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Abstract

Background: Dietary fish oil (DFO) has been identified as a micronutrient supplement with the potential to
improve musculoskeletal health in old age. Few data are available for effects of DFO on muscle contractility, despite
the significant negative impact of muscle weakness on age-related health outcomes. Accordingly, the effects of a
DFO intervention on the contractile function and proteomic profile of adult and aged in an animal model of aging
were investigated.

Methods: This preliminary study evaluated 14 adult (8 months) and 12 aged (22 months) male, Sprague-Dawley rats
consuming a DFO-supplemented diet or a control diet for 8 weeks (7 adult and 6 aged/dietary group). Animal
weight, food intake and grip strength were assessed at the start and end of the FO intervention. In situ force and
contractile properties were measured in the medial gastrocnemius muscle following the intervention and muscles
were processed for 2-D gel electrophoresis and proteomic analysis via liquid chromatography with tandem mass
spectrometry, confirmed by immunoblotting. Effects of age, diet and age x diet interaction were evaluated by 2-
way ANOVA.

Results: A significant (P = 0.022) main effect for DFO to increase (~ 15%) muscle contractile force was observed,
without changes in muscle mass. Proteomic analysis revealed a small number of proteins that differed across age
and dietary groups at least 2-fold, most of which related to metabolism and oxidative stress. In seven of these
proteins (creatine kinase, triosephosphate isomerase, pyruvate kinase, parvalbumin, beta-enolase, NADH
dehydrogenase and Parkin7/DJ1), immunoblotting corroborated these findings. Parvalbumin showed only an effect
of diet (increased with DFO) (P = 0.003). Significant age x diet interactions were observed in the other proteins,
generally demonstrating increased expression in adult and decreased expression aged rats consuming DFO (all P >
0.011). However, correlational analyses revealed no significant associations between contractile parameters and
protein abundances.
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Conclusions: Results of this preliminary study support the hypothesis that DFO can enhance musculoskeletal
health in adult and aged muscles, given the observed improvement in contractile function. The fish oil supplement
also alters protein expression in an age-specific manner, but the relationship between proteomic and contractile
responses remains unclear. Further investigation to better understand the magnitude and mechanisms muscular
effects of DFO in aged populations is warranted.
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Introduction
Impairment of muscular function has significant nega-
tive consequences for older adults, as age-associated
muscle weakness contributes to multiple chronic med-
ical conditions [1], mortality [2], loss of independent
function [3], frailty and risk of falls [4, 5]. In 2004, it was
estimated that age-related loss of muscle function
accounted for 1.5% of total U.S. annual healthcare ex-
penditures (~$54 billion/yr in 2019 dollars) [6]. A more
recent estimate indicated that muscle weakness in older
adults in the UK accounted for an additional £2.5 billion
in annual costs above older adults without weakness [7].
As the geriatric populations of many western countries
are increasing, strategies for maintaining muscle func-
tion in old age have become a health-care priority.
In addition to exercise- and pharmacologically-based

interventions for improving aged muscle function, diet-
ary supplements may hold some promise as alternative
or adjunctive strategies. One such dietary intervention
that has received substantial attention in recent years is
dietary fish oil (DFO). Multiple benefits, many linked to
anti-oxidant and anti-inflammatory action, have been as-
cribed to DFO in older populations [8, 9]. Of note,
though increased longevity has not been linked to DFO,
a recent scoping review identified DFO as one of only 16
micronutrient supplements with the potential to im-
prove musculoskeletal health in old age [10]. Indeed, a
large retrospective cohort study found that fatty fish
consumption was an independent predictor of grip
strength in men and women [11]. In addition DFO does
not appear to interfere with the benefits of exercise to
enhance muscle strength, in contrast to some supple-
ments which may blunt various exercise benefits [12–
15]. A number of anti-inflammatory effects known to re-
duce oxidative injury have been ascribed to DFO and it
has therefore been suggested that it reduces the age-
associated accumulation of markers of inflammation and
oxidative injury in skeletal muscle, where they may con-
tribute to loss of mass and force production [16–18].
Because aging is multifactorial, investigators have

turned to genomic, metabolomic and proteomic analyses
as a means for obtaining a broad overview of age-related
changes in muscle [19–22]. A number of these studies
have suggested that dysregulation of oxidative

metabolism may contribute to age-related muscle im-
pairments [22–24]. At least one group has used this
methodology to discriminate the proteomic profile of
aging from that more specifically associated with sarco-
penia (the age-related decline in muscle mass) [20].
However, it has become increasingly clear that loss of
muscle mass alone does not account for the muscle
weakness that accompanies increasing age [25]. Further
study is needed to better characterize these mass-
independent, molecular mechanisms of weakness, so
that they can be targeted for potential interventions. To
our knowledge, no detailed proteomic study of the inter-
active effects of aging and DFO has been reported. Ac-
cordingly, the purpose of the present study was to
compare the effects of an 8-week DFO intervention on
the muscle function and proteomic profile of adult and
aged rats, and evaluate the hypothesis that DFO could
improve muscle contractile function and that the en-
hancements would be associated with proteomic
changes. Given the significant impact muscle weakness
and injury have on a myriad of age-related health out-
comes, such findings would have important long-term
implications for concepts, treatments, and preventative
interventions in several fields, including: geriatric medi-
cine, physical medicine and rehabilitation and nutrition.

Methods
Ethical approval
Animal use and all procedures were approved by the
Ohio University Institutional Animal Care and Use
Committee, and the “Principles of laboratory animal
care” (NIH publication No. 86–23, revised 1985) were
followed throughout the study. These guidelines are
consistent with the journal guidelines and comply with
its animal ethics checklist.

Experimental animals
Adult (Ad; 6 months at receipt; n = 14) and aged (Ag; 20
months at receipt, n = 12), male Sprague Dawley rats
were purchased from Harlan (now ENVIGO, Indianapo-
lis, IN). This strain has been found to exhibit a pattern
of sarcopenia similar to that observed in aging humans
[20]. All rats were housed individually in an environ-
mentally controlled facility (12–12 h light–dark cycle,
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22 °C) at Ohio University (Athens, OH) and allowed to
acclimate to the animal facility for 2 weeks, with ad libi-
tum access to purified diet (American Institute of Nutri-
tion rodent diet AIN-93M; 12.4% protein; 68.4%
carbohydrate; 4.1% fat by weight) and water. These ani-
mals were part of a study that also involved injuring one
of the hindlimbs. Data regarding the responses of the in-
jured muscles have been reported elsewhere [26]. In the
present paper, only data from the uninjured limb are
presented. The proteomic and specific contractile ana-
lyses here have not been published previously.

Dietary intervention
Following the two-week acclimation to purified diet, half
the rats (7 Ad and 6 Ag) were assigned to an 8-week
control (Ctl) diet (i.e., continued AIN-93M). The
remaining animals were placed on an 8-week experi-
mental diet AIN-93M diet formulated with fish oil (FO)
at a concentration of 33.65 g per 1 kg AIN-93M diet
(soybean oil comprised the remaining amount of fat for
total 40 g fat per 1 kg diet, or 4% of total weight). The
FO contained 28.4% eicosapentaenoic acid (EPA) and
12.7% docosahexaenoic acid (DHA). This provided an
estimated FO dose of ~ 1.22 g/kg bw/day or EPA dose of
0.35 g/kg bw/day, based on previous studies of aged S-D
rats with average body mass of 550 g and food intake ~
20 g/day [27, 28]. This high dose of FO was chosen for
two reasons. It is expected to deliver a metabolically-
corrected dose of EPA that is effective at mitigating
muscle loss in human cancer cachexia (3 g EPA per day
[29]). Second, a previous study of rats found dose was
well tolerated and enriched the skeletal muscle long
chain polyunsaturated fatty acids (PUFAs), compared to
rats that were fed control diet without FO [30]. Diets
were color-coded to facilitate blinding of dietary assign-
ment, and were prepared by Research Diets Inc. (New
Brunswick, N.J., USA). The FO (LOT#141107D1) was
manufactured by NISSUI (Tokyo, Japan) and provided
by Abbott Nutrition (Columbus, Ohio, USA). The Ctl
diet contained a percentage of fat (soybean oil) equal to
that of the DFO diet [26]. Both groups of animals were
allowed ad libitum access to food and water.

Muscle function
Volitional muscle function was assessed 24 h prior to the
start of the dietary intervention and again 24 h prior to
injury. Bilateral forelimb grip strength, conducted as pre-
viously described [23], using a Columbus Instruments
dual sensor 1027DR grip strength meter (Columbus,
OH, USA) with a triangle bar attachment. The peak
forces of 5 trials to failure were averaged for our meas-
ure of grip strength, and were expressed in absolute
terms and relative to body mass.

At the conclusion of the 8-week dietary intervention,
contractility of the both medial gastrocnemius (MG)
muscles was evaluated in situ (48 h post injury as de-
scribed previously [26]), with only the data from unin-
jured limb analyzed here. The MG was studied as it has
been confirmed to exhibit sarcopenia in Sprague-Dawley
rats [31]. Prior to contractile testing, animals were anes-
thetized (Ketamine + Xylazine; 40 + 10 mg kg − 1 body
mass), then mounted in a rigid frame that securely im-
mobilizes the leg and pelvis with the distal tendon of the
MG clamped in series with a force transducer. Contract-
ile function in response to supramaximal electrical
stimulation was assessed with a single pulse (twitch) and
a 100Hz, 500 ms train (tetanic). In addition to the peak
forces generated during stimulation, twitch contractile
properties (time-to-peak tension (TPT) and half-
relaxation time (1/2RT) and maximum rates of tetanic
force development (RFD) and relaxation (RFR) (absolute
and normalized to contractile force) in response to tet-
anic stimulation, and determined muscle cross-sectional
area (CSA) to calculate muscle quality, were all deter-
mined as previously described [32]. Following contractile
testing, muscles were dissected, blotted dry and weighed.
While still anesthetized, rats were euthanized by intra-
cardiac administration of anesthetic per approval by the
Ohio University Institutional Animal Care and Use
Committee. Some of the muscle tissue was used in ex-
periments on which we have reported elsewhere [26]. A
portion of the muscle that was snap frozen in liquid ni-
trogen, was stored at − 80 °C and shipped on dry ice to
the Smith College Center for Proteomics (Northampton,
MA USA) for proteomic analyses. Personnel conducting
these analyses were blinded to group assignment.

2D gel electrophoresis
Frozen muscle samples (n = 7 for each adult dietary
group: and 6 for each aged dietary group) were weighed,
minced on cold glass, homogenized in buffer at 4 °C (10
mM sodium phosphate, pH 7.2, 2 mM EDTA, 10mM
NaN3, 120 mM NaCl, 2% NP-40, plus protease and
phosphatase inhibitors (ThermoFisher Scientific, MA,
USA # 78442)), incubated on ice for 1 h, and centrifuged
at 14,000 x g for 30 min [23]. Both the supernatant and
pellet fractions were saved, and supernatants, represent-
ing the sarcoplasmic fraction, were analyzed in the
present study. Protein content of the homogenates was
estimated using the method of Lowry, modified for de-
tergent compatibility [33].
Protein was twice-precipitated with acetone from the

homogenates and 800 μg protein were suspended in
urea-CHAPS buffer (8M urea, 50 mM DTT, 4% CHAPS,
0.2% pH 5–8 carrier ampholytes, 0.0002% Bromophenol
Blue) and loaded onto 11-cm, pH 5–8 IPG strips (Bio-
Rad Labs) and focused 40,000 V-Hrs [34]. After focusing,
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immobilized pH gradient (IPG) strips were equilibrated
in a denaturing SDS buffer (6M urea, 2% SDS, 0.05M
Tris/HCl, 20% glycerol) and alkylated, embedded onto
11-cm 10.5–14% Tris-HCl gels (Bio-Rad Labs), and elec-
trophoresed at 120 V [35]. Gels were stained with Coo-
massie Brilliant Blue R-250 and imaged using
QuantityOne software (v 4.6, Bio-Rad Labs; VersaDoc
Scanner, Model 4000, Bio-Rad Labs) and cropped to
122.1 mm × 71.3 mm size for uniformity.

Proteomic analysis
The 2D gel images (n = 5 for each group) were loaded
into a match set using PDQuest software (v 8.0.1, Build
O55, Bio-Rad Labs, CA, USA). These high-resolution gel
images provided highly reproducible match sets for the
group comparisons. Large protein spots displaying mul-
tiple peaks (identified as the same protein by liquid
chromatography with tandem mass spectrometry (LC-
MS/MS)) were electronically combined into one spot,
and streaks and speckles were removed. Gels were nor-
malized using PDQuest’s local regression model to cor-
rect for loading variation. Spot matching was performed
automatically by PDQuest, with manual adjustments and
removal of spots within the dye front and unresolved
side columns. Spots that showed a ± ≥2-fold difference
to the respective control (i.e., Ad Ctl vs. Ad DFO) based
on quantitative 2D-gel comparisons were excised using
an ExQuest Spot Cutter (Bio-Rad Labs), digested with
trypsin (In-Gel Tryptic Digest Kit, ThermoFisher Scien-
tific, MA, USA) and de-salted with C-18 columns
(Pierce). Proteins from the spots were identified by
nanoLC mass spectrometry. Samples (5 μL) were loaded
onto an Acclaim PepMap 100 C18 column (3 μm par-
ticle size, 75 μm dia, 150 mm long, Thermo Scientific),
eluted at 300 nLmin− 1 over a 40-min 2–50% acetonitrile
gradient with 0.1% formic acid using an EASY nLC-1000
HPLC (ThermoFisher Scientific, MA, USA) coupled on-
line to a LCQ Deca XP Max ion trap mass spectrometer
(Thermo Electron Corporation, FL, USA), equipped with
a Nanospray I source. MS1 scans were recorded between
400 and 1400 m/z, with the 3 most intense ion peaks in
each MS1 scan (30.0 s dynamic exclusion enabled) iso-
lated for MS2 fragmentation by collision-induced dis-
sociation (collision energy set to 29). The resultant
proteins (Proteome Discoverer 1.4, ThermoFisher Scien-
tific, MA, USA) were grouped by general function into
KOG groups (EuKaryotic Orthologous Groups, https://
www.ncbi.nlm.nih.gov/COG/).

Immunoblotting
Proteins representative of various KOG groups that were
identified by 2D gel analysis (above) as showing greater
than 2-fold differences between groups were selected for
quantitative immunoblot validation. Immunoblotting,

including stripping and reprobing, was performed as re-
ported previously [33] using validated commercial anti-
bodies (Table 1). Integrated pixel intensities of bands
were normalized to the Glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) loading control, which did not
change with age and diet per proteomic analysis. Values
(including GAPDH) were further adjusted for intensities
of calibrated protein standards loaded on each gel to ac-
count for blot-to-blot variation in transfer efficiency.

Statistical analysis
A 2-way (Age X Diet) ANOVA was used to analyze the
majority of the data. Grip strength was assessed via a 3-
way (Age X Diet X Time) repeated-measures ANOVA,
with time as a repeated factor. Normality of data was de-
termined via Shapiro-Wilk tests. If testing indicated a
potential violation of normality, a non-parametric test
was also performed. As the ANOVA is robust to viola-
tions of normality, if the nonparametric confirmed the
result of the ANOVA (i.e., P < 0.050 or > 0.050), we re-
port the result of the ANOVA. If the non-parametric
test gave a different result, we report the non-parametric
result. As this was a preliminary, exploratory study, ef-
fects and interactions that approached, but did not
reach, significance (0.100 > P > 0.050) are presented with
associated effect sizes (partial η2). Where appropriate,
post-hoc comparisons were made using Fisher’s LSD
test. Further exploratory Spearman correlational analyses
were conducted to assess the relationships between se-
lect muscle function variables and abundance of proteins
as determined by immunoblotting, both for the total
sample and separately for the Ad and Ag animals (see
below for specifics).

Results
Body mass and food intake
Body mass was assessed at the start and the completion
of the dietary intervention. Effects of time and age were
observed, but no effect or interactions related to diet
were found (Table 2). As reported elsewhere [26], the
food consumption of DFO groups over the 8 weeks cor-
responded to a dose ~ 1.15 and 1.00 g DFO/kg body
mass/day for the young and old rats, respectively. Old
rats were heavier than young rats and both groups
gained weight over time. Food consumption showed a
significant effect of time and an age X time interaction.
Over time, rats consumed less food, and with greater de-
cline the aged animals. When normalized to body mass,
food consumption still exhibited a main effect of time
and age, but the age X time interaction disappeared.

Muscle function and morphology
Effects of age and diet on muscle force, size and con-
tractile properties are summarized in Table 3. Significant
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effects of age were present for twitch and tetanic force,
as well as MG mass and CSA, with reduced values in
the aged rats. The peak rate of absolute tetanic force
relaxation also exhibited a significant reduction with
age. A significant increase in the optimal length for
twitch force production (lopt) was also detected. A sig-
nificant effect of diet was found for tetanic force and
muscle quality, with higher values in the FO groups.
The main effect for diet on twitch force and muscle
quality did not achieve statistical significance (P =
0.064; η2 = 0.147; P = 0.091; η2 = 0.119). Significant age
x diet interactions were found for 1/2RT and nRFR,
both of which showed a general pattern of DFO slowing
relaxation in adult animals, but increasing it in older ani-
mals. A similar trend for changes in TPT did not achieve
statistical significance (P = 0.081, η2 = 0.160). The signifi-
cant interaction for lopt was driven by the observation that
all groups had significantly shorter lengths than the
aged rats on the Ctl diet. Forearm grip strength ex-
hibited no significant effects or interactions over time.
When normalized to body mass, there was a trend
for grip strength to decline less in the FO groups

over time (Fig. 1), but this effect did not reach sig-
nificance (Time x Diet interaction, P = 0.089, η2 =
0.138).

Protein markers
Proteomic analysis
The total number of proteins detected in the 2-D gels
for each group (> 1000 for each) is reported in Fig. 2.
Twenty-four proteins exhibited more than 2-fold dif-
ferences between age or diet groups from the 2D gel
image analyses. There were significant differences be-
tween all groups, although there were fewer changes
between some groups than others. In the comparison
between Ad Ctl and Ag Ctl there were three down-
regulated, and one upregulated, proteins as a function
of age. More generally affected by age was the Ad
DFO versus Ag DFO group, where eight proteins
were downregulated with diet from Ad DFO to Ag
DFO. Diet affected young rats significantly as seven
proteins were upregulated with diet, and three were
downregulated from Ad Ctl to Ad DFO. The changes
with diet between Ag Ctl and Ag DFO were more

Table 1 Antibodies used in immunoblots

Protein Supplier and Catalog Number Primary Dilution Secondary Dilution Uniprot Accession Number

Creatine Kinase - M PT1 15,891–1-AP 1:10000 1:100004 P00563

Triosephosphate Isomerase - 1 PT1 10,713–1-AP 1:4000 1:50004 P00939

Beta-Enolase AB2 ab96334 1:2500 1:50004 P13929

Pyruvate Kinase – M2 PT1 60,268–1-Ig 1:10000 1:100005 P52480

NADH Dehydrogenase PT1 15,301–1-AP 1:2000 1:50004 P19404

PARK7/DJ1 AB2 ab18257 1:2000 1:50004 Q99497

Parvalbumin AB2 ab11427 1:2500 1:50004 P02625

GAPDH MS3 MAB374 1:25000 1:250005 P46406
1Proteintech
2Abcam
3Millipore-Sigma
4Millipore-Sigma 401,393 [goat anti-rabbit IgG-HRP]
5SantaCruz sc-2005 [goat anti-mouse IgG-HRP]

Table 2 Body Mass and Food Consumption

Adult Aged

Ctl (n = 7) DFO (n = 7) Ctl (n = 6) DFO (n = 6)

Week 1 Body mass (g) T, A 491.0 ± 18.0 500.8 ± 14.5 544.5 ± 19.2 553.0 ± 23.3

Week 8 Body mass (g) 517.0 ± 19.4 535.0 ± 16.8 567.5 ± 19.0 578.0 ± 19.9

Week 1 Food disappearance (g/week) T, X 125.1 ± 6.8 132.3 ± 14.4 136.7 ± 10.7 138.3 ± 6.8

Week 8 Food disappearance (g/week) 116.7 ± 4.1‡ 120.4 ± 4.7† 110.8 ± 8.3† 114.3 ± 4.8†

Week 1 Food disappearance/body mass T, A 0.264 ± 0.006 0.254 ± 0.006 0.251 ± 0.019 0.251 ± 0.012

Week 8 Food disappearance/body mass 0.227 ± 0.013 0.230 ± 0.010 0.195 ± 0.011 0.199 ± 0.009

Data represent means ± SE
T significant effect of time, A significant effect of age, X significant age X time interaction
† = significantly different from week 1 P < 0.050
‡ = significantly different from Week 1, P < 0.010
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varied, where three proteins were upregulated and
three proteins were downregulated. Generally, these
differences were confirmed by subsequent immuno-
blot validation experiments (Fig. 3).

Immunoblotting
An age X diet interaction was observed for all of the
proteins assessed via immunoblot, except for parvalbu-
min, which exhibited a main effect of diet only (Fig. 3).
As described in Section 2.8, the panels for DJ1 and PK
describe the results of non-parametric analysis. The

other panels reflect the results of the 2-way ANOVA.
The general trend was for DFO to increase protein
abundance in adult animals, while it either reduced
abundance or induced minimal changes in aged animals.
Exceptions were DJ1, where the pattern was reversed,
parvalbumin, which increased with DFO in both adult
and aged animals, and beta enolase where a much
greater decrease was observed in adults.

Correlational analyses
Spearman correlations were conducted to explore asso-
ciations between the muscle function and morphology
variables exhibiting effects of DFO and/or age (Table 2)
and protein abundances determined by immunoblot.
When analyzing the entire sample, no significant associ-
ations were observed. When Ad and Ag were analyzed
separately, some interesting qualitative differences
emerged (Fig. 4). For example, in the Ag group, the
muscle force and size-related parameters tended to ex-
hibit negative associations with the markers of energy
metabolism, reaching significance for NADHD and tet-
anic force (rs = − 0.648, P = 0.043). In contrast these asso-
ciations tended to be positive for the Ad animals, with
the correlation between NADHD and muscle mass near-
ing significance in this group (rs = 0.503, P = 0.067). The
Ad group also exhibited a significant association be-
tween parvalbumin and tetanic muscle quality (rs =
0.587, P = 0.027). For the contractile properties, both Ad
and Ag rats manifested an association between beta-

Table 3 Muscle Function and Morphology

Adult Aged

Ctl (n = 7) DFO (n = 7) Ctl (n = 6) DFO (n = 6)

Twitch Force (N) A 4.36 ± 0.32 5.53 ± 0.38 3.78 ± 0.40 4.04 ± 0.35

Tetanic Force (N) A, D 12.76 ± 0.44 14.87 ± 0.88 10.02 ± 0.86 11.65 ± 0.79

Twitch Muscle Quality (N/cm2) 5.01 ± 0.26 6.42 ± 0.51 5.35 ± 0.49 5.30 ± 0.40

Tetanic Muscle Quality (N/cm2) D 14.68 ± 0.47 17.25 ± 1.14 13.82 ± 0.60 15.28 ± 0.76

Muscle Mass (g) A 1.33 ± 0.05 1.35 ± 0.05 1.15 ± 0.07 1.19 ± 0.04

Muscle CSA (cm2) A 0.87 ± 0.03 0.87 ± 0.03 0.71 ± 0.04 0.76 ± 0.03

TPT (ms) 31.8 ± 1.7 35.6 ± 2.5 35.5 ± 2.8 30.8 ± 1.3

1/2 RT (ms) X 24.3 ± 2.1a 30.3 ± 3.5 40.3 ± 9.6 21.0 ± 0.8a

RFD (mN/ms) 311.7 ± 26.4 340.4 ± 70.9 252.0 ± 27.9 327.8 ± 30.8

RFR (mN/ms) A 271.3 ± 19.1 270.2 ± 31.5 149.1 ± 37.2 236.9 ± 9.2

norm RFD (%/ms) 2.5 ± 0.2 2.3 ± 0.2 2.7 ± 0.3 2.9 ± 0.4

norm RFR (%/ms) X 2.2 ± 0.2a 1.8 ± 0.1 1.5 ± 0.2 2.0 ± 0.2

Twitch:Tetanus 0.34 ± 0.01 0.37 ± 0.04 0.39 ± 0.03 0.34 ± 0.02

lopt (mm) A, X 32.5 ± 0.1a 32.8 ± 0.3a 34.5 ± 0.1 33.0 ± 0.3a

Data represent means ± SE
asignificantly different from Aged Ctl
A significant effect of age, D significant effect of diet, X significant interaction
CSA cross-sectional area, TPT time to peak twitch force; ½ RT half-relaxation time of twitch force, RFD rate of tetanic force development, RFR rate of tetanic force
relaxation; norm, RFD rate of tetanic force development normalized to peak tetanic force, RFR rate of tetanic force relaxation normalized to peak tetanic force,
twitch:tetanus ratio of peak twitch to peak tetanic force, lopt optimal length for twitch force production

Fig. 1 Mean (Ad, n = 14 (7 Ctl, 7 FO); Ag, n = 12 (6 Ctl, 6 FO), ±SE)
bilateral forepaw grip strength normalized to body mass. Pre = prior
to initiating dietary intervention; Post = at completion of 8-wk
dietary intervention
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enolase and a measure of slowed force relaxation. For
the Ad, beta-enolase was positively associated with
twitch 1/2RT, (rs = 0.665, P = 0.009), while the Ag group
exhibited a negative association between the protein
abundance and the absolute tetanic RFR (rs = − 0.690,
P = 0.058), though only the Ad group effect was signifi-
cant. Thus increased beta-enolase was associated with
an index of slower force relaxation in both Ad and Ag.
Absolute RFR was also positively associated with parval-
bumin abundance in the Ag, but not the Ad, group.

Discussion
This study of DFO in adult and aged rats presents new
contractile and proteomic data from an earlier study
evaluating the effects of DFO on muscle injury. Consist-
ent with a recent scoping review identifying DFO as a
micronutrient with potential to improve musculoskeletal
health in old age [10], DFO enhanced several aspects of
muscle contractility, though the effect was more robust
in adult than in aged rats (Table 3). From a proteomic
standpoint, dietary DFO had clear effects on

sarcoplasmic protein expression, including an interaction
with aging whereby DFO supplementation increased
abundance in adult and decreased it in aged rats, at least
for the bulk of the proteins examined. However, no obvi-
ous links between proteomic and contractile changes
due to aging or DFO were uncovered.

Contractile responses
The principal effect of dietary DFO on muscle function
was increased tetanic force production without an effect
on muscle mass. As both human and animal models in-
dicate that age-related muscle weakness typically cannot
be explained simply by loss of mass [25, 32] and the
hypertrophic response of aged muscle is often blunted
[36, 37], there is a need for interventions that target aged
muscle quality (force/unit muscle tissue). The present
results suggest that DFO might be effective in this area,
though further work is needed to confirm these prelim-
inary findings. Thus, an enhancement of aged muscle
contractile function without an increase in mass was not
unexpected. However, it was somewhat surprising that

Fig. 2 Differential protein expression as a result of aging and DFO. Proteins that differed in expression by greater than or equal to two-fold from
the respective control based on quantitative digital 2D gel analyses were identified by nanoLC mass spectrometry and grouped by general
function. Red indicates a 2-fold or more reduction, green indicates a 2-fold or more increase. NC = 2-fold change was not observed
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the contractile benefits of DFO were greater in adult ani-
mals without a gain in muscle mass. One might expect
that DFO would be less effective in younger animals that
exhibit no real deficits that could account for impaired
muscle quality (e.g., excitation contraction coupling,
neuromuscular transmission [25]). The reduced con-
tractile enhancement in aged rats may indicate that the
effects of DFO on contractility require an additional
stimulus (e.g., exercise) to manifest optimally in aged
muscles [38]. As volitional physical activity is known to
decline in aging rats [23, 39], an age-related reduction in
cage activity could have lessened the effects of DFO.
This hypothesis is consistent with a recent clinical trial
of DFO and exercise in older women [14] and a com-
parative effectiveness study of resistance exercise and
DFO [40]. In contrast, an increase in the resting meta-
bolic rate (RMR) of sedentary older women has been re-
ported [41], while a more recent study from the same
group found no change in RMR in healthy, active older
adults [42].
In addition, the in situ stimulation protocol, though it

bypasses the central nervous system, is still dependent
on neuromuscular junction and motor neuron function-
ality. An enhancement in contractile sensitivity of rodent

smooth muscle (i.e., ileum) to acetylcholine has been re-
ported [43], and such a mechanism could be at work
here. Impairments of the neuromuscular junction
(NMJ), independent of muscle mass, have been reported
in aged rat muscle [44, 45], and if DFO enhances sensi-
tivity to acetylcholine in skeletal muscle as it does in
smooth muscle, it might partially correct this deficit. It
seems less likely that such a mechanism could account
for the effect of DFO on the adult rats, given that the
safety factor for NMJ transmitter release is believed to
be quite high in a young, healthy system. It could be that
DFO enhances sarcoplasmic reticulum Ca2+ release,
which has been shown to be impaired in aged rats [32,
39] and could also enhance muscle quality. However,
earlier work indicates that increases in Ca2+ release that
occur with DFO do not reach statistical significance,
though the study may have been underpowered to detect
such an effect [26]. Differences in specific tension associ-
ated with isoforms of myosin heavy chain (MHC) [46]
are unlikely to explain the contractile differences, as our
previous work found no change in MHC with DFO [26].
An alternative possibility is that DFO increases myosin
light chain (MLC) phosphorylation, the primary mech-
anism for contractile potentiation in skeletal muscle

Fig. 3 a) Mean (Ad, n = 14 (7 Ctl, 7 FO); Ag, n = 12 (6 Ctl, 6 FO), ± SE) protein abundance (arbitrary units, A.U.), normalized to Adult Ctl diet group,
by Western blot for CK, TPI, Beta Enolase, PK, NADHD, DJ1 and Parvalbumin. Solid line = Significant main effect of age; Dashed line = Significant
main effect of diet; Dotted Line = Significant age X diet interaction; * = significantly different from Ad Ctl group; ^ = Significantly different from
Ag FO group; † = Significantly different from Ag Ctl Group. b) Representative immunoblots with the identical standard for corresponding
proteins in A along with the corresponding GAPDH loading blots
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[47]. As smooth muscle contraction is highly dependent
on MLC phosphorylation [48], such a mechanism could
possibly account for both our results and those de-
scribed in smooth muscle, though this is highly specula-
tive and has not yet been investigate.

Proteomics
The proteomic and immunoblot analyses here indicate
several differences in the response of adult and aged
muscles to DFO. All of the energy metabolism proteins
we evaluated by immunoblotting exhibited an age X diet
interaction. Generally, DFO increases the abundance of
proteins for substrate-level phosphorylation (CK), gly-
colysis (PK, TPI) and mitochondrial Complex I electron
transport (NADHD) in Ad rats, while it decreases these
proteins in the Ag rats (Figs. 3 and 4). Increased energy
metabolism is often reported with interventions that im-
prove muscle function in aged and adult subjects [23,
49–51]. In addition, accumulation of glycolytic

intermediates (e.g., pyruvate, glycerol 3-phosphate) has
been reported in aged vs. adult muscles, suggesting im-
pairments in at least some aspect of glycolytic activity
[19, 22], though such findings may not translate to
humans [52]. The improvement in contractile function
in the Ag muscles, though less than that seen in the Ad
muscles, would seem at odds with the reduced abun-
dance of the metabolic proteins.
Protein abundance may not indicate function, how-

ever. The finding of increased CK abundance in Ag
Ctl muscles is consistent with other data [53], though
CK activity typically exhibits a decline or no change
in aged humans [54], suggesting a possible increase in
overall CK to compensate for impaired functionality.
Similarly, impaired glycolytic function is often re-
ported with aging [51, 54], though declines in enzyme
abundance are not necessarily observed, and anerobic
ATP provision during contraction is maintained in
aged rats and humans [55, 56]. It is possible that, in
contrast to the Ad group, post-translational modifica-
tions in the Ag muscles [17, 57, 58] might impair
function of CK and glycolytic enzymes. This func-
tional loss could lead an accumulation of the proteins,
both as a means of attempting to maintain function
and because the post-translational modifications could
reduce the efficiency of breaking down the proteins.
This diminished protein turnover could reduce the
specific activity of affected enzymes. Thus, dietary
DFO might stimulate protein turnover and/or restore
normal levels of post-translational modification and
improve protein function without necessarily increas-
ing abundance. A number of studies suggest that
DFO can stimulate human muscle protein synthesis
[38, 59, 60]. While increased turnover would involve
increases in both muscle protein synthesis (MPS) and
breakdown (MPB) [61], data on MPB in vivo are
much less prevalent than those for MPS. Some stud-
ies indicate that DFO inhibits overall MPB, but these
mostly involve cultured cells and young animals [62–
64]. In contrast, proteolysis of specific proteins has
been reported for EPA and DHA, often in patho-
logical states (e.g., cancer) [65–67]. In addition, DFO
has been found to blunt glycation and other post-
translational modifications in diabetic rats [68, 69],
supporting speculation that DFO might alter muscle
proteins post-translationally.
Interestingly, beta enolase, also a glycolytic protein, ex-

hibited a greater decrease in adult vs. aged muscles with
DFO. However, non-glycolytic functions of enolase re-
lated to repression of transcription have recently been
identified [70]. Since enolase is not believed to play a
major regulatory role (i.e., a rate-limiting step) in gly-
colysis [71], the changes observed here may be more re-
lated to these non-glycolytic functions. Future work

Fig. 4 Scatterplots showing relationships between NADHD
abundance (arbitrary units, A.U.) and muscle functional and
morphological parameters, with lines of best fit. a) Ag group
NADHD vs. Tetanic Force (rs = − 0.648, P = 0.043). b) Ad group,
NADHD vs. Muscle Mass (rs = 0.503, P = 0.067)
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could examine changes in beta enolase localization,
which has been linked to glycolytic vs. non-glycolytic
function [70].
Parvalbumin was positively associated with tetanic

muscle quality in the Ad group (which showed the
greatest increase in tetanic force). This soluble calcium-
binding protein is preferentially expressed in fast-twitch
fibers. DFO increased parvalbumin abundance in both
aged and adult animals, though only the aged muscle ex-
hibited the expected reduction in twitch 1/2RT. In con-
trast, adult transgenic mice overexpressing parvalbumin
have exhibited no change in contractility [72, 73]. Par-
valbumin gene transfer via electroporation does not
affect contractility in adult mice but impairs it in aged
mice [72]. Thus, the role of parvalbumin in our observa-
tion of improved contractility is unexpected and requires
further study. It may be that the increased parvalbumin
partially blunts the contractile benefits of DFO (via an as
yet undetermined mechanism), accounting for the rela-
tively smaller response of aged vs. adult rats.
Perhaps expecting a common mechanism related to

changes in old and adult muscles is unjustified. Given
the effect of aging across physiological systems, it is pos-
sible that DFO influences very different mechanisms that
enhance contractility. For example, as noted above, en-
hancements in glycolytic metabolism in adult animals
could potentially enhance contractility. In aged animals,
a different mechanism could be at work. Here, DFO sig-
nificantly changed the optimal length for force develop-
ment in the aged rats (Table 3). Though highly
speculative, this might suggest an improvement in myo-
filament Ca2+ sensitivity. As reduced SR Ca2+ release has
been reported in aged rats, [26, 32, 39], an increase in
Ca2+ sensitivity could potentially improve force produc-
tion in older, but not younger muscles. However, such
changes would likely be found in the myofibrillar protein
fraction, which we were unable to analyze in the present
study due to the exclusion of this fraction by pore size
of the isoelectric focusing gel.

Caveats and considerations
This study examined the uninjured muscles of animals
that received a contusion injury to one limb. Use of the
contralateral limb as the control in injury studies is com-
mon practice, and since all animals were injured, this
factor did not differ across groups. However, it does
raise the possibility that the results observed here reflect
an interaction among age, diet and injury and might
have been different in animals that were never injured.
Data suggest that this is unlikely with regard to the

contractile parameters evaluated. Although stereotyped
experimental injuries can induce divergent locomotor
responses [74], the acute nature of the injury (contractile
testing and tissue harvest occurred 48 h post-contusion)

makes it unlikely that sufficient disuse occurred to affect
the contractility of the muscle. Indeed, force production
in the uninjured muscles of rats following a single-event
mechanical injury to the other limb has been shown to
be comparable to control [75], and a recent study of
contusion injury [76] reported no changes in organ
weight or organ damage markers in animals following
injury.
From the standpoint of a systemic effect of injury on

the proteomics data, a potential effect seems more likely.
While uninjured muscles exhibited no increases in an-
giogenic and growth factors that were elevated in mice
with a blunt muscle injury to the contralateral muscle
[77], muscle-specific serum markers of muscle injury
have been found to increase following single muscle in-
jury [76]. Thus, the potential for elevated systemic fac-
tors (e.g. cortisol, IL-6) to influence muscle protein
responses cannot be excluded. Although the injury con-
dition was present for all animals, it is possible that it
may have interacted differently across age or dietary
groups. Similarly, because the muscles were dissected
following the contractile testing, we cannot rule out a
potential effect of muscle contraction on the findings.
This seems unlikely however, given the brief contractility
protocol and rapid freezing that followed.
As noted, the proteomic and immunoblot analyses in-

volved only the soluble sarcoplasmic fraction, and more
direct links between proteomic changes and functional
muscle enhancement with DFO may be established from
the myofibrillar protein fraction. The laboratory is cur-
rently pursuing this task.
Although GAPDH is commonly used to normalize im-

munoblot data, including studies of aged muscle, some
concerns regarding its use in aging studies have been
raised [78]. However, the proteomic analyses (Fig. 2)
were not based on GAPDH normalization and they
largely agreed with the immunoblot results (section 2.7).
In addition, analyses of the immunoblot data never re-
vealed a main effect of age without an accompanying age
X diet interaction. Thus, it is unlikely that an effect of
age on GAPDH expression could account for the present
results.
Dosage of DFO was based on food disappearance,

which might overestimate actual consumption, and thus
DFO dosage. In addition, we cannot rule out acute
metabolic effects of food intake (i.e., post-prandial re-
sponses), as we did not block access to food prior to
contractile testing and muscle harvest.
Finally, the study involved only male rats. Given the

numerous physiological differences between males and
females that have been identified, these findings should
not be extrapolated to females. Indeed, a recent clinical
trial reports enhanced muscle torque in older women,
but not men, on a DFO-supplemented vs. a control diet
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[14]. Thus, greater changes might have seen in with
DFO in aged female rats.

Conclusion
Results of this preliminary study support the hypothesis
that DFO can enhance musculoskeletal health in adult
and aged muscles, given the observed improvement in
contractile function, despite no change in muscle mass.
Sarcoplasmic protein expression was also altered in an
age-specific manner by DFO. However, the relationship
between proteomic and contractile responses remains
unclear, and was possibly affected by differential interac-
tions with systemic factors from muscle injury. Further
investigation to better understand the magnitude and
mechanisms underlying the muscular effects of DFO in
aged populations is warranted.
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