
RESEARCH Open Access

Revealing potential lipid biomarkers in
clear cell renal cell carcinoma using
targeted quantitative lipidomics
Wen Li1,2,3, Xiaobin Wang1,2,3, Xianbin Zhang1,3,4, Peng Gong1,3,4, Degang Ding5, Ning Wang5 and Zhifeng Wang5*

Abstract

Background: The high drug resistance and metabolic reprogramming of clear cell renal cell carcinoma (ccRCC) are
considered responsible for poor prognosis. In-depth research at multiple levels is urgently warranted to illustrate
the lipid composition, distribution, and metabolic pathways of clinical ccRCC specimens.

Methods: In this project, a leading-edge targeted quantitative lipidomic study was conducted using 10 pairs of
cancerous and adjacent normal tissues obtained from ccRCC patients. Accurate lipid quantification was performed
according to a linear equation calculated using internal standards. Qualitative and quantitative analyses of lipids
were performed with multiple reaction monitoring analysis based on ultra-performance liquid chromatography
(UPLC) and mass spectrometry (MS). Additionally, a multivariate statistical analysis was performed using data
obtained on lipids.

Results: A total of 28 lipid classes were identified. Among them, the most abundant were triacylglycerol (TG),
diacylglycerol (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Cholesteryl ester (CE) was the
lipid exhibiting the most considerable difference between normal samples and tumor samples. Lipid content, chain
length, and chain unsaturation of acylcarnitine (CAR), CE, and DG were found to be significantly increased. Based on
screening for variable importance in projection scores ≥1, as well as fold change limits between 0.5 and 2, 160
differentially expressed lipids were identified. CE was found to be the most significantly upregulated lipid, while TG
was observed to be the most significantly downregulated lipid.

Conclusion: Based on the absolute quantitative analysis of lipids in ccRCC specimens, it was observed that the
content and change trends varied in different lipid classes. Upregulation of CAR, CE, and DG was observed, and
analysis of changes in the distribution helped clarify the causes of lipid accumulation in ccRCC and possible
carcinogenic molecular mechanisms. The results and methods described herein provide a comprehensive analysis
of ccRCC lipid metabolism and lay a theoretical foundation for cancer treatment.
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Background
According to cancer statistics reported in 2021, renal
cell carcinoma ranks sixth among new cancer cases in
men and ranks ninth among new cases in women [1].
Clear cell renal cell carcinoma (ccRCC) accounts for
70% of all renal cell carcinoma patients and is the main
pathological feature of lipid accumulation [2]. Loss of
the Von Hippel Lindau (VHL) gene and deletion of a
part of chromosome 3p are involved in the initial steps,
and vascular endothelial growth factor, PI3K, mTOR,
and carbonic anhydrase IX have been defined as thera-
peutic targets [3]. Owing to poor prognosis attributable
to drug resistance and immune escape, it is suggested
that the discovery of more potential molecular mecha-
nisms holds considerable promise [4, 5].
Metabolomics based on nuclear magnetic resonance

(NMR), chromatography, and mass spectrometry (MS)
can be considered to systematically analyze the varia-
tions under different physiological conditions using a
combination of genomics and proteomics [6]. As an in-
dependent branch of metabolomics, lipidomics helps to
comprehensively and systematically identify and quantify
lipids to reveal key drivers of disease pathology. The
lipid metabolites and pathways strategy (LIPID MAPS)
consortium proposed a lipid classification system and di-
vided lipids into the following eight categories: (1) fatty
acyls (FAs); (2) glycerolipids (GL); (3) glycerophospholi-
pids (GP), including phosphatidylcholine (PC), phospha-
tidylserine (PS), phosphatidylethanolamine (PE),
phosphatidylinositol (PI), phosphatidic acid (PA), and
cardiolipin (CL); (4) sphingolipids (SL), including cera-
mides (Cer), sphingomyelin (SM), and sphingosine
(SPH); (5) prenol lipids (PR); (6) sterol lipids (ST); (7)
saccharolipids; and (8) polyketides [7–9]. Apart from
acting as constituents of biological structural compo-
nents and participating in signal transduction, lipids also
bind proteins to enable expansion of the metabolic regu-
latory network [10].
The diversity of lipid structures and the complexity of

analytical methods are bottlenecks in systematic studies.
With the development of high-throughput and high-
precision technologies that rely on liquid chromatog-
raphy and tandem MS, research on lipid function and
metabolic regulation has advanced to the stage of omics.
Targeted quantitative lipidomics aids detection of the
precise content of specific substances to help provide di-
versified data for the potential discovery of biomarkers
and drug targets [11, 12].

Methods
Study participants
All 10 pairs of tumor tissues and adjacent normal tissues
were obtained from the Urology Department, Henan
Provincial People’s Hospital. The study was approved by

the Medical Ethics Committee of Henan Provincial Peo-
ple’s Hospital (no. 2019074) and was conducted in ac-
cordance with the Declaration of Helsinki. None of the
patients involved in the study presented with any major
underlying disease (Table 1).

Sample preparation and extraction
The samples were measured by weight (20 mg each) and
were then added to 1 mL lipid extract (methyl tert-butyl
ether/methanol = 3/1, v/v, mixed with the internal stand-
ard). The internal standards were listed in Table 2. With
the addition of steel balls, the mixtures were

Table 1 Clinical information of 10 patients

Characteristics Value N (%) or Mean ± SD

Age 54.00 ± 10.40

Sex (Male) 10 (80%)

T1/T2 States 7 / 3

Tumor diameter (cm) 5.03 ± 2.40

Hypertension 10 (10%)

Cigarette smoking 10 (10%)

ALT, U/L 20.92 ± 14.40

AST, U/L 21.58 ± 7.49

TP, g/L 64.07 ± 10.10

TBIL, μmol/L 10.60 ± 6.08

ALP, U/L 72.37 ± 22.34

GGT, U/L 26.01 ± 13.68

TBA, μmol/L 1.94 ± 1.21

CHE, KU/L 7.94 ± 2.85

LDH, U/L 215.38 ± 42.83

GLDH-D, U/L 3.89 ± 1.75

NEFA-D, mmol/L 0.28 ± 0.17

CHOL, mmol/L 5.10 ± 0.64

TG, mmol/L 1.83 ± 0.23

HDL-C, mmol/L 1.11 ± 0.13

LDL-C, mmol/L 3.36 ± 0.53

APO-A1, g/L 1.12 ± 0.23

APOB100, g/L 1.07 ± 0.20

LPa, mg/dL 4.40 ± 1.98

UREA, mmol/L 5.78 ± 1.49

CREA, μmol/L 103.50 ± 39.03

UA, μmol/L 339.33 ± 74.27

GLU, mmol/L 5.78 ± 1.18

ALT: alanine aminotransferase; AST: aspartate aminotransferase; TP: total
protein; TBIL: total bilirubin; ALP: alkaline phosphatase; GGT: glutamyl
transferase; TBA: total bile acid; CHE: cholinesterase; LDH: lactate
dehydrogenase; GLDH-D: glutamate dehydrogenase; NEFA-D: non-estesterified
fatty acid; CHOL: cholesterol; TG: triglycerides; HDL-C: high density lipoprotein;
LDL-C: low density lipoprotein; APO-A1: Apolipoprotein-A1; APOB100:
Apolipoprotein B100; LPa: lipoprotein; CREA: Creatinine; UA: Uric acid;
GLU: Glucose
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homogenized using a ball mill. After subjection to vor-
texing for 2 min and after sonication for 5 min, 200 μL
of water was added. The samples were centrifuged for
10 min at 12000 rpm. The supernatant was aspirated and
concentrated, and reconstituted with 200 μL of phase B
(acetonitrile/isopropanol (10/90, v/v) with 0.1% formic
acid and 10mmol/L ammonium formate).

Ultra-performance liquid chromatography (UPLC)
conditions
The ExionLC™ AD (AB Sciex, Framingham, USA) UPLC
instrument was used by considering conditions as fol-
lows: (1) chromatographic column: the Thermo Accu-
core C30 column (2.6 μm, 100 mm × 2.1 mm ID); (2)
mobile phase: phase A, acetonitrile/water (60/40, v/v,
with 0.1% formic acid and 10mmol/L ammonium for-
mate); phase B, acetonitrile/isopropanol (10/90, v/v, with
0.1% formic acid and 10mmol/L ammonium formate);

(3) gradient washing program: 80/20 (phase A/B, v/v) at
0 min, 70/30 (phase A/B, v/v) at 2 min, 40/60 (phase A/
B, v/v) at 4 min, 15/85 (phase A/B, v/v) at 9 min, 10/90
(phase A/B, v/v) at 14 min, 5/95 (phase A/B, v/v) at 15.5
min, 5/95 (phase A/B, v/v) at 17.3 min, 80/20 (phase A/
B, v/v) at 17.5 min, 80/20 (phase A/B, v/v) at 20 min; (4)
the flow rate was 0.35 mL/min, the column temperature
was 45 °C, and the injection volume was 2 μL.

Electrospray ionization-MS/MS conditions
The QTRAP® 6500+ (AB Sciex, Framingham, USA) mass
spectrometer was used. The electrospray ionization
source temperature was 500 °C. The MS voltage values
were 5500 V (positive ion mode) and − 4500 V (negative
ion mode). The pressure of ion source gas 1 was 45 psi,
while that of ion source gas 2 was 55 psi; the pressure of
the curtain gas was 35 psi. Each ion pair was scanned

Table 2 The internal standard used in this study

Glass Abbreviations internal standards Concentration (nmol/mL, μM)

Free fatty acid FFA FFA(18:2)-d11 0.2

Acylcarnitine CAR CAR(16:0)-d3 0.2

Eicosanoids Eicosanoid 5S-HETE-d8 0.04

Cholesterol Cho Cho-d7 5

Cholesteryl ester CE CE(18:1)-d7 2

Bile Acid BA GCDCA-d4 0.04

Sphingosine SPH SPH(18:1)-d7 0.04

Ceramide Cer Cer(d18:1(d7)/18:0) 0.2

Ceramide 1-phosphates CerP CerP(d18:1/8:0) 0.4

Hexosylceramide HexCer HexCer(d18:1(d5)/18:0) 0.4

Sphingomyelin SM SM(d18:1(d9)/15:0) 0.2

Diacylglycerol DG DG(17:0/17:0)_d5 0.2

Triacylglycerol TG TG(17:0/17:1/17:0)_d5 0.2

Lysophophatidylcholine LPC LPC(16:0)-d31 0.2

alkyl-Lysophophatidylcholine LPC-O LPC(16:0)-d31 0.2

Lysophosphatidylethanolamine LPE LPE(14:0) 0.2

alkenyl-Lysophosphatidylethanolamine LPE-P LPE(14:0) 0.2

Lysophosphatidylglycerol LPG LPG(14:0) 0.2

Lysophosphatidylinositol LPI LPI(17:1) 0.2

Lysophosphatidylserine LPS LPS(17:1) 0.2

Phosphatidylcholine PC PC(16:0(d31)/18:1) 0.2

alkyl-glycerophosphocholines PC-O PC(16:0(d31)/18:1) 0.2

Phosphatidylethanolamine PE PE(16:0(d31)/18:1) 0.2

alkenyl-glycerophosphoethanolamines PE-P PE(16:0(d31)/18:1) 0.2

Phosphatidylglycerol PG PG(16:0(d31)/18:1) 0.4

Phosphatidylinositol PI PI(16:0(d31)/18:1) 0.2

Phosphatidylserine PS PS(16:0(d31)/18:1) 0.4

Coenzyme Q CoQ CoQ10-d9 0.4
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using optimal declustering potential and collision energy
settings in the triple quadrupole.

Data preprocessing
The MetWare Database (MWDB) was constructed based
on the information available on standard products.
Quantification was performed in the multiple reaction
monitoring (MRM) mode. Only specified ions were col-
lected. The chromatographic peaks of all targets were in-
tegrated, and quantitative analysis was performed using
the internal standard.
A part of each sample was mixed to prepare a quality

control, which was then analyzed using the total ion
current and MRM metabolite detection multimodal
graph (extracted ion current). MS data were processed
using the Analyst 1.6.3 software based on the local lipid
database. The MS peaks detected in different samples
for each substance were calibrated to ensure accurate
quantification.

Lipid quantitative analysis
Different concentrations (0.2 nmol/L, 0.5 nmol/L, 1
nmol/L, 2 nmol/L, 5 nmol/L, 10 nmol/L, 20 nmol/L, 50
nmol/L, 100 nmol/L, 200 nmol/L, 500 nmol/L, 1000
nmol/L, 2000 nmol/L, 5000 nmol/L, and 10,000 nmol/L)
of standard solutions were prepared using a mixture of
dichloromethane/methanol to obtain data on the peak
intensity and the corresponding quantitative signals. The
chromatographic peak area indicates the relative content
of the corresponding substance; this information was
substituted into the linear equation and calculation for-
mula (Table 3-4). The following calculation formula was
subjected to unit conversion, and the sample content
could be obtained by directly substituting the corre-
sponding values in the generated standard curves.

X ¼ 0:001� c� V � v1ð Þ=v2=m

X: the content of lipid in the sample (nmol/g);
c: the concentration value obtained by substituting the

integrated peak area ratio in the sample into the stand-
ard curve (nmol/mL);
V: volume of the reconstituted solution (μL);
v1: volume of the sample extraction solution (μL);
v2: volume of the collected supernatant (μL); and.
m: sample mass (g).

Results
Lipid composition analysis
Qualitative analysis was performed after the completion
of lipid extraction and MWDB establishment. The linear
equations and correlation coefficients of the standard
curves are presented in Table 2-4. The calculation

formula was further introduced to obtain information on
the absolute content. A total of 28 lipid subclasses, and
their corresponding compounds, were detected (Fig. 1A).
The lipid subclass presenting with the highest number
of compounds was triacylglycerol (TG). The total con-
tent of quantified lipids was calculated by considering
the sum of the contents of all lipid compounds in the
same sample, and value of the summation was signifi-
cantly higher in tumor tissues than that estimated in
normal tissues (Fig. 1B).
Principal component analysis (PCA) is a common and

unsupervised pattern-recognition multi-dimensional
statistical analysis that is used to transform potentially
correlated variables into linearly uncorrelated variables
through orthogonal transformation [13]. Partial least
squares-discriminant analysis (PLS-DA) is a multivariate

Table 3 Standard curve linear equation

Class Equation r LLOQ ULOQ

BA y = 5.89032 x + 0.00349 0.99952 0.001 1

CAR y = 10.63664 x - 9.00378e-4 0.99178 0.005 5

CE y = 4.15246 x - 0.00124 0.99310 0.01 5

Cer y = 2.90771 x + 0.00126 0.99628 0.002 2

CerP y = 0.14978 x + 7.83392e-5 0.99815 0.005 2

Cho y = 4.27736 x + 0.02240 0.99768 0.005 5

CoQ y = 3.64824 x + 1.73992 0.99749 0.002 2

DG y = 7.54751 x + 0.04692 0.99412 0.002 2

Eicosanoid y = 61.65750 x + 0.08742 0.99661 0.001 1

FFA y = 22.05858 x - 0.21591 0.99297 0.02 10

HexCer y = 1.40675 x - 2.86002e-5 0.99152 0.002 2

LPC y = 2.87925 x - 0.00565 0.99009 0.01 5

LPC-O y = 2.87925 x - 0.00565 0.99009 0.01 5

LPE y = 0.43538 x - 0.00138 0.99562 0.02 5

LPE-P y = 0.43538 x - 0.00138 0.99562 0.02 5

LPG y = 0.62714 x - 1.52689e-5 0.99848 0.005 2

LPI y = 0.06717 x + 0.00722 0.99669 0.002 2

LPS y = 0.10692 x + 2.42176e-5 0.99127 0.01 2

PC y = 1.39542 x - 6.09826e-4 0.99651 0.002 10

PC-O y = 1.39542 x - 6.09826e-4 0.99651 0.002 10

PE y = 14.19927 x - 0.02853 0.99327 0.01 5

PE-P y = 1.01408 x - 0.00815 0.99613 0.02 5

PG y = 6.97289 x + 0.01424 0.99033 0.01 10

PI y = 3.05988 x - 0.15491 0.99717 0.02 5

PS y = 6.52668 x - 0.37092 0.99437 0.01 10

SM y = 0.68841 x - 5.22709e-4 0.99110 0.002 10

SPH y = 1.80406 x + 4.28477e-4 0.99513 0.005 2

TG y = 1.33356 x + 5.11722e-4 0.99125 0.005 10

Class: lipid classification; Equation: linear equation; r: the correlation coefficient;
LLOQ (nmol/mL): lower limit of quantification; ULOQ (nmol/mL): upper limit
of quantification
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statistical analysis with supervised pattern recogni-
tion that helps maximize the distinction between
groups and aids the discovery of different metabo-
lites. Orthogonal partial least squares discriminant
analysis (OPLS-DA) is used to connect orthogonal
signal correction with PLS-DA to generate score
maps of each group to further highlight the differ-
ences [14]. PCA analysis was performed to determine
the separation trend between the groups (Fig. 1C).
The OPLS-DA model was established by using the
OPLSR. Anal function in the MetaboAnalyst R soft-
ware package to compare the degree of variability
between the groups and between the samples within
the group (Fig. 1D). R2X and R2Y represent the in-
terpretation rates of the X and Y matrices, respect-
ively. The predictive ability is represented by Q2.
The evaluation shows that the OPLS-DA model is
ideal and stable (Fig. 1E-F).

Differences in lipid subclass content
Functional research on lipids is mainly conducted and
expressed in units of subclasses. Different lipid sub-
classes demonstrate evident differences in their bio-
logical functions. Acylcarnitine (CAR), cholesteryl ester
(CE), diacylglycerol (DG), SPH, alkylglycerophosphocho-
lines (PC-O), alkenylglycerophosphoethanolamines (PE-
P), and cholesterol (Cho) presented with significantly
higher levels in tumors than those observed in normal
samples. Additionally, the content of bile acid (BA) and
lysophosphatidylserine (LPS) in tumor tissues was lower
than that in normal tissue (Fig. 2A). There was no sig-
nificant difference in the content of other types of lipids
(Fig. S1).
Analysis of the dynamic distribution range of lipid

content revealed the lipid molecules presenting with the
lowest and highest levels, as well as highlighted changes
in the span of lipid content. In normal samples, 3-

Table 4 The specific lipid specie that was used to generate the calibration curve

Class Lipid name CAS number Supplier Article number

FFA FA(18:2) 60–33-3 sigma-Aldrich L1376

CAR CAR(16:0) 2364-67-2 Supelco 91,503

Eicosanoid 5S-HETE 73,307–52-5 cayman 34,210

Cho cholesterol 57–88-5 sigma-Aldrich C3045

CE CE(18:2) 604–33-1 sigma-Aldrich C0289

BA Glycochenodeoxycholic acid 16,564–43-5 sigma-Aldrich G0759

SPH SPH(18:1) 213–78-4 Avanti

Cer Cer(d18:1/17:0) 67,492–21-4 Avanti 860517P

CerP CerP(d18:1/16:0) 2,146,303–22-9 Avanti 860533P

HexCer HexCer(d18:1/16:0) 2,260,795–77-3 Cayman 26,009

SM SM(d18:1/17:0) 121,999–64-2 Avanti 860585P

DG DG(17:0/17:0) 98,896–81-2 Cayman 26,942

TG TG(17:0/17:0/17:0) 2438-40-6 sigma-Aldrich T2151

LPC LPC(17:0) 50,930–23-9 Avanti 855676P

LPC-O LPC(17:0) 50,930–23-9 Avanti 855676P

LPE LPE(18:0) 69,747–55-3 Avanti 856715P

LPE-P LPE(18:0) 69,747–55-3 Avanti 856715P

LPG LPG(18:0) 326,495–23-2 Avanti 858214P

LPI LPI(18:1) 799,268–53–4 Avanti 850149P

LPS LPS(18:1) 326,589–90-6 Avanti 858143P

PC PC(17:0/17:0) 70,897–27-7 Avanti 850360P

PC-O PC(17:0/17:0) 70,897–27-7 Avanti 850360P

PE PE(17:0/17:0) 140,219–78-9 Avanti 830756P

PE-P PE(P-18:0/18:1) 144,371–68-6 Avanti 852758P

PG PG(17:0/17:0) 799,268–52-3 Avanti 830456P

PI PS(16:0/18:1) 321,863–21-2 Avanti 840034P

PS PI(16:0/18:1) 50,730–13-7 Avanti 850142P

CoQ CoQ10 303–98-0 Supelco 7386
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hydroxylaurylcarnitine exhibited the lowest levels and
triglyceride-TG (52:4)_18:2 exhibited the highest levels.
In tumor tissues, the lipid with the lowest content was
identified as tridecanoyl carnitine, and the lipid with the
highest content was identified as cholesterol lipid-CE
(18:2) (Fig. 2B).

Lipid chain length analysis
The length of the lipid chain is defined as the sum of the
carbon atoms in the fatty acid chain of the lipid mol-
ecule. In addition to the lipid content, chain length is
closely related to lipid function. The chain length can
affect the thickness of the plasma membrane, which in
turn affects the fluidity of the cell membrane, the activity
and function of the relevant lipid transport protein, and
the target protein [15].
The data on the levels of lipid compounds presenting

with the same chain length were added together, and the
differences in the presence of different chain lengths
were noted. Compared with the normal group, the con-
tent of CAR in the tumor group was found to be in-
creased significantly at chain lengths of 12, 16, 18, and
20, but was reduced by a chain length of 22. For all

chain lengths, the CE content observed in the tumor
group was significantly higher than that noted in the
normal group. The content of DG in the tumor group
increased with chain lengths of 32, 34, 36, and 42, and
there was no significant difference between other chain
lengths. Increased content of PE in chain lengths of 40,
41, 42, and 44, and decreased in chain lengths of 30, 33,
34, and 36, were observed in tumor samples. In tumors,
lipid contents were decreased in TG with lengths of 36,
38, 41, and 43, as well as in alkenyl-
lysophosphatidylethanolamine (LPE-P) and BA (Fig. 3).
The chains in the other subclasses between groups were
measured and the significant differences are marked
with an asterisk (Fig. S2).

Lipid chain unsaturation analysis
The degree of unsaturation of the lipid chain is defined
as the sum of the number of double bonds in the fatty
acid chain of the lipid molecule. The saturation of cell
membrane lipids affects the fluidity of the membrane,
which in turn affects the proliferation and invasiveness
of tumor cells [16].

Fig. 1 Lipid identification. A The type and number of identified lipids. B The total content of lipid molecules. C The PCA analysis on tumor and
normal samples. D OPLS-DA score chart. The abscissa represents the predicted principal component and abscissa direction indicates the gap
between groups. The ordinate represents the orthogonal principal component and the ordinate direction indicates the gap within the group. E
The verification diagram OPLS-DA model. R2X = 0.442, R2Y = 0.862, Q2 = 0.73, P < 0.005. F S-plot of OPLS-DA model. The abscissa represents the
covariance between the principal component and the lipid, and the ordinate represents the correlation coefficient between the principal
component and the lipid. The red points indicate that the VIP value of these lipids is greater than or equal to 1, and the green points indicate
that the VIP value of these lipids is less than 1
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Fig. 2 Changes in lipid subclass content. A The up- and down-regulated lipid subtypes between groups. B Dynamic distribution of lipid content.
Each point represents a lipid molecule. The ordinate represents the corresponding content of each lipid molecule, and the lipid molecules with
the lowest and highest content are marked

Fig. 3 The carbon chain length analysis. The content of lipid compounds corresponding to different carbon chain lengths were listed in
each group
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The data on the levels of lipid compounds with the
same number of unsaturated bonds were added. Com-
pared with the normal group, it was observed that the
lipid content of all unsaturated bonds in CAR and CE
increased significantly in the tumor group. The content
of lipid compounds with a partial number of unsaturated
bonds in other lipid types showed a significant increase
or decrease in tumors (Fig. 4, Fig. S3). Lipid chain length
and unsaturation level affect the mechanical properties
of the respective biological macromolecules. Studies
have found that a gradual accumulation of specific long-
chain fatty acids (LCFAs) in CD8+ T cells in the pan-
creas not only disrupts mitochondrial function, but also
promotes the TCA cycle through the β oxidation
process of FA [17]. The types of LCFAs and lipids with
different saturations may provide clues for the mainten-
ance of tumor progression and immune cell metabolic
reprogramming in the tumor microenvironment [17].

Screening of differentially expressed lipids
Differential lipids were screened based on the fold
change (FC) and variable importance in projection (VIP)
values. Compared with the normal group, the differences
were considered significant in the tumor groups with
FC ≥ 2 and FC ≤ 0.5, respectively. Lipids with VIP ≥ 1
were regarded as significantly different.
The FC in each group was compared and calculated

according to their binary logarithm. The top 20

upregulated and downregulated lipids were ranked ac-
cording to a VIP ≥ 1. The lipids with the most upregu-
lated expression were CE (22:1) (FC = 6.83), CE (24:1)
(FC = 6.74), and CE (20:1) (FC = 6.61). Most lipids
among the top 20 upregulated lipids were identified as
cholesteryl ester, except for TG (60:0)_20:0 FC = 5.16)
and DG (18:1_24:0) (FC = 4.26). Additionally, the lipids
with most downregulated expression were TG (46:3)_18:
1 (FC = 4.87), TG (50:5)_14:1 (FC = 4.84), and TG (46:
3)_18:2 (FC = 4.83). Most lipids among the top 20 down-
regulated lipids were TG, except for lysophosphatidy-
lethanolamine (LPE) (18:0/0:0) (FC = 3.57) (Fig. 5A,
Supplementary Table 1). The top 20 lipids with the
greatest VIP value in each group in the OPLS-DA model
were selected, and expression levels of all were found to
be upregulated (Fig. 5B, Supplementary Table 2).
A total of 109 upregulated lipids and 51 downregu-

lated lipids are indicated in red and green, respect-
ively, in the volcano plot (Fig. 5C). Each point
represents a metabolite. The closeness of significantly
different lipids was measured via differential lipid cor-
relation analysis to further understand their mutual
adjustment relationship. Pearson correlation analysis
was performed for the significantly different lipids.
The top 50 differential lipids with the greatest VIP
values were selected (Fig. 5D). Interestingly, there is a
more obviously negative correlation between several
types of TG with other lipids.

Fig. 4 The chain unsaturation analysis. The content of lipid compounds corresponding to different carbon chain saturations in each group
were listed
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Discussion
Accurate identification and absolute quantification of
lipids are important for the comprehensive study of lipid
metabolism. Fatty acid oxidation (FAO) is essential for
tumor metabolic reprogramming, a mechanism which
provides the necessary energy and biological intermedi-
ate products [18]. The upregulated FAO in tumors con-
tributes to tumor growth and progression, and to the
development of the malignant phenotype characterized
by aggressive, metastatic, and drug resistance traits [19–
24]. In the β-oxidation process, FAs are activated and
degraded after binding to coenzyme A (CoA) in the
cytoplasm. Inhibition of β-oxidation decreases FA me-
tabolism, preventing hydroperoxide formation and fer-
roptosis in a manner dependent on glutathione or

glutathione peroxidase in ccRCC [25]. Carnitine palmi-
toyltransferase 1 (CPT1) catalyzes the transfer of long-
chain fatty acyl-CoA into CAR, which is then carried by
the carnitine translocator (CAT) across the inner mito-
chondrial membrane. CPT2 catalyzes the conversion of
long-chain CAR into long-chain acyl-CoA. High expres-
sion of CPT1 has been reported in breast cancer [26],
lung cancer [27], gastric cancer [28], prostate cancer
[29], ovarian cancer [30], nasopharyngeal cancer [31]
and chronic lymphoblastic leukemia [32]. CPT1 is con-
sidered the rate-limiting enzyme for FAO, and the level
of CAR reflects the degree of FAO to a certain extent
[33]. Cholesterol is not only an important component of
the membrane structure, but also serves as a precursor
for BAs, sterol hormones, vitamins, and oxidized

Fig. 5 Differentially expressed lipids. A Bar chart of differentially expressed lipids. FC: Fold change. B The top 20 lipids ranked by VIP value of
differentially expressed lipids. C The volcano map of differentially expressed lipids. Each point in the volcano map represents a lipid. Significantly
up-regulated lipids are represented by red dots, and significantly down-regulated lipids are represented by green dots. The size of the dot
represents the VIP value. D Correlation analysis on the significantly different lipids. Different colors represent the level of Pearson’s
correlation coefficient
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cholesterol [34]. Tumor cells hijack and store excess
cholesterol contents in LD in the form of CE to provide
energy, to promote tumor growth, and to increase me-
tastasis of prostate and pancreatic tumors [35, 36].
Blockade of cholesterol intake via inactivation of the
liver X receptors causes the death of malignant brain
cancer cells, resulting in a positive therapeutic effect
[37]. DG is produced by the phosphatase enzyme reac-
tion through phosphatidic acid in the endoplasmic
reticulum or via the decomposition of TG during lipoly-
sis [38]. As a secondary messenger, DG activates a signal
cascade reaction to promote tumor growth [39]. The
quantitative lipidomic results in this study showing an
accumulation of CAR, CE, and DG, which can be mutu-
ally supported by the conclusion of the increase of up-
stream metabolic enzymes in these literatures. In
addition to the detection of peripheral blood content,
the study of these metabolite levels in tumors is condu-
cive to the in-depth study of metabolic reprogramming
driven by endogenous and exogenous factors and is
valuable for the exploration of combined therapy related
to the immune regulation of the ccRCC tumor
microenvironment.
After combining with cell membranes to release ara-

chidonic acid, fat-soluble BA promotes reactive oxygen
species (ROS) production and induces DNA damage
[40]. The functions of BA in mediating inflammation, in
promoting proliferation, and in inhibiting apoptosis
proceed by a series of signal transductions [41]. Intes-
tinal bacteria modify BAs that enter the intestine, pro-
moting their disintegration. The resulting metabolites
promote the differentiation of anti-inflammatory Treg
cells and inhibit the proliferation of pro-inflammatory
Th17 cells, thereby regulating the immune response [42,
43]. The content of BA in ccRCC and the regulation of
tumor growth and immune cells have not been studied
thus far. The significantly lower BA content reported in
the present study, and its function in tumor tissues,
merit further confirmation.

Comparisons with other studies and what does the
current work add to the existing knowledge
Apart from exhibition of genetic mutations and epigen-
etic regulation [44], ccRCC is a metabolic disease that
involves metabolic reprogramming during tumorigenesis
and progression [45]. Lipid accumulation in ccRCC is
related to the absorption and excretion of lipid metabo-
lites [46, 47]. The role of considerable amounts of lipid
droplets (LDs) accumulated in ccRCC remains contro-
versial [48]. Abnormal hypoxia inducible factor (HIF) ex-
pression caused by VHL gene deletion has been shown
to promote tumor angiogenesis, glycolysis, and metasta-
sis [49]. Different isoforms of phospholipid-binding pro-
tein AnxA3 help modulate LD storage in ccRCC cell

lines [47]. The number of LDs is closely related to the
concentration of glucose in the cells. Fatty acid synthesis
is vigorous and, under conditions when glucose concen-
tration is sufficient, TG is synthesized and stored in LD
[50]. The metabolite lactic acid under anaerobic condi-
tions is used as an energy carrier for mutual transmis-
sion within and between tissues in lung and pancreatic
cancers [51]. There is a need to utilize highly advanced
metabolic research methods to explore the increased FA
uptake and synthesis, glycolysis enzyme expression, gly-
colysis paradox (Warburg effect), pentose phosphate
pathway, uptake of external glutamine and arginine, and
the decreased β-oxidation of FA and oxidative phosphor-
ylation [52].
Combined analysis of renal cancer proteomics and

non-targeted metabolomics has helped reveal grade-
dependent metabolic reprogramming [33, 53]. The de-
tection of metabolites using NMR illustrates an overall
signature in the urine samples of patients [54, 55]. An
HIF-1 targeted gene, NADH dehydrogenase (ubiquin-
one) 1 alpha subcomplex 4-like 2 (NDUFA4L2), was
overexpressed in ccRCC tumor samples and was found
to promote proliferation, migration, and drug resistance,
based on a combination of untargeted metabolomic and
transcriptomic analyses [56]. MS-dependent untargeted
lipidomic research has further helped identify the en-
richment of polyunsaturated FAs (PUFAs) based on the
analysis of long-chain FAs (LCFAs) [57]. Compared to
the existing studies, the present study revealed quantita-
tive detection of a variety of lipid metabolites in ccRCC
at one time and provided more comprehensive data sup-
port for ccRCC progression based on more detailed lipid
profile information.

Study strengths and limitations
Lipid signaling molecules participate in proliferation,
death signaling, and tumor metabolism [10]. Lipidomic
research is conducted by including differential lipid
screening, regulation of lipid function, and lipid network
construction. Non-targeted lipidomics is unbiased and
systematically reflects the lipid characteristics of living
bodies. The repeatability of non-targeted lipidomics is
poor and the linear range is limited. Targeted quantita-
tive lipidomic research, as performed in the present
study, benefits from wide coverage, high throughput, re-
producibility, sensitivity, and accuracy. It is, however, a
biased analysis based on specific types of lipids; hence,
exogenous lipids are necessary for consideration as in-
ternal standards. The existing research methods imple-
mented may destroy the physiological structure of lipids
during sample extraction and preparation; this may
cause significant differences in the results. Thus, it is im-
perative to modify the extraction steps and to
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standardize database construction for different types of
biological specimens included and analyzed.

Conclusions
Tumor cells establish their own malignant proliferation
through metabolic reprogramming, which is an import-
ant feature that distinguishes them from normal cells. A
comprehensive and in-depth characterization of tumor
metabolic characteristics provides an opportunity to
identify and develop potential tumor diagnosis and treat-
ment targets. Global lipidomic analysis with approaches
that change dynamically over time will be used to
analyze tumor pathogenesis with greater accuracy. In
this project, 28 subclasses of lipids were detected using
the UPLC-MS/MS detection platform. Different lipid
changes in ccRCC tumor tissues, such as increased CAR,
CE, DG, and SPH levels, and a decrease in BA and LPS,
may be related to an increase in the components consti-
tuting the membrane structure required for cell prolifer-
ation and the rearrangement of events in energy
metabolism; this aspect warrants further in-depth
verification.
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