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Abstract

Background: Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms,
severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is
suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all
behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia.
Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more
than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%)
polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown
significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well
as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been
associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of
clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in
patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The
discrepancy can be attributed to the heterogeneity of patient population.

Methods: In this review, results from recent experimental and clinical studies, which focus on illustrating the role of
PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was
beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and
cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the
beneficial effects were discussed.

Results: Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both
positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty
acid supplementation could also improve negative symptoms and global functions in the first-episode patients
with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low
PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention.
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Conclusion: Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults
or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3
supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined
lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.

Keywords: Docosahexaenoic acid, positive and negative symptoms, cognitive functions, neurotransmission,
prodromal phase, first-episode schizophrenia, chronic schizophrenia

Introduction
Schizophrenia, a serious long-term psychological disorder,
affects about 1 percent of the population worldwide [1]. It
is typified by positive symptoms (such as hallucinations
and delusions), negative symptoms (including anhedonia,
alogia, avolition, etc.), severe behavioral problems and cog-
nitive function deficits (e.g., impaired psychological func-
tioning) [2]. To date, the cause of schizophrenia is not
fully understood. The heterogeneity of symptoms suggests
the cause of schizophrenia is multifactorial, involving both
genetic and environmental factors (e.g., prenatal infection,
maternal malnutrition etc.) [3]. However, genes alone
cannot cause schizophrenia as studies in identical twins
show genetic factor represents only 50% of risk rates [4].
Nonetheless, those people with defective genes may be
more vulnerable to various environmental risk factors and
develop the disease [5].
Generally, the onset of schizophrenia begins during

late adolescence or early adulthood [6], when the matur-
ation of the brain and myelination is taking place. Disrup-
tion of normal brain development during prenatal or early
postnatal period causes brain to be defective in function,
suggesting that deleterious central nervous system (CNS)
may play a pivotal role in development of this disease. In-
deed, patients with schizophrenia in comparison with
healthy controls, have a significant decrease in total brain,
grey matter (GM), and white matter (WM) volumes and
density, while a significant increase in lateral and third
ventricle volumes [7, 8]. The structural change of brain is
progressively developed before onset in the ultra-high risk
(UHR) for psychosis subjects, during late adolescence or
early adulthood, and continuous through the lifespan of
the patients [9–14]. Postmortem studies in chronic schizo-
phrenia have also shown brain abnormalities, which occur
in specific areas like amygdala, basal ganglia, cerebellum,
corpus callosum, inferior parietal lobule, medial temporal
lobe, prefrontal cortical areas, superior temporal gyrus,
and thalamus [15]. Since these abnormalities are not
found in unaffected siblings and healthy controls, suggest-
ing that the structural brain abnormalities are most likely
related to the illness.
Since human brain controls all brain functions and be-

havior, schizophrenia is considered as a brain disorder. To
better understand the cause of this disease, numerous

studies have focused on identifying changes in neurobiol-
ogy and biochemistry of brain in schizophrenia. Brain is
the most lipid rich organ (approximately 50% of brain dry
weight). Phospholipids constitute more than 60% of the
total membrane lipids. Brain phospholipids contain two
families of polyunsaturated fatty acids (PUFAs): omega-3
(or n-3) and omega-6 (or n-6). The most abundant
omega-3 fatty acid is docosahexaenoic acid (DHA, 22:6n-
3), followed by eicosapentaenoic acid (EPA, 20:5n-3), and
docosapentaenoic acid (DPA, 22:5n-3), whereas the main
omega-6 fatty acid is arachidonic acid (AA, 20:4n-6).
DHA accounts for 40% of the total membrane phospho-
lipids fatty acids in brain [16]. Thus, DHA is essential for
the normal neurological development and plays a critical
role in the maintenance of biological processes including
receptor binding, neurotransmission, and signal transduc-
tion and cognitive functions such as learning and memory
[17–19]. Therefore, the homeostasis of brain phospholipid
and PUFAs in patients with schizophrenia is an important
study subject for better understanding the relationship
between the specific lipid molecules and structural and
functional changes in brain. So that the strategy as how to
deter the development and progress of this disease
can be developed. Early, Horrobin [20] has proposed
the Phospholipid Hypothesis of Schizophrenia. Ac-
cording to this hypothesis, an elevated phospholipase
A2 (PLA2) activity in patients, which releases PUFAs,
mainly DHA and AA, from membrane phospholipids
has caused PUFA deficiency, and a progressive degrad-
ation of brain tissues. This produces aberrant neurotrans-
mission, psychological symptoms, and impairment of
cognitive and brain functions.
Indeed, ample evidence has shown significant reduction

of PUFAs, in particular AA and DHA in peripheral blood
(plasma and erythrocyte membranes) of schizophrenia pa-
tients at different development stages (including ultra-high
risk individuals, un-medicated first-episode and chronic pa-
tients [21–33]. Two meta-analyses have also confirmed sig-
nificant reduction of AA, and DHA, in medication-free
schizophrenia patients, and patients treated with antipsy-
chotics [30, 34]. There are also studies showing no differ-
ences or even increases of AA and DHA levels in patients
with schizophrenia as compared to healthy subjects (refer-
ences). A study conducted by Medema et al. [35] has
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reported increased erythrocyte DHA, DPA and AA in a
large cohort of schizophrenia patients and unaffected
siblings compared to controls. Discrepancy in findings
between Medema et al. [35] and 2 meta-analyses
could be due to different measurement units used in
presenting fatty acid content. Medema et al. [35] re-
ported fatty acid content by absolute concentration
(picomole/106 erythrocytes), whereas studies included
in meta-analyses and others by percentages. The sig-
nificant increases in DHA and AA reported in the
study by Medema et al. [35] were lost when fatty
acids were presented as percentages. Another differ-
ence could be due to heterogeneity of patient popula-
tions. 61.9% of patients in Medema et al. (2016)
received atypical antipsychotic medication, which is
known to increase the biosynthesis of PUFAs and
raise the levels of PUFAs [36].
Reports have also shown significant breakdowns of

phospholipids and reduction of DHA in brain orbito-
frontal cortex (Brodmann area 10, BA10), and suggested
that DHA deficit in brain is associated with the patho-
genesis of schizophrenia [37–39]. However, there are
reports showing no difference of DHA levels in other
brain regions (amygdala, prefrontal cortex) between
schizophrenic patients and controls, suggesting abnor-
malities of PUFA levels are region-specific [40, 41]. Since
these abnormalities were not observed in unaffected
siblings and healthy controls, the structural brain abnor-
malities found in patients are most likely related to the
illness itself [8, 12].
In this review, the cause of brain PUFA deficit in pa-

tients, the role of PUFAs in the development of this dis-
order, and beneficial effects of omega-3 supplementation
on symptoms and cognitive functions were examined,
and the potential mechanisms underlying these benefi-
cial effects discussed.

Methods
The main aims of this review are twofold. First, the role
of omega-3 PUFAs in the development of schizophrenia
was addressed, and preclinical and clinical evidence re-
garding the beneficial effect of omega-3 supplementation
on symptoms and cognitive functions reviewed. Secondly,
the potential mechanisms underlying the beneficial role of
omega-3 PUFAs on schizophrenia were discussed.
To achieve these aims, a comprehensive literature

search in electronic databases, such as PubMED, EMBASE
and PsycINFO was conducted. The following terms:
omega 3 fatty acids, cognition, symptoms, and schizophre-
nia were used for the search. The inclusion criteria were:
studies contained original data on effects of omega-3
PUFAs in symptoms, functions and cognition in schizo-
phrenia and published in English between 2000 and 2020.

Data extraction and quality assessment
The quality of all eligible studies and outcomes were
carefully evaluated. All authors independently extracted
each of the selected studies and evaluated the study
quality. The followings: primary aim, attributes, context
and exemplar of omega-3 PUFA, evaluation or descrip-
tion of omega-3 PUFA formulas, outcomes, and possible
bias were checked and analyzed inductively. Data from
selected studies with good quality in term of methods,
outcome measures, and statistics analysis were extracted,
and whether these selected studies exhibited any major
limitation that could negatively impact or influence the
interpretation of the study findings evaluated.

Results
Prevalence and causes of polyunsaturated fatty acid
deficiency in schizophrenia
Ample evidence has shown that PUFA deficiency occurs
in schizophrenia, which may be caused by many factors.
A simple scheme (Figure 1) outlines the possible factors
involved in the process of PUFA deficiency.

Reduced synthesis and uptake of long-chain PUFAs
During brain development, brain possesses the enzymes
required for the synthesis of DHA and AA from alpha-
linolenic acid (ALA, 18:3n-3) via EPA, and linoleic (LA,
18:2n-6) acid, respectively. The concentrations of DHA
and AA increase sharply. Inadequate brain accumulation
of DHA during this period can result in an omega-3
PUFA-deficiency which impair the cortical structure and
functional maturation [42], and increase the risk for
schizophrenia [43]. In adult brain, the synthesis rate de-
creases significantly [32, 42]. In schizophrenia, genetic
variation, such as fatty acid desaturase (FAD), FAD1/
FAD2 genes, has further reduced the ability to synthesize
long-chain PUFAs [44, 45]. Normally, the consumption
rate of AA and DHA by adult human brain was estimated
to be 17.8 and 4.6 mg/day, respectively [46]. To maintain
normal structure and function, brain relies on a constant
supply of AA and DHA from the food via blood [47]. Un-
fortunately, schizophrenia patients often consume unbal-
anced diet (high omega-6:omega-3 ratio). Pawełczyk et al.
[48] have reported that UHR individuals consumed signifi-
cantly higher proportion of omega-6 fatty acids (LA and
AA) whereas less of omega-3 fatty acids (ALA, EPA, and
DHA) in comparison with individuals who did not de-
velop psychosis. Similarly, patients with chronic schizo-
phrenia also have a poor diet (high intake of saturated fat
and low polyunsaturated fat) [49–51].

Abnormal fatty acid binding protein in schizophrenia
PUFA depletion could be caused by abnormal fatty acid
binding proteins (FABPs) in the brain of schizophrenia.
FABPs, the intracellular lipid trafficking proteins, play

Hsu et al. Lipids in Health and Disease          (2020) 19:159 Page 3 of 17



essential roles in transporting fatty acids into the cyto-
plasm and appropriate intracellular compartments. In hu-
man, there are 3 FABPs family members (FABP3, FABP5
and FABP7) found in mature neurons, neural progenitor
cells and neural stem/progenitor cells in brain [52, 53].
Each shows different fatty acid preference. FABP3 binds
preferentially to omega-6 PUFAs (e.g., AA) [54]. FABP5
favors saturated (e.g., stearic acid), and monounsaturated
fatty acids (e.g., oleic acid) [52, 54]. Evidence has shown
exclusively in schizophrenia that two genetic variations of
FABP7 (FABP7 S86G and FABP7 V126L) change prefer-
ence from DHA to LA [55]. This abnormality would result
in an unbalanced DHA mobilization and utilization, and a
greater reduction of DHA relative to omega-6 PUFAs in
brain cell membrane [29].

Elevated phospholipase A2 activity in schizophrenia
Elevated PLA2 activity has been suggested in the lipid
membrane hypothesis as the cause of PUFA depletion in
schizophrenia. PLA2 is an enzyme that hydrolyzes fatty
acid in position 2 (sn-2) from the membrane phospho-
lipids, producing a free fatty acid and a 2-lysophospholipid
[56]. In brain, there are three major PLA2 enzymes: a
calcium-dependent AA-specific cytosolic PLA2 (cPLA2); a
calcium-dependent AA-specific secretory PLA2 (sPLA2);
and a calcium-independent DHA-specific PLA2 (iPLA2)
[56–59]. Smesny et al. [60] have shown PLA2 activity

increased in UHR individuals and patients with first epi-
sode. Post-mortem brain studies have shown that in-
creased iPLA2 activity is associated with structural brain
degradation in the first episode schizophrenia patients [61,
62]. An increased DHA-specific iPLA2 activity in the brain
of patients enhances the release of DHA from the DHA-
containing phospholipids, change the physicochemical
properties (e.g., fluidity, permeability) of synaptic mem-
branes, and result in an abnormal neurotransmission in
the brain of schizophrenic patients [63]. Šakić et al. [64]
have suggested an association between iPLA2 activities
and the length of illness and frequency of episodes oc-
curred. The cause of increased PLA2 activity in brain in
patients with schizophrenia is not clear, but increased
levels of stress-induced cytokines in schizophrenia may
stimulate the activity [65–67]. The increased PLA2 activity
could also be caused by variants of genes expressing the
PLA2. Increases in Ban I polymorphism of the cPLA2
gene and PLA2G12A polymorphism of the sPLA2 gene
have been shown in schizophrenia of different ethnic
groups [68–71]. Both cPLA2 and sPLA2 catalyze the re-
lease of arachidonic acid from membrane phospholipids
for production of inflammatory eicosanoids.

Increased Oxidative Stress in Schizophrenia
PUFA depletion in schizophrenia patients could be due
to an increase in oxidative stress [72]. In adult human,

Fig. 1 Causes of PUFA (DHA in particular) deficiency in schizophrenia. Cause may be due to high ω6/ω3 diet, low synthesis due to abnormal
metabolic enzymes, or low absorption due to mutated fatty acid binding protein; and elevated phospholipase A2 activity which release PUFAs
from cell membrane. Abbreviations: AA, arachidonic acid (20:4n-6); ALA, alpha-linolenic acid (18:3n-3); DHA, docosahexaenoic acid (22:6n-3); FABP-
7, fatty acid binding protein; FAD1/FAD2, delta-5 and delta-6 fatty acid desaturases; GPCR, G-protein coupling receptor; LA, linoleic acid (18:2n-6);
PL, phospholipids; PLA2, phospholipase A2
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brain accounts for approximately 20% of total body oxygen
consumption even though it comprises only 2% of the body
weight. Maintaining normal oxidative stress requires ad-
equate antioxidant capacity, which is relatively low in brain
as compared to other tissues. Therefore, brain is vulnerable
to oxidative stress. Studies have shown in schizophrenia an
increase in oxidative stress, in conjunction with a decrease
in antioxidant defense enzymes (e.g., superoxide dismutase
(SOD), catalase, and glutathione peroxidase) in schizophre-
nia [73–81]. The unbalance in pro- and anitioxidants may
have increased susceptibility of brain PUFAs to oxidative
damage and subsequently contributed to the deterioration
of brain structure and cognitive impairment during the
course of the disease [23, 24, 76, 82–94]. The DHA-
rich region, such as PFC, is the most prone to oxida-
tion damage [95].

Association between PUFA deficiency and symptoms/
cognition in schizophrenia
Evidence has shown that low PUFA levels are associated
with negative and positive symptoms [24, 96–100] in pa-
tients with schizophrenia. Studies also show the blood
levels of PUFAs, particularly DHA, are negatively corre-
lated with the severity of symptoms [98, 101, 102].
Cognitive functioning refers to many different mental

abilities including attention, memory, language, atten-
tion, perception, problem solving, decision making, etc.
[103]. Cognitive deficits, especially in memory abilities
are found in about 75–85% of schizophrenia patients
[104]. It impacts negatively on psychosocial functioning
in schizophrenia [105]. Generally, cognitive deficits are
found early in UHR individuals and at the onset of illness
[106, 107], become evident in first-episode, treatment-
naïve patients [2], and continue to decline as illness pro-
gressed [108]. Thus, cognitive symptoms may serve as a
prognostic marker and predictor of schizophrenia [109].
Several studies have shown that abnormality in PUFA
(mainly DHA) levels in UHR and schizophrenic patients is
associated with memory, language and cognitive impair-
ments [100, 110–114]. PUFAs, particularly DHA, play an
important role in maintaining brain function and neural
transmission [115–117].

Effect of omega-3 fatty acid supplementation on
symptoms and cognitive function in schizophrenia
The fact that significant reduction of omega-3 PUFA
levels is seen in plasma, red blood cells (RBC) and brain
in patients with schizophrenia, has led to a number of
open-label and randomized clinical trials examining
whether dietary supplementation with omega-3 PUFAs
could improve the course of illness in patients with
schizophrenia.
However, results from many studies examining effects of

omega-3 supplementation on symptoms in schizophrenia

were inconsistent. Some show reduced conversion rate to
psychosis in UHR individuals [118–120], incidence rate, im-
proved prognoses with greater efficacy over placebo in first-
episode [48, 121–124] and chronic patients [24, 125–128],
while others showed no differences between schizophrenia
and control groups [129, 130]. One study [131] reported
worse in symptoms. Several meta-analyses [132, 133] and
an early review of these clinical trials [134] failed to make
plausible conclusions with respect to the therapeutic benefit
of omega-3 PUFA supplements in this disease. However, a
very recent review has shown favorable impacts of dietary
supplementation of omega-3 fatty acids as a therapeutic op-
tion in mental disorder [135].
Fenton et al. [136] have carried out a randomized-

controlled trial (RCT) investigating the add-on effects of
EPA (3 g/d) on cognitive performance in antipsychotic
treated patients with schizophrenia [136]. After 16-week
trial, the authors found no difference in test scores of
residual symptoms or cognitive performance between
participants received EPA and patients randomized to
placebo [136]. On the other hand, studies have shown
that dietary supplementation with DHA improves mem-
ory and cognitive functions in healthy elderly subjects
[137–140] and in patients with mild cognitive impair-
ment [141]. One possible mechanism underlying the im-
proved cognitive performance is related to the improved
DHA status and behavioral development [142].

Rationale for discrepancy in findings
The discrepancy of findings from different studies, could
be due to heterogeneity of patient population, for ex-
ample, different developmental stages. When omega-3
PUFAs were supplemented to UHR adolescents for a
period of 12 weeks, Amminger et al. [118–120] found a
significant reduction of the rate of conversion to first-
episode schizophrenia, and the beneficial effects contin-
ued for a long period (6.7 years). They found that red
blood cell PUFA level were lower in UHR as compared
to normal [33]. However, in a large international trial,
McGorry et al. [143] failed to observe effectiveness in
preventing the conversion into first-episode. The authors
attributed the lack efficacy of omega-3 treatment to the
fact that all patients in both treated and placebo groups
received normal healthy diets during the study. Indeed,
Amminger and colleagues [144] have recently reported
that the failure to show benefits of omega-3 fatty acid
supplementation in UHR adolescents as compared to
placebo by McGorry et al. [141] was due to the presence
of omega-3 fatty acids in the diet and the body tissue of
participants in the placebo group. Nonetheless, a
placebo-controlled RCT by Pawełczyk et al. [48] com-
paring the efficacy of intervention with omega-3 fatty
acids as an added on to antipsychotic medication, found
that omega-3 fatty acids could significantly reduce the

Hsu et al. Lipids in Health and Disease          (2020) 19:159 Page 5 of 17



severity of symptoms and rate of relapse in first-episode
schizophrenia. Since Pawełczyk and colleagues [145]
have found that the subjects in the UHR group and the
first episode schizophrenia patients consumed signifi-
cantly higher level of omega-6 fatty acids and less of
omega-3 fatty acids in comparison with healthy controls.
Amminger et al. [144] have shown that increases of
omega-3 levels predict improvement in symptoms and
functioning in youth at UHR for psychosis. Taken to-
gether, it is possible that the efficiency of omega-3 inter-
vention was due in part to the presence of omega-3
deficiency in many of those participants prior to treat-
ment. Thus, omega-3 PUFA supplementation may not
be beneficial for individuals who already have high
omega-3 fatty acid levels at baseline.

Effects of omega-3 fatty acid supplementation on brain
structure and functions:
Reduce degradation of brain
Phospholipid breakdown and omega-3 PUFA deficit is
known due to a pathological increase in PLA2 activity
observed in brain of schizophrenia. Omega-3 supple-
mentation has significantly reduced the intracellular
PLA2 activity [146]. More specifically, EPA has been
shown to inhibit PLA2 activity reducing the degradation
of brain and thus, exert some effects in the treatment of
schizophrenia. Administration of omega-3 fatty acids
(mainly EPA), can inhibit PLA2 activity reducing the
degradation of brain structure in schizophrenia [146].

Replenish brain DHA content
The beneficial action of omega-3 PUFA may act through
improvement in biochemical and physical properties of
brain cell membranes [72, 147–149]. DHA is the major
omega-3 fatty acid found in nerve cell membrane phos-
pholipids in brain cortical grey matter. DHA constitutes
about 15% of total fatty acids in the adult human pre-
frontal cortex (PFC) [37, 42, 150]. Other omega- PUFAs,
such as EPA and DPA, comprise less than 1% of total
brain fatty acid composition [151]. Evidence has shown
lower level of DHA in brain in schizophrenia patients
[36, 39]. Such region-specific changes in brain phospho-
lipid metabolism and fatty acid composition may affect
physicochemical properties such as fluidity and perme-
ability of neuronal cell membrane, which in turn, modu-
late the activities of membrane bound enzymes and
neurotransmission system (such as receptors) located on
the membrane (lipid rafts). DHA supplementation can
replenish the membrane DHA content.

Reduce oxidative stress in schizophrenia
The possible mechanism underlying the beneficial action
of omega-3 PUFAs may be via enhancing the anti-
oxidative intracellular defense system [152]. Three

intervention studies have reported the effect of omega-3
PUFA supplementation on levels of oxidative stress
markers [123, 153, 154]. Sivrioglu et al. [153] studied the
effect of a 4-month intervention with a combination of
omega-3 PUFAs and antioxidants (vitamin E and C) on
total antioxidant capacity (TAC) in medicated chronic
schizophrenia patients. They found that the treatment
significantly reduced the severity of positive and negative
symptoms, levels of RBC-SOD. As an increase in SOD
was a compensatory response to the increased produc-
tion of ROS in schizophrenia patients, a reduction in
levels of RBC-SOD indicates that intervention with a
combination of omega-3 PUFAs and antioxidants can
reduce the oxidative stress.
Smesny et al. [154] examined the data from the inter-

vention study reported by Amminger et al. [119]. They
assesses the effect of a combination of omega-3 PUFAs
and vitamin E supplementation on tocopherol and gluta-
thione (GSH) levels in erythrocyte membrane in individ-
uals at high clinical risk. They found that intervention
significantly increased RBC tocopherol, but reduced total
RBC-GSH level. The authors conclude that supplemen-
tation with omega-3 PUFAs seems to support the anti-
oxidant capacity at membrane level resulting in a
decreased need for GSH. The authors suggested that
inclusion of antioxidants (vitamin E and GSH) may ac-
count for the effectiveness of omega-3 PUFA supple-
mentation in high clinical risk individuals.
Pawelczyk et al. [123] conducted a 6-month placebo-

controlled RCT composed of 2.2 g/day of omega-3
PUFAs in first episode schizophrenia. The authors
assessed whether the clinical effectiveness of omega-3
PUFAs were associated to changes in oxidative stress in-
dices, and found a significant reduction of 8-isoprostane
F2α level, an oxidative stress index, and an increase in
plasma TAC in patients. All these results from studies
carried out in different developmental stages (UHR,
first-episode or chronic schizophrenia), seem to be con-
sistent that supplementation with omega-3 PUFAs can
alleviate oxidative stress.

Modulation of neuro-inflammation in schizophrenia
Another possible mechanism underlying the beneficial
action of omega-3 PUFAs may act through modulation
of the inflammatory responses [155, 156]. Evidence has
indicated that chronic neuro-inflammation in brain is
one of the risk factors in the pathophysiology of schizo-
phrenia [155–159]. Neuro-inflammation is distinguished
by the activation of microglial cells [160]. The activated
microglia increases the production and release of pro-
inflammatory cytokines [161, 162], and subsequently, the
formation of pro-inflammatory prostaglandin E2 (PGE2).
It has been shown that pro-inflammatory cytokines

were increased in both serum and cerebrospinal fluid
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(CSF) in first-episode schizophrenia [163–165], and pa-
tients with chronic schizophrenia [166]. Postmortem stud-
ies have also shown inflammatory markers in the
dorsolateral prefrontal cortex, and microglial activity and
microglial cellular density were all increased in schizo-
phrenic patients [165, 167–169]. The pro-inflammatory
cytokines increase PLA2 activity and breakdown of mem-
brane phospholipids in schizophrenic patients [38, 170].
Numerous animal and clinical studies have indicated

that omega-3 fatty acids have anti-inflammatory proper-
ties and inflammation resolving effects. The anti-
inflammatory effect of omega-3 fatty acids is moderated
by competing (mainly EPA) with AA for incorporation
into cell membrane phospholipids, and interfering with
conversion of AA to form inflammatory eicosanoids,
PGE2. Smesny et al. [145] observed that omega-3 fatty
acid supplementation decreased significantly the intra-
cellular PLA2 activity in young adults at UHR for psych-
osis. Puri et al. [171] found that EPA supplementation
increased cerebral phospholipid biosynthesis whereas de-
creased phospholipid breakdown by inhibiting PGE2-
induced PLA2 activity. This results in reduced neuronal
phospholipid turnover and neuro-inflammation, whereas
normalized cerebral phospholipid metabolism. In addition,
DHA and EPA are precursors for the potent anti-
inflammatory mediators, such as resolvins and neuropro-
tection Ds, which can actively limit inflammation and
promote resolution [63, 172–174]. Thus, through inhibition
on formation of inflammatory eicosanoids, and formation
of anti-inflammatory mediators, omega-3 fatty acids exert
the beneficial effects on schizophrenia. This mechanism
may explain the beneficial effects of omega-3 fatty acids
supplementation on schizophrenia by reducing the neuro-
inflammation.

Beneficial effects of omega-3 fatty acid supplementation:
possible mechanisms
As shown by some but not all clinical intervention,
omega-3 PUFA supplementation can be effective in alle-
viating symptoms and improving cognitive functions in
patients with schizophrenia. The mechanism underlying
these benefits is not clear. To facilitate the discussion,
the present review focused on 13 clinical trials that
showed positive response to the intervention (Table 1).
Two studies and one long-term follow-up from the

same research group have shown that omega-3 supple-
mentation improved both positive and negative symp-
toms and functions in UHR subjects [118–120]. Two
studies supplemented the first-episode schizophrenia pa-
tients with EPA alone [121, 122], while 3 studies treated
patients with a combination of EPA and DHA. All five
studies show improvement in negative symptoms and
functions. There are five studies examined the effect of
EPA or DHA alone or a combination of both EPA and

DHA [24, 125–128]. The improvement was found
mainly on total positive and negative symptom scale
(PANSS) subscale scores, but none in functions. In all
these studies, omega-3 supplementation has raised the
blood omega-3 fatty acid levels, which has been sug-
gested as an indicator of PUFA levels in brain [42].
Abnormal symptoms and functions in schizophrenia

are resulted of dysfunctional neurotransmission path-
ways. Thus, the beneficial effects of omega-3 supplemen-
tation may act through improving neurotransmission in
patients (Figure 2).

Improve neuronal cell membrane, lipid rafts and G-protein-
coupled receptor (GPCR) functions
Several hypotheses have attributed the abnormal neuro-
transmission systems including dopamine, glutamate, and
serotonin to the cause of the symptoms of schizophrenia
[175]. The recent dopamine hypothesis has proposed that
transmission of dopamine (DA, 3,4-dihydroxyphenethyla-
mine), a major neurotransmitter that transports signals
between nerve cell endings in the brain, is abnormal in
schizophrenia patients. Dopamine is produced and secreted
by neuron mainly in the substantia nigra and ventral teg-
mental area (VTA) in midbrain. According to the hypoth-
esis, the dopamine transmission from VTA to mesolimbic
areas via the mesolimbic pathway is hyperactive, which is
responsible for positive symptoms [176]. Whereas, dopa-
mine transmission from VTA to the cortex (including PFC)
and amygdala via the mesocortical pathway is hypoactive,
which causes negative symptoms [176]. Since dopamine
activities in PFC neurons are known to modulate the dopa-
mine activities in mesolimbic area [177], a reduced dopa-
mine activity in PFC further enhance activity in the limbic
dopamine system. Levels of dopamine released in different
regions are correlated to symptom severity [178]. Normal
neuronal communication depends on the release of neuro-
transmitters from presynaptic vesicles into the synaptic
cleft, and the uptake of GPCRs on the postsynaptic mem-
brane [179]. These GPCRs and signaling proteins locate in
lipid rafts in the brain neuronal membrane [177–179]. In-
creasing evidence indicates that lipid homeostasis in the
nervous system changed during development in schizo-
phrenia. Part of these changes can be attributed to altered
fatty acid composition in lipid rafts. Generally, PUFA con-
tent as well as ratio of omega-6 and omega-3 fatty acids are
important factors affecting the neuronal membrane integ-
rity (e.g., plasticity and fluidity) [51]. Thus, alteration in
membrane structure affects the function of membrane-
bound proteins, availability of cell signalling molecules, and
the behaviour of neurotransmitter systems and their physi-
cochemical properties. These alterations then affect the
GPCR activity located on lipid rafts and ultimately the
neurotransmission [180]. Incorporation of highly unsatur-
ated omega-3 PUFAs into neuronal membranes increases
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Table 1 Effects of omega-3 PUFA supplementation on symptoms and functions in schizophrenia

Trial Authors Omega-3 treatment Effects of omega-3 treatment ARR 95% CI RRR

EPA, DHA (mg/d) Intervention
(Follow-up)

ω3
level

Symptoms (PANSS scores) Functions

T P N G GAF

Prodromal

1 Amminger et al. (2007) [118] EPA (800) + DHA (700) 12 weeks - - ↓ - ↓ ↑ 18.5% 4.6-32.4 87.7%

2 Amminger et al. (2010) [119] EPA (700) + DHA (400) 12 weeks
(40 weeks)

- ↓ ↓ ↓ ↓ ↑ 22.6% 4.8-40.4 82.2%

Amminger et al. (2015) [120] EPA (700) + DHA (400) 12 weeks
(6.7 years)

- ↓ ↓ ↓ ↓ ↑ 30.2% 10.1-50.4 75%

First-episode psychosis

1 Berger et al. (2008) [121] EPA (2000) 12 weeks - - - ↓ - ↑

Wood et al. (2010) [122] EPA (2000) 12 weeks - - - ↓ - -

2 Pawełczyk et al. (2016) [48] EPA (1320) + DHA (880) 26 weeks - ↓ NS NS ↓ ↑

Pawełczyk et al. (2017) [123] EPA (1320) + DHA (880) 26 weeks - - - ↓ ↓ ↑

3 Robinson et al. (2019) [124] EPA (740) + DHA (400) 16 weeks - - - ↓ - -

Chronic schizophrenia

1 Peet et al. (2001) [125] EPA or DHA (2000) 12 weeks ↑ ↓ ↓ NS - -

2 Emsley et al. (2002) [126] EPA (3000) 12 weeks - ↓ - - - -

3 Arvindakshan et al. (2003) [24] EPA (180) + DHA (120) 16 weeks ↑ ↓ - - ↓ -

4 Sivrioglu et al. (2007) [127] EPA (180) + DHA (120) 16 weeks - - - ↓ - -

5 Jamilian et al. (2014) [128] EPA (180) + DHA (120) 8 weeks - ↓ NS NS ↓ -

Abbreviations: 95% CI 95% Confidence Interval, ARR Absolute risk reduction, DHA docosahexaenoic acid (22:6ω3), EPA eicosapentaenoic acid (20:5n-3), G global
subscale score, GAF global assessment of functioning scale, N negative subscale score, NS no significant difference, P Positive subscale score, PANSS Positive and
Negative Syndrome Scale, RRR Relative risk reduction, T total subscale score, - information not available, ↓ decrease, ↑ increase

Fig. 2 A scheme outlines mechanisms as how omega-3 fatty acids exert the beneficial effect on neurotransmission. Omega-3 fatty acids decrease
oxidative stress; suppress formation of pro-inflammatory cytokines; inhibit production of KYNA, an antagonist of NMDA receptor, which increases
glutamine levels; enhance release and uptake of serotonin, and facilitate dopamine binding to D2R by modulating membrane flexibility and
permeability. Abbreviations: AA, arachidonic acid (20:4n-6); COX2, cyclooxygenase-2; DA, dopamine; DHA, docosahexaenoic acid (22:6n-3); D2R,
dopamine receptor; 5-HT, serotonin, 5-hydroxytryptamine; KYNA, kynurenic acid; PGE2, prostaglandin E2
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membrane fluidity, and modifies lipid raft organization
[181–184], enhances affinity of receptors and facilitates re-
ceptor binding, and consequently, improves neurotransmis-
sion and signaling [185]. Stillwell et al. [184] have reported
that DHA incorporation into brain membrane phospho-
lipids affect cell signalling by altering lipid rafts.
Serotonin (5-hydroxytryptamine, 5-HT), another neuro-

transmitter, has also been suggested to play an important
role in etiology and pathophysiology of schizophrenia.
Eggers [185] has proposed that the dorsal raphe nucleus,
the largest serotonergic nucleus in brain, is upregulated in
response to stress or longterm stimulation in schizophre-
nia. This change aberrantly intensified serotonergic drive
in the cerebral cortex, an early cause of the psychiatric fea-
tures of the disease. Impairments in central 5-HT neuro-
transmission, which reflect the metabolism and turnover
of serotonin in brain have been associated with behav-
ioural and physiological abnormalities (violence, hostility,
impulsivity and aggression), and psychiatric disorders (in-
cluding schizophrenia). Patrick and Ames [186] have pro-
posed the mechanism explaining how omega-3 fatty acids
enhance serotonin function. They suggested that EPA in
the brain inhibits the formation of PGE2 [187], which is
known to inhibit the release of serotonin [188]. Thus, EPA
facilitates the release of serotonin from presynaptic neu-
rons. On the other hand, DHA increases the cell mem-
brane fluidity and consequently, allows the binding of
serotonin to the serotonin receptor in the postsynaptic
neuron.
Glutamate, another major excitatory neurotransmitter,

plays a dominant role in fast neurotransmission in human
central nervous system. Evidence indicates that a lack of
glutamatergic neurotransmission, is a key mechanism in
the pathophysiology of schizophrenia [189, 190]. Hypofunc-
tion of glutamatergic signaling is mediated via abnormal N-
methyl-D-aspartate receptor (NMDAR) which prevents
glutamate from binding to the receptor, resulting in in-
creasing levels of the excitotoxic glutamate. This may have
contributed to the pathophysiology (e.g., morphological and
structural brain changes), symptoms and cognitive deficits
in the schizophrenia [191–195]. The hypofunction of
NMDAR could be due to increased production of kynure-
nic acid (KYNA), which is antagonist of NMDAR. In
schizophrenia, formation of serotonin from tryptophan was
significantly reduced, due to increased conversion of trypto-
phan to KYNA. Omega-3 fatty acids suppress the forma-
tion of KYNA.

Discussion
The cause of schizophrenia remains to be elusive. Evi-
dence seems to suggest that cause of schizophrenia is
multifactorial, occurrence of schizophrenia represents
the cumulative effect of multiple factors (genetic or en-
vironmental). Abnormal PUFA metabolism may be one

of the many factors involve in the development of this
disorder. These factors have affected normal PUFA up-
take and incorporation in nerve cells during brain devel-
opment. Levels of PUFAs, particularly omega-3 fatty
acids, i.e., EPA and DHA have been shown decreased in
many schizophrenic patients.

Omega-3 PUFA deficit causes structural and functional
abnormalities in brain
Depletion of omega-3 PUFAs in patients with schizo-
phrenia could be due to a long consumption of unbal-
anced high omega-6 diet during early developmental
stages, and throughout the illness, abnormal uptake and
transport of omega-3 fatty acids within neuronal cells,
and increased release and oxidation of omega-3 fatty
acids from the neuronal cell membrane phospholipids
due to an elevated PLA2 activity.
PUFA deficit has resulted in many adverse effects seen

in schizophrenia, such as abnormal brain structure, symp-
toms, aberrant neurotransmission and neuro-inflammation
etc. Dysregulation of PUFA (including AA and DHA)
metabolism at the early stage, could affect normal neural
development, magnify inflammatory responses, and lead to
aberrant neurotransmission. Omega-3 deficiency causes ab-
normal brain structure (lipid rafts), and subsequently the
dysfunction of neurotransmitter receptors located on the
surface (lipid rafts) of cell membranes, aberrant neurotrans-
mission activity and symptoms seen in schizophrenia.
There are many similarities in psychotic symptoms and ab-
normal neurotransmission activity caused by omega-3 fatty
acid deficit and schizophrenia illness.

Omega-3 supplementation may improve some
abnormalities
No one could control over what one inherited, but cer-
tain environmental factors could be better managed to
minimize the risk of schizophrenia. Intervention with
EPA, has been shown to provide beneficial effect on
schizophrenia through suppressing the production of in-
flammatory eicosanoids (by competing with AA for the
enzymes, such as cyclooxygenase-2, and cytokines, redu-
cing the susceptibility of neural membranes to oxidative
stress, preserve membrane functional integrity, and nor-
mal neurotransmission.
Many clinical trials have shown beneficial effects of

omega-3 PUFA intervention. In this review, 13 studies
which do show clinical efficacy of omega-3 PUFA sup-
plementation on alleviating some symptoms in patients
with schizophrenia were included (Table 1). The possible
neurophysiological explanations and the potential mech-
anisms as how omega-3 fatty acids modulate psycho-
physiological functions and exert their beneficial effects
were discussed.
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Possible mechanisms underlying the beneficial action of
omega-3 supplementation
The beneficial action of omega-3 supplementation can
occur through replenishing the omega-3 content in the
brain membrane. Distribution of DHA in the brain is
region-dependent. Normally, high concentrations of
DHA are found in the frontal cortex and other cortical
regions, but low in regions of the midbrain [196–199].
In schizophrenia brain, omega-3 deficit affects most sig-
nificantly the cortical region, which coincides with the
hypoactive dopamine transmission, and negative symp-
toms. Intervention with omega-3 PUFA, mainly DHA
has shown to improve the negative symptoms, suggest-
ing the beneficial effect through replenishing the de-
pleted DHA content in this brain region. Omega-3
PUFAs can reduce the deterioration of brain structure
by inhibition of PLA2-induced phospholipid breakdown,
restoring and maintaining the brain structures and pre-
serving their function by modulating the membrane
phospholipid metabolism, and fluidity, hence, the neuro-
transmission. Dietary supplementation with omega-3
fatty acids can enhance the incorporation of DHA into
brain cells. However, it should be noted that the poly-
morphism of gene for FABP-7, which transports DHA
to brain cells is found to alter the specificity from DHA
to LA in some schizophrenia patients. In this incidence,
incorporation of DHA into brain cells will be signifi-
cantly compromised.
The beneficial action of omega-3 supplementation can

also occur through gut microbiota. Patients with schizo-
phrenia tend to have poor dietary habits, rich in satu-
rated fats, but low in PUFAs, particularly omega-3 fatty
acids [49]. A recent paper has shown a very different gut
microbiota in schizophrenia [200]. This difference may
modulate brain function through microbiota-gut-brain
axis, and affect symptoms [201]. Increasing evidence has
shown that dietary supplementation with omega-3 fatty
acids affects gut microbiome [202, 203], which in turn,
affects neurofunction and mental behaviors [204, 205].
Supplementation with different types of omega-3 fatty

acids can result in different efficacy [206]. A recent study
by Guo et al. [207] has shown that omega-3 fatty acids,
EPA, DPA and DHA were metabolized differently in hu-
man. EPA supplementation can raise the levels of EPA
in RBC-PL, and EPA and DPA in plasma PL, and CE.
DPA supplementation can increase the levels of EPA
and DPA in RBC-PL and plasma-PL. However, only
DHA supplementation can raise the levels of DHA in
plasma PL and CE. Ouellet et al. [208] have shown that
EPA and DHA can cross the brain-blood barrier at simi-
lar rates, only very low levels of EPA are maintained in
the brain due to mechanisms such as active β–oxidation.
Thus, the unique role of DHA in neuronal membranes
cannot be completely replaced by either EPA or DPA.

Timing of treatment is important
The onset of full-blown schizophrenic disease occurs
typically in late adolescence or early adulthood, during
the period of brain maturation, when myelination is con-
tinuing [209], dysregulation of PUFAs (including AA
and DHA) by the elevated PLA2 activity is also occur-
ring at this early stage [31]. It is critical that intervention
carried out before the PUFA deficiency-related neuro-
biological changes are irreversible [194].
Results from studies by Amminger and colleagues

[118–120] have shown that omega-3 fatty acid supple-
mentation to adolescents in an ultra-high risk cohort
not only reduced the conversion rate to psychosis in
UHR cohort, but also improved both positive and nega-
tive symptoms and functions after 12-week intervention,
and the beneficial effects continued for a long period
(6.7 years). These findings suggest that intervention with
omega-3 fatty acids at the prodromal stage can reduce
the PLA2 activity and brain degradation [146], while re-
plenish the brain DHA content.
Studies in the first-episode patients received omega-3

fatty acid intervention have also shown improvement in
negative symptoms and functions [48, 121–124]. The re-
sults indicate that omega-3 supplementation can still
exert significant improvement in brain chemistry in
newly onset patients. However, omega-3 fatty acid treat-
ment can only improve some symptoms but not func-
tions in chronic patients. A meta-analysis by Chen et al.
[192] have concluded that omega-3 supplementation is
more effective in reducing severity of psychotic symp-
toms in young adults or adolescents in the prodromal
phase of schizophrenia. Omega-3 fatty acid supplemen-
tation can be effective before irreversible neurobiological
changes are established [194]. Indeed, a meta-analysis by
Chen et al. [195] found that omega-3 PUFAs seemed to
be more effective during the early phase of disease (pro-
drome and first episode), rather than in chronic patients.

Heterogeneity of patients – omega-3 PUFA baseline and
antipsychotic medication
Bentsen et al. [98] have shown two clinically distinct
endophenotypes in schizophrenia determined by PUFA
levels. Patients with low PUFAs have more negative
symptoms than those with high PUFAs [97, 98], and
they are more responsive to omega-3 intervention. In
these studies, patients all have low PUFA baseline prior
to study. Omega-3 fatty acid supplementation raised the
blood levels of omega-3 fatty acids.
A recent publication by Cadenhead et al. [210] has

shown dietary omega-3 fatty acid intake and plasma
RAC were low in individuals with clinical high risk for
psychosis as compared to age-matched healthy individ-
uals. Alqarni et al. [211] have also shown that proportions
of PUFAs (e.g., EPA, DHA and AA) were significantly
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lower in the UHR group compared to healthy controls.
Amminger et al. [118–120] have shown that omega-3 fatty
acid supplementation to adolescents in the UHR cohort
not only significantly reduced the rate of transition to
psychosis, but also improved the psychotic symptoms.
Antipsychotic medication may improve brain functions

and alleviate symptoms (mainly positive and less negative),
but it often cause extrapyramidal side effects. The add-on
therapy with omega-3 PUFAs may result in a synergistic
effect in illness outcomes for UHR adolescents and pa-
tients with first-episode schizophrenia. Omega-3 PUFA
supplementation can also reduce the antipsychotic dose
needed to control the symptoms, increase antipsychotic
tolerability, reduce extrapyramidal side effects [119], and
improve cognitive performance [212].
These findings support that early detection of PUFA

composition and antioxidative status is important to
identify the subgroup of patients who may benefit by
omega-3 fatty acid supplementation, In light of this, it is
recommended that lipid profile, particularly omega-3 fatty
acid composition in blood in patients with high risk for
psychosis or having first episode be analyzed prior to
treatment. Understanding the PUFA status at early stage
of the illness can help to identify the population, which
can be benefited from the omega-3 fatty acid intervention.

Conclusion
The current review provides an insight into possible
mechanisms underlying the efficacy of omega-3 PUFA in
patients with schizophrenia. Omega-3 supplementation
is more effective in reducing psychotic symptom severity
in young adults or adolescents in the prodromal phase
of schizophrenia with low omega-3 baseline. It suggests
that patients with predefined lipid levels might benefit
from lipid treatments, but more controlled clinical trials
are warranted.
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