
Two examples will be briefly described since some
morpho-functional similarities exist regarding BRB among
retina tissues and several epidermoid and urothelial epithe-
lia interphases. In rodents increased loss of water through
skin, with increased hyperplasia, hyper- and para-keratosis

and scaliness is observed in epidermis and other Malpig-
hian epithelia as esophagus and forestomach, indicating
damage to the water barrier function [65]. Reduction of
the number of desmosomes has also been reported in the
small bowel intestinal epithelia, forestomach and esopha-
gus [46, 65, 66] resulting in abnormal gastrointestinal ab-
sorption in w3/w6D [67]. Blood vessels in dermis and in
other organs of w3/w6D animals showed vasodilatation
with notorious extravasation of lymphocytes, monocytes
and polymorpho nuclear leukocytes (PMN) [58, 60, 68,
69]. In these barriers paracellular permeability is mainly

Fig. 1 Layers of the normal retina. Low magnification: 1, inner limiting membrane bordering the vitreal body (V) constituted by a thin basal
lamina, Bruch Membrane (BM). The opposite face of this BM shows delicate projections of Müller glial cells sealed each other by scattered tight
junctions just above the BM; 2, layer mainly constituted by axons of ganglion neurons which form the optic nerve at the papilla;3, ganglion
multipolar neurons layer; 4, inner plexiform layer; 5, inner nuclear layer; 6,outer plexiform layer; 7, outer nuclear layer; 8, outer limiting layer where
abundant Zonulae adhaerentes (ZA), belt- shaped, are located between the photoreceptor neurons and the tinny terminals of Müller’s glial cells;
9, inner and outer segments of rods and cones layer; 10, pigment epithelial cells with varieties of junctional complexes between them . Richness
in tight junctions plus normal integrity of Bruch membrane constitute the major morphological bases for the blood-retinal barrier; 11, Bruch
membrane, a thin basal membrane (indicated with a black triangle, ▼) that adjoins to the extracellular spaces of chorio-capillaris (CC) or
Choroidea, the medium layer of the eyeball showing abundant small blood vessels (bv) mainly fenestrated capillaries with a thin continuous BMs
and venules containing scarce red blood cells (rb) distributed within scarce loose connective tissue (ct)
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regulated by the structure and functions of occludins tight
junctions and ZO and ZA. Occludins interacts each other
in contiguous cells building the major barrier in several
endothelia being a main key array for the blood–brain bar-
rier and for BRB in the eye, too. Desmosomes represent
one of the key cell–cell adhesion mechanisms in epithelia,
endothelia, cardiomyocytes, and particularly in Malpighian
epithelia (as skin, esophagus, corneal and ora serrata in the
eye) among others [70]. Desmosomes are composed of
desmoglein 1, 2 and 3 together with desmocollins 1, 2 and
3, collectively named as desmosomal cadherins [71]. When
E-cadherin negative epithelial cells are cultured with
ω6-GLA, a LCHU-PUFA, tighter cell-cell association de-
veloped when compared with controls. Immunocytochem-
ical and electron microscopic studies revealed that this
adhesion was mediated by desmosomes showing heavy
marking for desmoglein [72]. On the other hand, ω3 and
ω6 PUFAs regulate cell–matrix adhesion, an important
crossroads for morpho- and functional integrity of
blood-tissues barriers as a whole [62, 73, 74].
When inflammation process starts the first steps is vaso-

dilatation with slowing down of the erythrocytes flux and

adhesion to the surface of endothelium being now ZO
and ZA among endothelial cells the major barriers in
charge of control the input and output of several mole-
cules (Figs. 4 and 5). Members of the ω3 PUFAs family are
able to modify certain functions of the tight junction in
vascular endothelial cells, as the trans-endothelial resist-
ance and the paracellular permeability [75, 76].
The other example of barrier disruption and the role

exerted by LCHU-PUFAs, is located in the luminal sur-
face of mammals urinary tract built by urothelial um-
brella cells which totally covers pelvises, ureters and
bladder and are strongly modified by PUFAs compos-
ition [64]. Luminal urinary surface showed polygonal
areas of big clustered glycoproteic particles, the uropla-
kins, which show a strong morphological resemblance to
visual pigments, heavily packed in PM of retinal rod and
cones. Along with ZO, ZA and other cell-cell union
complexes, the PM built the main morphological com-
ponent of the “permeability barrier” of urothelium [77,
78]. So, leakage of putative antigens, mutagens, and
other toxic molecules from urine into the chorionic
blood vessels is halted. However, umbrella cells require

Fig. 2 Higher magnification of the layers 1 and 2 of normal retina as depicted in Fig. 1. It is mainly constituted by axons obliquely sectioned (a) of
ganglion neurons and inner limiting layer with nuclei (N) of two Müller cells and their delicate extensions (*) containing some organelles
(mitochondria –m-, RER) and neurofibrils, leaning on the inner Bruch membrane (BM). Some few small blood vessel (bv) are identified. Developed
tight junctions complexes (zonulae occludens and adherens, ZO, ZA) plus normal morpho-functioning of Bruch membrane are the main
morphological bases for the vitreal-retinal barrier. Dilated intercellular spaces (IC), although drawed here as usual artifacts induced by processing,
may become susceptible areas for the onset of microedema and then progression to cystoid degeneration (compare with Fig. 4)
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of a fast turnover of PM, as also happens in retinal rod
and cones, being these continuously synthesized with a
constant high requirement of essential PUFAs. The ω3
and ω6 LCHU-PUFAs play a key role in the mainten-
ance of the molecular structure and functions of urothe-
lium barrier against putative pathogenic and injurious
molecules carried by urine [79, 80].
Cited examples of intake/administration/metabolism

disbalances of LC-PUFAs strongly evokes similarities with
scenarios on eye BRBs, the turnover of the highly special-
ized plasma membrane of OS PLs of rod and cones and
their high demand of ω3 and ω6 LCHU-PUFAs.

Ultrastructure of rod and cones and roles of membrane
PUFAs for photoreceptors
Rods are tall, long and thin highly specialized neurons
ordered in palisade array whose apical side are
choroid-oriented to the apex face of PEC (Figs. 1 and 3).
Rod axons establish synapses with other neurons in the
innermost layers of the retina. Their apical segment, as
happens in cones too, is highly differentiated in two seg-
ments: outer (OS) and inner joined by a thin portion of
cytoplasm. The OS of rods contains the integral mem-
brane glycoprotein (GP) rhodopsin. OS is heavily loaded
with a large number of closed membranous sacs, which
overlap as pancakes stacked in a perpendicular array re-
spect to the major axis of the rod. Rhodopsin and others
GPs visual pigments move along and within (flip-flop)

the phospholipid bilayer thus being their functionality
fully dependent of the viscosity/fluidity balance of the
sacs membranes, fact which in turns is mainly deter-
mined for the relative ratio of ω3/ω6 /ω9 PUFAs and
cholesterol [81, 82]. Rods are distributed by the retina
together with the cones but are better adapted for vision
with little light intensity or twilight vision (scotopic vi-
sion), which does not allow a proper the perception of
colors. Interestingly, this kind of crepuscular vision re-
mains better preserved in DMRP [83, 84].
Cones make up a population of about 120 million of

thin, highly polarized neurons, about 100 μm in length,
with their major axis perpendicular to the surface of the
retina and also encastrated within complex interdigita-
tions of PEC. Cones gathers in the fovea centralis, an
area without blood vessels where the remnant layers of
the retina are very thin being towards this zone where
our eyes clearly project the objects of the outside world
(photopic vision). Worth to consider, incoming and out-
coming bunch of eye blood vessels and nerves are mor-
phologically isolated from retina cell population by
elaborated complex union as previously described built
by oligodendroglia, pericytes and impermeable blood
vessels of the CNS. Proinflammatory bioactive lipids
(BLs) derivative molecules, as eicosanoids, leukotrienes
(LTs) and cytokines released from macrophages, endo-
thelial cells and other cells, may migrate from small
blood vessels and choriocapillaris crawling towards the

Fig. 3 Higher magnification of the layers 9 to 11 plus CC of normal retina as depicted in Fig. 1. Fenestrated endothelia (arrows) with thinny BM and
some pericytes (p) of bv within loose ct of CC layer which locate closer to Bruch membrane (indicated with a black triangle, ▼).; rods and cones
inner segments (RCIS) are deeply allocated within entangled thin processes of PEC . The basal plasmalemma of PEC, underlying the BM, have
complicated recesses sealed by ZO, ZA and desmosomes (D). Within these processes abundant pigment granules (pg) and lysofagosomes (lf) are
visualized intermixed within a vast and intricated network of cisterns and vesicles of smooth endoplasmic reticulum (SER). Few aged sacs of rod
and cones partially digested appears as myelin-like figures (filled black arrow)
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choroids and retina when the selective barriers described
above became progressively damaged. These proinflam-
matory molecules have facilitated their access to the
neighbors OS of cone and rods due to the lack of a dis-
tinctive basal membrane between retina and choroids.

Metabolism of PUFAs and DMRP
PUFAs in health. PUFAs metabolism is altered in DM
As depicted in Fig. 6 and briefly explained in the legend,
PUFAs have at least two major functions: as a major
component of cell membranes bilayers and as precursors
of many BLs. Under normal physiological conditions
most of BLs derived from ω6-AA, ω3-EPA and ω3-DHA
as lipoxins, resolvins, and protectins tend to maintain

normal homeostasis and avoid the initiation of LGCI in
DM [85, 86].
Relative metabolically/functionally w3/w6D may occur

more often than believed. This deficiency may occur if one
or more of three circumstances appear: 1- lack of essentials
ω3/ω6 PUFAs intake in the diet, likely to be seen in less de-
veloped societies; 2- unhealthy intake of fats and lipids in
the diet, such as excess consumption of saturated FA, hy-
drogenated vegetable oils and other non-Essential Fatty
Acids (EFAs), mainly ω9 precursor (i.e. transgenic corn/
sunflower oils enriched in oleic acid,OA, 18:1 ω9) which
vol/vol compete with ω3/ω6 PUFAs metabolism (see le-
gend Fig. 6). 3- Abnormalities in the metabolism of FA, as
certainly happens in DM, as will be described. Although

Fig. 4 Human retina of diabetic patient with advanced DMRP. This picture illustrating layers 1 and 2 as identified in Fig. 1. Also compare with
Fig. 2. Microhemorrhage (indicated with a black square, ■) from heavily congested bv pouring out rb and inflammatory cells within augmented
perivascular collageno-genesis in ct interstitium. Cystoid degeneration (CD) appears as enlarged and coalescent bubbles arising within IC
containing coarse bundles of intermediate filaments (if). Thickened Bruch membrane bordering the vitreous body and BMs of bv are
characteristic features of DMRP diapedesis of inflammatory cells (polynuclears, lymphocytes) and wandering plasmocytes are pointed (arrows).
Swollen mitochondria are frequently seen in axolemma of the layer 2 of axons of ganglion neurons and cytoplasmic projections of Müller glial
cells overloaded with coarse bundles o neurofilaments some of them invading the lumen of bv through damaged BMs (indicated with a black
circle, ●) whereas others are deeply anchored within Bruch membrane. Incontinent or damaged ZO and ZA are shown. Apoptotic Müller cell
nucleus (indicated with a black triangle, ▲)
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industrial societies have almost eradicated the w3/w6D
from insufficient intake of EFAs, items 2 and 3 become
risky situations for both rich and poor countries, with the
aftermaths of metabolic syndrome, obesity, dyslipidemias,
DM and their late complications as DMRP [1, 2, 4, 87].
We showed that abnormal LCHU-PUFA, like eicosatrie-

noic acid (20:3 ω9) produced by an imbalance in metabol-
ism of different series of FA, a marker of w3/w6D, was able
to down-regulate the expression of both E-cadherin and
desmoglein in squamous skin cells, key molecules for the
adequate sealing of epithelial-conjunctive barriers [61, 88].
As discussed, when a metabolically w3/w6D occurs there is
weakened expression of cell adhesion molecules and cell–
cell adhesiveness, which appears to be involved in certain
pathological features as losses of functions of several bar-
riers involving endothelia, cell- cell and cell-matrix interac-
tions as described above (summary in Fig. 7).
LCHU-PUFAs together with cholesterol can regulate

membranes particular properties as fluidity/viscosity and
in turns they modulate their dynamics and biophysical
properties [89] and lateral segregation of membrane

glycoprotein as happen with visual pigment of rods and
cones. The visual macromolecules of the pigment must
be densely packed, ensuring an optimal exposure to the
photons, for their correct functioning so changes in the
membranes can affect this arrangement [90–92].
In DM the metabolism of PUFAs is clearly abnor-

mal, insofar as there is a partial loss of the enzyme
delta-6-desaturase activity, which catalyzes the initial
desaturation step in the pathways involved in the syn-
thesis of longer chain PUFAs, whose disponibility be-
comes progressively diminished [15, 28, 93, 94]. Gong
et al. (2017) reviewed these issues concluding that
dietary ω3-LCHU-PUFAs reduce retinal and choroidal
neo-angiogenesis. ω3-LCHU-PUFAs BLs metabolites
from COX2 and LOX are generally inhibitors whereas
ω6-LCHU-PUFAs metabolites promote inflammation
and angiogenesis. However, the ω3 and the ω6 lipid
products of cytochrome P450 oxidase 2C promote
neovascularization in retina and choroid, suggesting
that inhibition of this pathway might be beneficial in
prevention and treatment of DMRP [8].

Fig. 5 Higher magnification of the layers 9 to 11 plus CC of human retina of diabetic patient with advanced DMRP; as identified in Fig. 1. Also
compare with Fig. 3. Congested bv in CC layer showing increased perivascular collagen genesis in coarse ct interstitium. Thickening of Bruch
basal membrane (indicated with a black triangle,▼) bordering against CC layer and BMs of bv are characteristic features of DMRP at this stage.
Diapedesis of inflammatory cells (polynuclears, lymphocytes) from bv and wandering plasmocytes are pointed (arrow). There are scarce pericytes
some of them in apoptosis (apoptotic cells were indicated with a black diamond, ♦). Swollen mitochondria and vesicles of SER are frequently
seen in cytoplasm of PEC, whose nuclei are in diverse stages of apoptosis. Incontinent or damaged ZO, ZA are identified thus facilitating the
development of large PEC intercellular vacuoles (*) which in turns collaborate in the worsening of retinal edema. Few rods and cones inner
segments (RCIS) are visible, most of them degenerated and vacuolated. Closer PEC recesses are filled with increased number of lyso-phagosomes
(lf) and myelin like figures (indicated with a filled black arrow) containing aged sacs membranes in diverse stages of digestion
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PUFAs alteration in DM resembles w3/w6D
As quoted above, a relative deficiency of ω3 EPA and DHA
and ω6 AA, or excesses of ω9 food intake, may predispose
to the development of DM. Patients with types DM1 and
DM2 have decreased plasma and tissues concentrations of
AA, EPA and DHA whereas ω9 FA derivatives are in-
creased in their plasma phospholipid fraction [1, 4, 95].
These findings give further support to the concept that dis-
balanced metabolism of PUFAs may have a significant role
in the pathobiology of DM and their complications in
membranes phospholipids heavily dependent of ω3 and ω6
LCHU-PUFAs supply, as is mammal retina [14, 18, 96].

PUFAs changes in PR membranes in DM and ω3 and ω6
deficiency (w3/w6D)
A strong association between dyslipidemia and the de-
velopment of diabetic retinopathy was revealed by re-
sults of the Diabetes Control and Complications Trial/
Epidemiology of Diabetes Interventions and Complica-
tions cohort study [97].

In vivo experiments in Rhesus monkeys shows that a
diet low in ω3 PUFA (ALA or DHA) was associated
with specific perturbations in retinal function, includ-
ing increased implicit times and a substantial delay in
the recovery of the rod-isolated photoresponse. Rod
sensitivity was reduced by 40% in the long standing
dietary ω3–deficient monkeys and the onset of the ris-
ing phase of the photoresponse and rod recovery were
also significantly delayed [98]. These alterations appear
to be linked to dimminution in retinal DHA levels that
may alter biophysical properties and lipid-protein in-
teractions in retinal membranes where visual pigments
are inserted.
Early-stage diabetes induced a marked decrease in

elongases expression. These fact produce a significant
reduction in total retinal DHA and diminished incorpor-
ation of LCHU-PUFAs into retinal phosphatidylcholine.
The decrease in ω3/ω6 PUFAs ratio in retina is associ-
ated with an increase in gene expression of proinflam-
matory markers IL6, VEGF, and intercellular adhesion

Fig. 6 Metabolism of Dietary Fatty Acids. FA are oxidized to provide energy, stored in adipose tissue, and selectively incorporated into phospholipids (PL) of
all cellular membranes. Once ingested in food, they are desaturated and elongated to yield several PUFAs. PUFAs are long carbons- chained molecules
having two or more double bonds of the cis configuration. ω3 and ω6 PUFAs cannot be synthesized by metazoan. They must be ingested through the
diet and hence are named Essential Fatty Acids (EFAs). PUFAs ω6 derive from LA (18:2 ω6) and ω3 PUFAs arise from alpha- linolenic acid (ALA, 18:3 ω3).
On the contrary, monounsaturated palmitoleic acid (POA, 16:1 ω7) and oleic acid (OA, 18:1 ω9) are easily synthesized by the body. Even though all EFAs
are PUFAs not all PUFAs are essentials. In this work PUFAs and EFAs will be used as synonymous. Non-EFAs refers to monounsaturated POA and OA and
their non –EFAs long chained PUFAs derivatives; also saturated fat, trans FA and cholesterol are included under this name. ALA and LA- and in certain
conditions, non-EFA from the ω7 and ω9 families- compete for a common Δ5- and Δ6-desaturase and cyclo-oxygenase and lipo-oxygenase enzymes kits
that are essential for the formation of long-chain metabolites such as AA, EPA and DHA from the EFAs linoleic and alpha-linolenic acids, respectively.
Resulting bioactive lipids (BLs) have key, oftenly opposite, biological functions [28]. In this “race”, 18:3 ω3 ALA is desaturated preferentially, followed by 18:2
ω6 LA, thus avoiding the conversion of OA to the more highly unsaturated ω9 metabolites
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molecule-1 (ICAM-1) thus creating an LGCI environ-
ment that contributes and maintains the development of
DMRP [14, 18].
In addition, deficiency of LCHU-PUFAs, and low ω3/ω6

PUFA ratios occur in human retinas with macular degen-
erations. Quality of lipids foods certainly influence human
retinal ω3/ω6 ratios, which may explain why a diet high in
ω3 rich fish oil (DHA and EPA) is beneficial against

macular degeneration as pointed out in some epidemio-
logic studies [81, 99].
Streptozotocin-diabetic rats showed decreased

desaturase and elongase activities and alterations
in rod function exacerbated by low intake of diet-
ary ω3 PUFAs. A decrease in retinal DHA was
found (171%) in diabetics animals fed deficient ω3
diet [8, 96].

Fig. 7 Fatty acids, inflammation and diabetic retinopathy. Role of dietary fatty acids, bioactive lipidic metabolites and LGCI and to risk for diabetic retinopathy
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In summary, some epidemiology, clinical and experimen-
tal research coincidently show that a decrease of retinal ω3
levels, increase of oxidative stress and proinflammatory me-
tabolites are common factors that are involved in the
pathophysiology of photoreceptor death in several degen-
erative diseases of the retina including DMRP. On the con-
trary high levels of DHA synthetized by retinal metabolism
protects retina PRs from apoptosis induced by oxidative
stress and promotes their differentiation [8, 17].

PUFAs in rod and cones outer segments. Perturbations in DM
In normal conditions, LCHU-PUFAs are particularly
enriched in vascular retina, being the bulk of DHA and
AA around 10% of isolated membranes of retinal capillar-
ies and surrounding pericytes [100]. Radiolabeled ω3
LCHU-PUFA precursor given intraperitoneally or orally
to healthy rats is first localized in the liver and one hour
later labeled DHA was detected in rods. DHA and docosa-
pentaenoic acid (DPA, 22:5 ω6) are avidly incorporated in
PRs membranes of rods and cones reaching a peak at 24 h
after infusion. PRs incorporate ω3 and also ω6
LCHU-PUFAs 3–5 times more efficiently that PEC does
[101, 102]. LCHU-PUFAs are then convoyed to the
smooth endoplasmic reticulum (ER) located in the myoid
(the basal area of the OS) of PRs and then into a variety of
membranes PLs and triglycerides. LCHU-PUFAs enriched
PLs are used for synthesis of new membranes of disk and
vesicles of OS of rods and cones and tenaciously retained
in the bilayer closer to the molecules of rhodopsin and to
the other visual pigments. Damaged or aged disks slowly
migrate contacting the intricated cytoplasmic extensions
of PEC where they are engulfed and digested within PEC
lysosomes (see Figs. 1 and 3). DHA and other ω3 and ω6
LCHU-PUFAs are separated and esterified in triglycerides,
stored in the abundant oil droplets of PEC and then
re-uptaked by myoid area of rod and cones [8, 12, 82, 103,
104].
These highly and selective needs for ω3 and ω6

LCHU-PUFAs for efficient morpho-physiology of retina
highlights the sensible dependence of enough supply of
dietary precursor (the EFAs ω3-ALA and ω6-AA) of
these LCHU-PUFAs. Even though the human body
(mainly the liver) potentially have the capabilities to de-
saturate and elongate EFAs for satisfice the needs of
highly differentiated retinal populations, these are un-
usually high (see Fig. 1). Accordingly, when an experi-
mental deprivation of ω3 and ω6 LCHU-PUFAs is
induced these lipids are strongly retained by retinal PRs;
if this deficiency is maintained finally the visual acuity
become altered [105, 106]. Unfortunately, the food
sources of formed LCHU-PUFAs, particularly those
enriched in ω3 LCHU-PUFAs, are very scarce in the so
called western diets thus supporting the need of dietary
intervention or nutrient supplementation, even in

healthy pregnancy, childhood and elderly [67, 107].
Hence, if the desaturation and elongation of ω3-ALA
and ω6-AA become abnormal, as happens in several
metabolic diseases including DM, the fresh supply of ω3
and ω6 LCHU-PUFAs for rod and cones become pro-
gressively deficitary. Progressive blockade of activities of
Δ9, Δ6 and Δ5 desaturases have been consistently de-
scribed in DM animals and humans as said before [108,
109]. Actually, DM patients shows lower concentrations
of LCHU-PUFAs whereas saturated FA and monoenes,
mainly OA and derivatives, are higher [110]. In a DM rat
model, a decrease in FA elongases activities were observed
with decreased incorporation of LCHU-PUFAs in retinal
PLs and increased markers of inflammation [14, 18].
Promisingly DM2 middle-aged and elderly patients
enroled in the “Prevención con Dieta Mediterranea” (PRE-
DIMED) study, after 6 years of follow up those adherents
to Mediterranean dietary habits, particularly those whose
foods included ω3-LCHU-PUFAs (around 500mg/day),
showed prolonged preservation of retinal neuronal func-
tions [111]. For practical purposes to the clinician a well
summarized table of the putative beneficial actions of
ω3-LCHU-PUFAs supplementation in DMRP and its
major complication, the age related macular degeneration,
is giving by San Giovanni and Chew (2005) [12].

Autoimmune response and disruption of blood retinal
barrier (BRB) in DM
Since each of the three embryonic layers of the eye will
differentiate in particularly cell populations, a vast num-
ber of new epitopes will appear throughout the pre- and
post- natal development, some of them being highly
sensible if recognized by the IS of the own subject, thus
becoming propense to trigger an autoimmune disease in
the eye globe. When inner and/or outer BRB become
disrupted, these “not-recognized” molecules become tar-
get sites for the IS response. BLs as eicosanoids, may dif-
ferentially affect the activities of such molecules, as ILs,
distorting their functions [12, 112, 113]. Coincidently,
lower levels of anti-inflammatory IL-10 were compara-
tively detected in plasma and tissue B lymphocytes of
patients suffering of DMRP [114]. In a model of DM rats
BRB permeability, assayed with Evans Blue (EB) dye, it
was altered at six months of disease, whereas the
amount of tight junction proteins decreased significantly.
The treatment with TNFSF15, an endogenous neovascu-
larization inhibitor and strong negative regulator of vas-
cular homeostasis, protected the BRB functions [115]. In
advanced stages of DM, measures of TL1A levels, a var-
iety of proinflammatory TNF-α, in the retina and vitre-
ous were significantly increased. In addition, values for
VEGF, TNF-α and IL-1β in the retina and vitreous were
comparatively higher at 3 and 6months in the DM [23].
As illustrated (Figs. 3 and 5) pericyte also contributes to
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impermeability of the BRB. Actually, it was showed that
pericyte apoptosis in diabetes may cause a subtle abnor-
mal immune response as demonstrated by in vitro study
pointing out that several retinal autoantibodies may in-
duce pericyte death followed by the complement system
activation [116].

Intraretinal low grade chronic inflammation (LGCI) in DM
Consistently experimental, cohort and clinical studies
showed that in DMRP characteristics signs of LGCI de-
velops. This issue has been thoroughly revised by Das
[15, 28] and other authors [52, 117]. Indeed, under oph-
thalmoscopic examination increased diameter of retinal
vessels with augmented blood flow and eventually blood
stasis, followed by leakage of plasma are observed. These
lesions are accompanied by proteins leakage, BLs release,
leucocyte lodging, diapedesis and migration of lympho-
cytes. Microscopical examination of the retina allows to
corroborate inflammatory cells colonization (Figs. 4 and
5). Attachment and diapedesis of inflammatory cells may
be linked to increased synthesis of TNF-α, VEGFs,
series-2 PGs, enhanced expression of ICAM-1 on the
blood vessels bed. Also, expression of integrins, as lam-
inin, fibronectin and vascular cell adhesion molecule-1
(VCAM-1) arise on leucocytes cell membranes. Taken as
a whole this scenario also indicate augmented oxidative
stress [118]. Rheological disturbances in the blood flow
causes increased synthesis of several reactive oxygen
species (ROS) and lipid peroxidation [119]. Eventually a
slow and progressive loss of permeability of the BRB de-
velops along with endothelial disfunction, followed by
pericytes apoptosis and endothelial denudation. In a fol-
lowing stage retinal capillaries will suffer periods of is-
chemia followed by reperfusion [120]. Interesting,
patients with rheumatoid arthritis also suffering of
DMRP treated with anti-inflammatory NSAIDs as as-
pirin at higher doses showed comparatively less severe
retinal histopathological alterations [121]. These effects
may be due to diminution in the synthesis of COX-2 de-
rivatives as PGs, prostacyclines, TXs and inflammatory
COX2-endocannabinoids derivates [2, 32, 118, 120]. In
addition DMRP patients exhibited reduced plasma and
vitreal concentrations of two key vasodilators, PGE1 and
PGI2 whereas TXB2 and LTs were increased along with
high vitreous expression of TNF-α, IL1 and IL6 [122,
123]. As happens in other vascular beds in diabetic pa-
tients, in DMRP there is also a loss of homeostatic bal-
ance between vasodilator and platelet anti-aggregator
effects against platelet aggregator and vasoconstrictors
response induced by TXA2 and LTs, being this one of
the causes of the alterations of ischemic vasoconstriction
and reperfusion of retinal vessels, scenario aggravated by
activation of platelet aggregation and clotting trend [10].

Conclusions and recommendation for healthy
practices in long standing diabetic patients in risk
of diabetic- linked retinopathy
As analyzed, DMRP and its accompanying lesions consti-
tute a frequent ocular complication in long-standing dia-
betic patients. These illnesses, along with other associated
chronic diseases such as obesity, overweight, some cancers,
several heart diseases, dyslipidemias and hypertension, have
in common a persistent condition of LGCI [4, 15, 28, 93].
Once this scenario is generated, which usually takes a long
asymptomatic time, an imbalance is established and main-
tained between a decreased synthesis of anti-inflammatory
components such as some cytokines and bioactive lipids (as
resolvins, maresins and protectins) derivatives of ω3 or ω6
LC-PUFAs, on the one hand, and simultaneously, a sus-
tained increase in plasma (and intraocular) proinflamma-
tory cytokines, PGs, pro-inflammatory eicosanoids,
leukotrienes, certain growth factors (as VEGF), free radi-
cals, ROS and several auto-antibodies. Abnormal or defi-
cient availability of essential ω3 PUFA in foods and/or cell
membranes, indeed take place due to unhealthy dietary
practices as are consumption of foods very rich in satu-
rated fats, or genetically modified sunflower oil enriched
in non- essential ω9 oleic acid, and simple sugars, since a
chronic subclinical or border-line w3/w6D may occur.
Hence It seems beneficial to start with easy attempts de-
voted to stimulate those anti-inflammatory molecules that
the organism naturally produces, finished apparently sim-
ple measures, sustained throughout the life span of the
DM patients, in order to prevent and to attenuate the vis-
ual complications of long-standing DM (Fig. 7). Beside the
scheduled controls with the ophthalmologist, these mea-
sures include, in the broad sense, a global lifestyle change,
including a strict control of blood glucose avoiding sud-
den, extreme and continuous fluctuations in glycemic
values, strict weight control, healthy dietary habits with
low intake of fatty meats, saturated and/or processed fats,
increased intake of vegetables and legumes and few lean
meats. More meals containing “blue fishes” rich in ω3
(mackerel, salmon, herring, tuna, sardine, containing up
10% of fats), daily exercise of moderate intensity, such as
cycling in the plain, or fixed bicycle, walks outside at a
brisk pace, or on mechanical treadmills (5 km/h) for 30–
45min. Because the intake of ω3 rich-fishes is usually
scarce in the West diet, due to cultural reasons, availability
and / or higher costs, it is advisable exogenous daily per os
administration of well- sealed fish oil capsules enriched in
ω3-EPA and ω3-DHA, usually containing of 1000mg,
(recommended dose: 2000mg/day), immediately before
the meals.
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