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Abstract

(using the SKI-Il) were conducted.

S1P correlated with enhanced cell death.

AdipoRon

Background: The prevalence of type 2 diabetes, obesity and their various comorbidities have continued to rise. In
skeletal muscle lipotoxicity is well known to be a contributor to the development of insulin resistance. Here it was
examined if the small molecule adiponectin receptor agonist AdipoRon mimicked the effect of adiponectin to
attenuate palmitate induced reactive oxygen species (ROS) production and cell death in L6 skeletal muscle cells.

Methods: L6 cells were treated +£0.1 mM PA, and = AdipoRon, then assays analyzing reactive oxygen species (ROS)
production and cell death, and intracellular and extracellular levels of sphingosine-1 phosphate (S1P) were
conducted. To determine the mechanistic role of S1P gain (using exogenous S1P or using THI) or loss of function

Results: Using both CellROX and DCFDA assays it was found that AdipoRon reduced palmitate-induced ROS
production. Image-IT DEAD, MTT and LDH assays all indicated that AdipoRon reduced palmitate-induced cell death.
Palmitate significantly increased intracellular accumulation of S1P, whereas in the presence of AdipoRon there was
increased release of STP from cells to extracellular medium. It was also observed that direct addition of extracellular
STP prevented palmitate-induced ROS production and cell death, indicating that S1P is acting in an autocrine
manner. Pharmacological approaches to enhance or decrease S1P levels indicated that accumulation of intracellular

Conclusion: This data indicates that increased extracellular levels of S1P in response to adiponectin receptor
activation can activate S1P receptor-mediated signaling to attenuate lipotoxic cell death. Taken together these
findings represent a possible novel mechanism for the protective action of adiponectin.
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Background

The prevalence of type 2 diabetes and obesity has continued
to rise and with this various comorbidities have become per-
vasive [1]. Skeletal muscle is a metabolically active tissue in
which there are high levels of mitochondria [2, 3]. Lipotoxi-
city in skeletal muscle is well recognized as a contributor to
the development of insulin resistance [4, 5]. In addition,

* Correspondence: gsweeney@yorku.ca
Department of Biology, York University, Toronto, ON M3J 1P3, Canada

B BMC

under lipotoxic conditions reactive oxygen species (ROS) are
produced, leading to increased lipid peroxidation, which in
turn also leads to increased levels of cell death [6, 7]. It has
been shown that addition of palmitate to skeletal muscle
cells leads to increased levels of superoxide [8, 9]. Previous
research has shown that palmitate (PA) induced cell death is
in part due to increased accumulation of distinct ceramide
species [10, 11]. While increased levels of ceramide are con-
sidered to be toxic, several metabolites of ceramide, such as
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sphingosine-1 phosphate (S1P) are known to mediate benefi-
cial cellular responses, such as anti-apoptotic effects [12].

Lack of adiponectin action has now been implicated in
many disease states, perhaps most especially type 2 dia-
betes in obesity [13, 14]. Healthy individuals typically have
high concentrations of adiponectin within the circulation
[15]. In both diabetes and obesity circulating levels of adi-
ponectin are significantly reduced [16—-18]. Although the
bulk of circulating adiponectin derives from adipose tis-
sue, previous research has in fact shown that skeletal
muscle can produce and secrete adiponectin [19, 20]. Adi-
ponectin has been shown to regulate fatty acid metabol-
ism in muscle and can lead to increased fatty acid uptake
and decreased fatty acid synthesis [21, 22]. Previous re-
search has shown that under high-fat feeding conditions
in mice, adiponectin can improve insulin sensitivity and
prevent damage to skeletal muscle cells [23]. Since lower
levels of adiponectin have been implicated in several meta-
bolic disease states [24—26] there has been significant
interest in the identification of small molecule adiponectin
receptor agonists. One such small molecule is AdipoRon,
which has been shown to mimic adiponectin signaling
both in multiple cell types and in animal models [27, 28].

One important feature of adiponectin action, which could
be beneficial during lipotoxic conditions, is that it stimulates
the production of S1P, a signaling sphingolipid that is formed
from the conversion of ceramide into sphingosine by cerami-
dases and subsequent conversion of sphingosine into S1P by
sphingosine kinase [29, 30]. Adiponectin receptor 1 (AdipoR1)
and 2 (AdipoR?2), both have intrinsic ceramidase activity which
is activated after binding with adiponectin or receptor agonists
[31, 32]. This increase in ceramidase activity leads to increased
conversion of ceramide into S1P, thereby reducing the buildup
of ceramides and related lipotoxic molecules [31-34]. Previous
research has shown that S1P plays an important role in skel-
etal muscle regeneration [35, 36]. Additionally, increased levels
of S1P have been linked to decreased insulin resistance and
cell death [37-39]. However, whether adiponectin-mediated
increases in S1P action are required to confer anti-lipotoxic ef-
fects in skeletal muscle cells has not been fully elucidated.

Here rat L6 skeletal muscle cells treated with palmitate
with or without AdipoRon were used to determine intra-
cellular and extracellular S1P levels, ROS production
and cell death. A subset of cells were also treated cells
with S1P and pharmacological inhibitors to enhance or
reduce S1P production. The findings provide new know-
ledge on the mechanistic role of S1P in mediating bene-
ficial effects of adiponectin in skeletal muscle cells.

Methods
Cell culture
Rat L6 skeletal muscle myoblasts were incubated in
alpha modified Eagle medium (a-MEM, Wisent Inc.,
Saint-Jean-Baptist, Quebec, Canada) supplemented with
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10% volume/volume (v/v) fetal bovine serum and 1%
antibiotic/antimycotic solution (v/v, Wisent Inc., Saint-
Jean-Baptist, Quebec, Canada). Prior to passage and
seeding for experiments cells were grown to a maximum
of 80% confluency in 75cm? flasks at 37 °C and 5% CO2.
L6 cells were plated and left overnight and then were in-
cubated for 4h with 0.5% BSA containing medium.
Then 0.1 mM of PA dissolved in 3% bovine serum albu-
min (BSA) or BSA control was added. A subset of cells
was treated with either 35uM AdipoRon (Cayman
Chemical, Ann Arbor, Michigan, United States), 2.5 uM
sphingosine-1-phosphate (S1P, Sigma Aldrich, St. Louis,
Missouri, United States), 5uM sphingosine kinase in-
hibitor II (SKI-II, Sigma Aldrich, St. Louis, Missouri,
United States), or 5uM 2-Acetyl-5-tetrahydroxybutyl
imidazole (THI, Sigma Aldrich, St. Louis, Missouri,
United States) as indicated.

Analysis of intracellular ROS

CellROX Green (Thermofisher Scientific, Waltham,
Massachusetts, United States) was utilized to detect ROS
production in live cells following manufacturers instruc-
tions using an EVOS FL Auto 2 Cell Imaging System
(Thermofisher Scientific, Waltham, Massachusetts,
United States). Additionally, for plate-based assays, 2’,
7'-Dichlorofluorescin Diacetate (DCF-DA, Sigma Al-
drich, St. Louis, Missouri, United States) was utilized to
detect ROS as previously described [40].

Assays to measure cell death

Image-IT DEAD Green Viability Stain (Thermofisher
Scientific, Waltham, Massachusetts, United States) was
utilized to detect cell death after 24 h incubation follow-
ing manufacturers instructions using a Nikon ECLIPSE
Ti2 (Nikon, Tokyo, Japan). Using a kit, the release of
lactate dehydrogenase (LDH) was determined (G-Biosci-
ences, St. Louis, Missouri, United States). Briefly, 25 ul of
media was transferred to a separate 96-well plate. 25 ul of
reconstituted substrate mix was then added and the plate
was incubated for 30 min. Following which, 25 ul of stop
solution was added and the absorbance was then mea-
sured at 490 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) assay (Sigma Aldrich,
St. Louis, Missouri, United States) was conducted by incu-
bating cells with 5mg/ml MTT in PBS for 1h at 37°C
and 5% CO,. After incubation cells were washed with
PBS. DMSO (Sigma Aldrich, St. Louis, Missouri, United
States) was then added to dissolve the precipitated forma-
zan. The absorbance was then measured at 570 nm.

Measurement of S1P levels

L6 cells were plated in 6 well plates and were treated
with either PA or BSA with or without the addition of
35 uM AdipoRon. After 24h the media (1 ml) was
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removed from the cells and placed in a separate tube.
The media was then concentrated to approximately 1/
5th it’s initial volume. The cells were lysed with a 0.5%
solution of Sodium dodecyl sulfate (SDS, Sigma Aldrich,
St. Louis, Missouri, United States). Both media and cell
lysates were then frozen until use. To determine the
levels of S1P, an ELISA kit was utilized (MyBioSource,
San Diego, California, United States).

Statistical analysis

For CellROX Green experiments data, where no statis-
tical analysis was conducted data is shown as mean
95% confidence intervals for 150 cells. For all other
experiments data is shown as boxplots [41]. All data
were analyzed using Mann-Whitney U test with differ-
ences being considered statistically significant at P<
0.05. Statistical analysis was conducted using GraphPad
Prism 6 (GraphPad Software, San Diego, California,
United States). As multiple comparisons were utilized
the false discovery rate (FDR) was determined by cor-
recting the obtained P values using the Benjamini-
Hochberg procedure for multiple comparisons [42]. In
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instances where the P value is rendered nonsignificant
due to the FDR calculation, this is indicated within the
figure and the specific values are given within the results
section.

Results

AdipoRon reverses palmitate-induced ROS production

To determine the impact of incubation of PA and Adi-
poRon on ROS production in L6 cells a 12 h time course
was conducted. ROS production was higher in PA-
treated cells from 1 to 6 h (Fig. 1a). Coincubation of Adi-
poRon and PA reduced ROS production compared to
PA treated cells. In contrast coincubation of control cells
with AdipoRon did not alter levels of ROS production
(Fig. 1a). To verify the findings of the live cell time
course experiment, ROS production was measured using
a DCF-DA plate based assay after 1, 2, 4, and 6 h of in-
cubation with palmitate. While there was significance
after 1 h of incubation for PA vs control (P = 0.03, FDR =
0.06), PA vs control + AdiponRon (P=0.03, FDR =
0.06), and PA vs PA+ AdipoRon (P =0.03, FDR = 0.06)
after FDR calculation the corrected P value was greater
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Fig. 1 AdipoRon attenuates palmitate induced ROS production. L6 cells were incubated with 0.1 mM palmitate (PA) or vehicle control (Con) and
were also treated with 35 uM AdipoRon as indicated for various timepoints as indicated following which ROS was measured using a) CellROX
green live cell imaging (shown as mean + 95% confidence intervals for 150 cells) or b) using DCF-DA. Graphs are displayed as boxplots; a=P <
0.05 vs 1h Con, b=P<0.05 vs 1h Con+AdipoRon, c=P<0.05 vs 1h PA, d=P<0.05 vs 2h Con, e=P <005 vs 2h Con+AdipoRon, f=P < 0.05 vs
2h PA,g=P<0.05 vs4h Con, h=P<005 vs 4h Con+AdipoRon, i=P < 0.05 vs 4 h PA, red bolded letters indicate P values which were rendered
nonsignificant > 0.05 after FDR calculation, n=4-5




Botta et al. Lipids in Health and Disease (2020) 19:156

than 0.05, indicating no significance. Similar to the re-
sults obtained from live cell imaging, incubation with
palmitate significantly increased ROS production after 2
and 4 of incubation in comparison to BSA control. How-
ever, there was not a significant increase in ROS produc-
tion after 6 h of incubation (Fig. 1b). To determine the
impact of Adiponectin on PA-induced ROS production,
a subset of cells were incubated with the adiponectin re-
ceptor agonist AdipoRon. Similar to the results obtained
from live cell imaging incubation with AdipoRon signifi-
cantly reduced PA-induced ROS production after 1, 2,
and 4 h of incubation. No reduction in ROS production
was observed after 6 h of incubation (Fig. 1b).

AdipoRon reverses palmitate-induced cell death

To determine the impact of PA and AdipoRon on cell
death, cells were incubated with PA for 24h with or
without the addition of AdipoRon. Imaging with Image-
IT Dead (Thermofisher Scientific) indicated that PA sig-
nificantly increased cell death in comparison to controls
(p. This increase in cell death was reversed by the coin-
cubation of AdipoRon and PA (Fig. 2a). To verify these
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findings, MTT and LDH plate based assays were con-
ducted. Similar to the microscopy results incubation
with PA significantly increased cell death in comparison
to BSA control. Coincubation with AdipoRon signifi-
cantly reduced cell death in PA-treated cells. Coincuba-
tion with AdipoRon in BSA control cells did not
significantly alter the level of cell death (Fig. 2b-c).

AdipoRon significantly increases extracellular levels of
S1P

As palmitate can be used for the de novo synthesis of
ceramide, which can subsequently be converted into
S1P, the impact of incubation with palmitate on intracel-
lular and extracellular concentrations of S1P was deter-
mined. Therefore, the concentration of S1P both within
L6 cells (intracellular) and in the media (extracellular)
after incubation with palmitate was determined. It was
found that incubation with palmitate significantly in-
creased intracellular levels of S1P (P =0.03, FDR = 0.06)
(Fig. 3a), however, incubation with palmitate did not
cause a significant increase in extracellular levels of S1P
(P=0.03, FDR = 0.06) (Fig. 3b). In contrast, the addition
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Fig. 2 AdipoRon attenuates palmitate induced cell death. L6 cells were incubated with 0.1 mM palmitate (PA) or vehicle control (Con) and were
also treated with 35 uM AdipoRon as indicated for 24 h after which cell death (shown as % toxicity) was measured using a) Image-IT DEAD Green
Viability Stain b) MTT or ¢) LDH. Graphs are displayed as boxplots; a=P < 0.05 vs corresponding Con, b =P < 0.05 vs corresponding
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of AdipoRon significantly decreased intracellular levels
of S1P and significantly increased extracellular levels of
S1P (P=0.03, FDR =0.06) (Fig. 3a-b). Addition of ex-
ogenous S1P significantly reduced PA-induced ROS pro-
duction. Similarly, the addition of AdipoRon also
significantly reduced PA-induced ROS production. How-
ever, coincubation of both S1P and AdipoRon did not
lead to a further decrease in ROS production, therefore
the effects of S1P and AdipoRon are not additive
(Fig. 3c). Similar to ROS production incubation with ei-
ther AdipoRon or S1P led to a significant decrease in
PA-induced cell death as measured by MTT (Fig. 3d)
and LDH (Fig. 3e). However, coincubation with both
AdipoRon and S1P did not lead to a further decrease in
cell death (Fig. 3d-e).

Pharmacological manipulation of S1P significantly alters
palmitate-induced ROS production and cell death

To further investigate the role of S1P in the modulation
of PA-induced ROS production and cell death sphingo-
sine kinase inhibitor SKI-II which prevents S1P produc-
tion was used. Incubation with SKI-II in control BSA
cells did not increase ROS production in comparison to

BSA alone. Incubation with SKI-II in PA-treated cells
led to a significant decrease in PA-induced ROS produc-
tion after 2h and 4h of incubation. However, the
addition of AdipoRon did not lead to a further reduction
in ROS production at either time point (Fig. 4a). In con-
trast to SKI-II which prevents S1P production, 2-Acetyl-
4-tetrahydroxybutyl Imidazole (THI) inhibits S1P-lyase
which catalyzes the irreversible decomposition of S1P to
phosphoethanolamine and trans-2-hexadecenal, there-
fore THI increases levels of S1P. Incubation with THI in
BSA treated cells significantly increased ROS production
in comparison to BSA alone. Incubation of PA-treated
cells with THI did not alter PA-induced ROS production
after either 2h or 4h (Fig. 4a). Interestingly, coincuba-
tion of THI with AdipoRon significantly reduced PA-
induced ROS levels. With respect to cell death
incubation of PA treated cells with SKI-II significantly
decreased cell death. Coincubation with AdipoRon did
not lead to a further reduction in cell death (Fig. 4b-c).
In contrast incubation with THI did not significantly re-
duce PA-induced cell death. However, coincubation with
AdipoRon with THI produced a significant reduction in
cell death (Fig. 4b-c).
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Discussion

Previous literature has shown the importance of skeletal
muscle lipotoxicity in the development of various cellular
consequences including insulin resistance [4, 43, 44],
mitochondrial dysfunction [45, 46] and cell death [11, 47].
One feature of lipotoxic conditions is an increase in ROS
production which can lead to cellular damage and eventu-
ally death [46, 48]. Both adiponectin signaling [23, 49-51],
and more specifically S1P signaling [38, 52, 53], have been
shown to confer anti-apoptotic effects in various cells and
tissues. Several studies have now shown that S1P is an im-
portant mediator of many of the beneficial effects of adi-
ponectin [32, 40]. However, the cross talk between these
pathways in skeletal muscle under lipotoxic conditions
which lead to cell death requires further investigation.

It was found that incubation with palmitate signifi-
cantly increased ROS production after 1 h of incubation,
with a maximal response being observed after 4 h of in-
cubation. To determine ROS production CellROX green
which reacts with superoxide [54], and DCF-DA which
reacts with hydrogen peroxide and other reactive oxygen
species [55]. This difference in specificity could explain

why ROS signal was observed after 4 h but not after 6 h
in the DCF-DA assay. Using palmitate to induce lipo-
toxic conditions, it was observed that adiponectin signifi-
cantly reduced both ROS production and cell death in
response to palmitate. This is consistent with conclu-
sions from previous studies in endothelial cells and
H9c2 cells [40, 56]. Furthermore, a separate study in
endothelial cells found that addition of adiponectin re-
duced palmitate induced insulin resistance and inflam-
mation, also via reduction of ROS production [57].
Previous studies in C2C12 myotubes and pancreatic 3
cells have also shown that palmitate increased produc-
tion of S1P [52, 58], and a similar observation was made
in this study. AdipoRon, an adiponectin memetic, is able
to interact with both AdipoR1 and AdipoR2, which con-
tain intrinsic ceramidase activity and lead to generation
of S1P [31-33]. Importantly, it was also demonstrated
that AdipoRon significantly increased extracellular levels
of S1P. Hence, although both palmitate and AdipoRon
act to increase S1P generation, S1P remains in the cell
after incubation with palmitate alone. It is only in the
presence of an input from AdipoRon-mediated signaling
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that extrusion of S1P to the extracellular media is facili-
tated. It was hypothesized that this S1P mediated benefi-
cial autocrine effects, whereas accumulation of
intracellular S1P was deleterious.

To directly study the potential importance of autocrine
effects of S1P in a model of lipotoxic cell death, S1P was
added directly to the cell culture medium to stimulate S1P
receptors. Extracellular S1P significantly reduced palmitate-
induced ROS production and cell death. Co-incubation of
both S1P and AdipoRon did not produce an additive effect,
suggesting that their respective effects were occurring
through the same mechanism. Furthermore, the intrinsic
regulation of S1P levels was modulated through the use of
two pharmacological inhibitors: THI, an S1P-lyase inhibitor
to increase intracellular S1P levels, and SKI-II, an S1P kin-
ase inhibitor to reduce intracellular levels of S1P [59, 60]. In
contrast to the addition of extracellular S1P, using THI to
increase intracellular levels of S1P did not significantly re-
duce PA-induced ROS production or cell death and instead
slightly increased. This is in keeping with previous studies
which have shown that increased levels of S1P can lead to
the increased production of a cytotoxic S1P metabolite
trans-2-hexadecenal [61, 62]. Interestingly, coincubation of
THI and AdipoRon caused enhanced release of S1P from
the cell, allowing it to then function as a signaling molecule,
and significantly reduced both ROS and cell death. How-
ever, future studies, such as incubation with PA, S1P inhibi-
tors and AdipoRon coupled with inactivation of S1P
receptors is necessary in order to determine the specific
role of AdipRon and S1P receptors in mediating the palmi-
tate induced cell death response.

Conclusions

In summary, using an in vitro skeletal muscle myoblast
model, it was shown that regulation of S1P generation,
breakdown and secretion collectively play an important
role in determining the consequences of palmitate-
induced lipotoxicity. Although it is well established that
adiponectin-signaling enhances ceramidase activity to
generate S1P, a critical mechanism by which adiponectin
exerts is beneficial anti-apoptotic effects is via also en-
hancing release of S1P which then exerts autocrine sig-
naling effects. As adiponectin is a clinically relevant
biomarker, with previous studies showing that high
levels of circulating adiponectin correspond to lower
cardiometabolic risk [63, 64]. Recently adiponectin has
further been shown to correlate with the development of
ischemic heart disease in normal glucose tolerance pa-
tients [65]. The findings presented in this study repre-
sent a possible novel mechanism for why higher levels of
adiponectin are protective against the development and
progression of metabolic diseases. Further studies are
necessary in order to ascertain the clinical relevance of
S1P in the development of cardiometabolic diseases.
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Abbreviations

a-MEM: minimum Essential Medium Eagle - alpha modification;

AdipoR1: adiponectin receptor 1; AdipoR2: adiponectin receptor 2;

DCFDA: 2',7"-Dichlorofluorescin diacetate; DMSO: dimethylsulfoxide;

ELISA: enzyme-linked immunosorbent assay; FDR: false discovery rate;

LDH: lactate dehydrogenase; MTT: (3-(4,5-dimethylthiazol-2-y1)-2,5-
diphenyltetrazolium bromide); PA: palmitate; PBS: phosphate buffered saline;
ROS: reactive oxygen species; STP: sphingosine-1 phosphate; SDS: sodium
dodecyl sulfate; SKI-Il: sphingosine kinase inhibitor II; THI: 5-Acetyl-5-
tetrahydroxybutyl imadazole; v/v: volume/volume
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