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Abstract

Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are
important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate,
promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not
impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane
expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of
expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM
synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis.
Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness
would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to
host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms,
which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected,
key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact
inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface
membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and
immune escape, and to suggest possible novel approaches to cancer control and cure.
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Introduction
After decades of scientific investigations and billions of
dollars, the option to the cancer drama remains surgery,
provided the tumor is operable. The second option is ra-
diation and chemotherapy, which potentially undermine
the host immune responses. The third option is some at-
tempts at personalized immunotherapy available
uniquely at the most advanced centers in the developed
countries and for the richest; however, with limited suc-
cess rates [1]. Immunotherapy of cancer is

predominantly a change of focus from direct targeting of
cancer cells to generating tumor-reactive immune cells.
Immune-therapy involves generation or activation of
host immune effectors directed to tumor-specific (TSA)
or associated (TAA) antigens, which are presented on
the cell surface. Immunological approaches in cancer
management that neglect lack of tumor cells surface
membrane expression of TSA or TAA, MHC class I
molecules, and natural killer (NK) cells activating check-
points may not be effective [2].
Antigen presentation by tumor cells involves gener-

ation, proteasome proteolysis, entry into the endoplas-
mic reticulum for possible binding to HLA class I
molecules, followed by transfer to the cell surface of a
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complex comprising a “putative” TAA or TSA [2]. The
review challenges the existence of such antigens and ac-
cessibility of tumor cells surface MHC class I and NK
cell activating molecules, thus precluding antigen pres-
entation and preventing any immune attack mode on
the cancer cells. Conversely, the review highlights the
most fundamental concept of “contact inhibition”, now
largely ignored, and which refers to contact-mediated in-
hibition of locomotion, migration, and proliferation
when normal cells come in contact with one another [3].
Failure of contact inhibition is one of the major mecha-
nisms underlying the initiation of tumorigenesis and is
certainly the responsibility of the cell surface phospho-
lipids, cholesterol, and sphingomyelin (SM). Therefore,
attention is herein directed to the cell surface biochem-
ical and biophysical changes in SM levels and instru-
mental roles in cancer initiation, growth, and metastasis
(Fig. 1). The release of diacyl glycerol upon SM synthesis
is clarified in Fig. 1. This molecule is central to a too
large plethora of metabolic and signaling pathways, and
its role in tumorigenesis encompasses several axes, and
is not restricted to the content of plasma membrane SM.

Tumor immune evasion
Tumor-associated and tumor-specific antigens
Many tumor-associated (TAA) and tumor-specific
(TSA) antigens are proteins expressed in fetal and

normal adult tissues and stressed cells, found to be up-
regulated in cancer cells and serum of cancer patients
(Table 1). All these molecules are actually self-antigens
which may not induce immune responses specific to the
tumor cells, even if they are displayed on the apical sur-
face. They have diagnostic and prognostic value, but
may not be instrumental in induction of immune effec-
tors against cancer cells [4–12]. The extreme difficulty
and challenges in identifying genuine TAA or TSA,
which possess the needed specificity and immunogen-
icity, were recently emphasized [13–16].

Immunogenicity of the elusive tumor-associated antigens
A putative TAA released by proliferating or dying tumor
cells would be presented by macrophages or dendritic
cells to stimulate CD4+ and then CD8+ T lymphocytes
and B cells, provided proper co-stimulatory signals are
available. That is not the case in numerous situations, as
protein antigens fail to stimulate innate immunity recep-
tors with consequent inflammation and pain, which are
often not perceived during tumor initiation and growth
[2]. The importance of these signals is shown by the
phenomenon termed abscopal effect, whereby some im-
munogenic tumors regress following distant thermal or
irradiation intervention, which results in release of en-
dogenous damage-associated molecular patterns [17–
19]. The abscopal effect would certainly be effective

Fig. 1 Major steps in sphingomyelin metabolism. SMS, sphingomyelin synthase; SMase, sphingomyelinase; CS, ceramide synthase; CDase,
ceramidase; S1PP, sphingosine-1-phosphate phosphatidase; SK, sphingosine kinase; S1P, sphingosine 1-phosphate
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Table 1 Tumor-associated and tumor-specific antigens

Marker Full name Tissue Malignancy Ref

AFP Alfa fetoprotein Fetal liver Liver, gut, ovaries [4]

CEA Carcinoembryonic antigen Blood Gastric, lung [4]

HSP Heat shock proteins Stressed cells lung, gut, prostate [4]

CA Carbohydrate antigens All cells Gastric, lung, pancreas [4]

MUC1 Mucin 1 Epithelial cells Lung, breast, pancreas [4]

PSA Prostate-specific antigen Prostate Prostate [4]

MAGE Melanoma-associated antigen Testis Lung [4, 5]

NY-ESO-1 Cancer/testis antigen Testis Esophagus [6–8]

SSX-2 Cancer/testis antigen Testis Various cancer [7, 9, 10]

GPC3 Glypican-3 Fetal and adult Liver, lung, melanoma [4]

Midkine Growth-promoting factor 2 All cells Nervous system [7, 11]

EpCAM Cell adhesion molecule Epithelial cells Epithelial carcinomas [7]

PRAME Preferentially in melanoma Testis Lung [5, 7, 8]

WT1 Wilm’s tumor protein1 Urinogenital Kidney [7, 8]

Survivin Inhibitor of apoptosis All cells Bladder [7, 8, 12]

Fig. 2 The abscopal effect. Irradiation of tumor cells results in the release of a plethora of danger associated molecular patterns (DAMP), which
interact with innate immunity receptors on nearby cells, thus inducing the release of tumor necrosis factor alpha (TNFα), interleukin (IL) 6,
transforming growth factor beta (TGFβ), the chemokine IL8, reactive oxygen (ROS) and nitrogen (RNS) species, and nitric oxide (NO). These
inflammatory molecules provide the necessary signals for the recruitment and stimulation of dendritic cells (DC) and macrophages (M) to
properly present TAA to helper (CD4+) and cytotoxic T (CTL) lymphocytes, which may target and kill residual and metastatic tumor cells bearing
TAA on their surface membrane. The figure is uploaded on the net by Maria Widel and was reproduced with her permission [18]
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provided tumors are able to display surface membrane-
located TSA or TAA (Fig. 2).

Humoral antibody targeting of putative TAA-bearing
tumor cells
A TAA would then be the target of specific antibodies.
If IgM or IgG1 specific antibodies are generated and ac-
cess that tumor specific surface antigen, the complement
system could be activated with limited effect on the
tumor cell per se, but with considerable impact on the
tumor microenvironment and on the host, if such anti-
gen is shared with normal cells, especially in the lung
and kidney. Antibodies that mediate natural killer (NK)
cells and macrophage killing are more effective in tumor
eradication, provided that antigen is expressed on the
cell surface membrane (Fig. 3), and is specific to the
tumor cells, not present as well on the surface of healthy
epithelial, nervous system, and urogenital cells [4–12]. In
fact, immunotherapy-generated antibodies will intensely
engage with live or dying tumor cells-excreted and se-
creted products leading to their opsonization, while
sparing the tumor cells.

Cytotoxic CD8+ cells targeting of tumor cells and the lack
of surface membrane MHC class I molecule expression
Specific CD8+ cytotoxic lymphocytes would be life-
saving if such putative TAA-derived peptides are pre-
sented on the surface of the tumor cells in association
with MHC class I molecules (Fig. 4). Loss of surface
membrane MHC class I molecule expression on cell sur-
face membrane has, however, been documented for

almost all tumors, and was found to be associated with a
more malignant phenotype [for review [20–23]].

Interaction of natural killer cells with tumor cells
Despite such bleak scenario, it is fortunate that tumor
cells displaying decrease or absence of surface mem-
brane MHC class I molecules, invite NK cells into ac-
tion, provided tumor necrosis factor (TNF) apoptosis-
inducing receptor, Fas (also termed CD95 or Apo-1 or
TNFRSF6) [24] and death-inducing receptors, TRAIL
(TNF-related apoptosis-inducing ligand)- R1 (death re-
ceptor (DR)4 and TRAIL-R2 (DR5) [25, 26], and NK
cell-activating molecules [27, 28] are displayed on the
surface of the cancer cell (Fig. 5). It is likely NK cell-
mediated killing mechanisms are instrumental in im-
mune surveillance responsible for elimination of tumors
during human life span [27–29]. If age, hormonal,
neural, biochemical and immune factors lead to NK cell
activity impairment, cancer cells would overgrow, and
gradually show loss of accessibility of Fas and NK cell
activating molecules. Several cancer cell lines showed lit-
tle surface membrane Fas expression even after treat-
ment with interferon-gamma (IFN-γ) [30]. Additionally,
several reports have documented cancer cell surface
membrane aberrant expression of ligands to NK cell ac-
tivating and inhibitory receptors [31–33].

The cell surface changes as initiators of carcinogenesis
In case of tumor cell surface membrane aberrant expres-
sion of TSA or TAA, MHC class I, and NK cells activat-
ing molecules, immunotherapeutic approaches that

Fig. 3 Antibody-dependent cell-mediated cytotoxicity (ADCC). Natural killer cells (NK) killing of tumor cells relies on their expression of surface
membrane tumor-associated antigen (TAA). Drawn using BioRender
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manipulate number and activity of antibody, CD4+,
CD8+, NK cells and macrophages are of limited effect.
The target of intervention should be the reason(s) be-
hind decrease or lack of antigen expression, and most
importantly, accessibility on the surface of cancer cells.
Altered expression of surface membrane molecules has
been ascribed to loss or reduction of gene expression,
post translational modifications that prevented anchor-
ing in surface membranes, hiding due to changes in the
biochemical composition of cancer cells, or defects in
the plasma membranes of cells that likely lead to loss

or decrease of antigen exposure [20–23]. It is the bio-
physics and biochemistry of the cell surface that must
be thoroughly examined in view of finding reliable solu-
tions [34–39]. Changes in cell surface composition,
electrical charge, and activity may be the reason for the
loss of contact inhibition, which is directly related to
the uncontrolled tumor cell proliferation [34–39]. The
high net negative charge on the surface of tumor cells
was ascribed to increase in phospholipids and was
found to be associated with higher metastatic potential
[38, 39].

Fig. 4 Cytotoxic T lymphocyte killing of tumor cells. Presentation of peptide TAA-derived peptides by surface membrane MHC class I molecule is
mandatory for mediating killing by cytotoxic T cells. TCR, T cell receptor, IFN-γ, interferon gamma. Drawn using BioRender

Fig. 5 Natural killer cell killing of tumor cells. Natural killer (NK) cell kills MHC class I negative tumor cells if they express surface membrane NK
cell-activating ligand. Drawn using BioRender
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Increase in surface membrane sphingomyelin content
leads to immune escape, and tumorigenesis initiation and
progression
Remarkably, SM is apt at interacting with neighboring
molecules and surrounding water molecules to generate
a network of hydrogen bonds, via forming intermolecu-
lar hydrogen bonds between the glycosyl head groups,
the amide and hydroxyls of the sphingosine base and of
the hydroxy fatty acid. This extensive intermolecular
hydrogen bonding capacity is a characteristic feature
that distinguishes sphingolipids from the major lipid
family in animal cells, the glycerolipids. These cannot
form interlipid hydrogen bonds between their diglycer-
ide moieties. The ester and ether groups can function
only as hydrogen bond acceptors, not as donors [40–44].
Abnormal increase in SM content in surface membrane
apical layer reduces membrane fluidity and permeability,
and increases its rigidity and strength, leading to loss of
contact inhibition and self-control mechanisms, decrease
in cell to cell communication, reduced or inhibited cell
surface molecules expression and signaling pathway co-
ordination, and uncontrolled proliferation [34–39].
Following initiation of tumorigenesis, continuous in-

crease in SM content and distribution on the cell surface
membrane leads to progressive immune evasion from
host effector cells and molecules, allowing tumor
growth. The critical importance of SM metabolism in
cancer progression is additionally due to its role in cer-
amide (Cer) production, because reduced SM degrad-
ation leads to decreased production of ceramide, an
important signaling molecule for cancer biology includ-
ing apoptosis, cell proliferation, cell migration, senes-
cence, and inflammation [45–47]. Indeed, resistance to
apoptosis is reported as one important mechanism by
which tumor cells escape the action of potential immune
effectors [45–51].

Evidence for the role of surface membrane
sphingomyelin in tumorigenesis
Several lines of research documented the role of surface
membrane SM in tumorigenesis. First, changes in sphin-
golipids levels were established for several tumor cells
and cell lines [52–57]. More specifically, level of SM in
the outer leaflet of cell plasma membrane was reported
to be significantly elevated in highly metastatic human
prostatic adenocarcinoma cell lines compared to the
lower metastatic variant [52]. Second, SV40-transformed
human lung fibroblasts synthesized SM at an abnormally
fast and high rate compared to untransformed cells [58].
Third, accumulating evidence suggest that colon, pros-
tate, and kidney cancer are also associated with alter-
ations in sphingolipids and their metabolizing enzymes
[48, 59]. Fourth, high SM synthase expression and aber-
rant SM contents were associated with breast cancer

progression and metastasis [60]. Fifth, increased SM
content in frozen tissue samples of primary lung adeno-
carcinoma obtained from patients who underwent rad-
ical surgery was the most reliable indicator of
recurrence, i.e., of degree of malignancy [61]. Six, low
levels of surface membrane-associated neutral sphingo-
myelinase (nSMase)-2, responsible for SM hydrolysis,
were associated with early recurrence of hepatic cell car-
cinoma after surgery [62]. Additionally, human hepatic
cancer cell lines, HepG2 and Huh-7, were incubated
with lysenin in indirect membrane immunofluorescence
(IF) assays. Lysenin is SM-specific binding protein from
the earthworm Eisenia foetida, which acts as a specific
cytochemical probe for SM [63]. Intense surface mem-
brane IF was displayed by HepG2 >> > Huh-7 Cell lines
> non-cancerous cells. These results confirmed the pres-
ence of inordinate SM amount on the surface membrane
of the liver cancer cells and its association with level of
malignancy [64]. Indeed, sphingolipids control of the
balance in cells between proliferation and apoptotic cell
death has been amply documented [58].

Aspects of altered sphingomyelin metabolism in cancer
Sphingomyelin is the most abundant sphingolipid in ani-
mal cell membranes, localized to the outer membrane
leaflet where it greatly contributes to the formation of
specialized liquid-ordered domains called lipid rafts.
Sphingomyelin synthase (SMS) isoforms activity contrib-
ute to increased SM content and trafficking to the cell
membrane. The activity of sphingomyelinase enzymes,
notably neutral sphingomyelinase (nSMase)-2, generally
localized at the plasma membrane, modulates the con-
tent of surface membrane SM via mediating its hydroly-
sis to ceramide and phosphocholine [40–47]. Altered
sphingolipid metabolism was predicted to occur in early
stages of oncogenic transformation, independently of
genetic mutations, because sphingolipid metabolizing
enzymes are rarely mutated [56].
Sphingomyelin metabolism in cancer cells was charac-

terized by changes in SMS expression and activity [58].
Increased SMS expression in breast [60] and ovarian
[65] cancer could be conducive to tumor metastasis. De-
pletion of SMS isoform 2 suppressed survival, growth,
and migration of ovarian cancer cell lines, via disruption
of lipid metabolism and mitochondrial function, and in-
crease in oxidative damage [66].
Losses, mutation, and poor expression of the gene en-

coding nSMase were prevalent in breast and prostate
cancer, and osteosarcoma cell lines [67, 68]. Loss, re-
duced or aberrant expression of nSMase has been re-
ported in colorectal, gastric, and lung cancers,
lymphomas, and acute myeloid and lymphocytic
leukemia [69]. Notably, gene encoding nSMase-2 was
hypermethylated and silenced in hepatic cell carcinoma,
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whereby gene overexpression elicited diminished cellular
proliferation by 50%, and knockdown promoted tumor
invasiveness and migratory capacities [62]. Hypermethy-
lation or low expression of nSMase2-encoding gene were
common events in oral squamous and renal cell carcin-
oma, associated with spread of tumor cells, larger tumor,
higher malignancy grade, and earlier recurrence [70, 71].
Reduction in the potency of nSMase-mediated SM

degradation pathway would lead to its accumulation at
the apical lipid leaflet, excessive tightening of the SM-
based hydrogen bond barrier and, consequently, impair-
ment of cell-cell and cell-matrix interactions [40–44].
Marchesini et al. [72] discovered that overexpression of
nSMase 2 expression causes confluence-induced growth
arrest in breast cancer cells. Changes in cell nSMase2
expression, level, or activity likely led to primary tumor
growth via SM accumulation on the cell membrane
outer leaflet, thus interrupting cell-contact inhibition,
and preventing exposure of cell surface membrane im-
mune check points [64]. Recently, surface membrane ex-
cessive SM content in HepG2 and Huh-7 hepatic tumor
cells was shown to be associated with decrease in
nSMase activity. Triton-soluble surface membrane mole-
cules of tumor and non-cancerous cells were assessed
for nSMase activity using the Sphingomyelinase Amplex
Red Assay of Invitrogen. The results of three independ-
ent assays revealed that nSMase activity of Hep G2 and
Huh-7 tumor cells was 32 and 28% lower (P < 0.05) than
that of normal cells, respectively. The study implicated
reduced nSMase activity as responsible for high SM con-
tent in tumor cells surface membrane [64].
Ceramide is the central molecule in SM synthetic

and hydrolysis pathways, and plays an important role
in cancer metabolism. Balance between levels of the
anti-proliferative Cer and the pro-survival action of its
metabolite, sphingosine-1-phosphate, determines cell
fate, and hence termed the sphingolipid rheostat of
cancer cells [73]. A major mechanism of Cer gener-
ation involves hydrolysis of SM by neutral, acid, and al-
kaline sphingomyelinases, the former being associated
with the cell plasma membrane and responsible for the
control of surface membrane SM content [45–47, 49–
51]. The levels of SM and Cer were up- and down-
regulated, respectively in hepato cellular carcinoma tis-
sues [74]. The six ceramide synthases genes were dif-
ferently expressed in colorectal carcinoma, and
overexpression led to impairment of the in vitro viabil-
ity of cancer cell lines [75]. In support, alkaline cerami-
dase was found to be overexpressed in hepato cellular
carcinoma tissue and cell lines, promoting cell prolifer-
ation via mediating Cer hydrolysis [76]. Breast cancer
aggressiveness and proliferation were attributed to sup-
pression of apoptosis via a Cer-associated pathway
[49]. Synthesis and accumulation of Cer mediate cancer

cell death via apoptosis, necroptosis, and autophagy
[45, 47, 77].

Role of surface membrane sphingomyelin in metastasis
and drug resistance
Sphingomyelin is particularly enriched in tumor-derived
exosomes, which contribute to cancer angiogenesis, in-
vasion, metastasis, and drug resistance via shuttling anti-
cancer drugs out of the tumor cells [78–81]. High SM
content in cancer cell surface membrane reduces anti-
cancer drug influx, interferes with endocytosis of
nanoparticles-based drug delivery systems, and mediates
drug sequestering in intracellular vesicles, major mecha-
nisms in cancer drug resistance [82]. Content of surface
membrane SM was shown to dictate the uptake level of
the anti-pancreatic cancer drug, gemcitabine [83]. Can-
cer cells cloaked in SM-rich plasma membrane, sur-
rounded by a tight hydrogen barrier made by interaction
of SM with water molecules may traffic unscathed in
blood vessels and capillaries, because host immune cells
and effectors are prevented from accessing surface mem-
brane immune checkpoint molecules, explaining the
readiness of cancer cells to metastasize to distant loca-
tions [84].

Impact of cancer therapy on surface membrane
sphingomyelin content
Exposure to ionizing irradiation led to rapid nSMase-
mediated hydrolysis of SM to Cer, and cancer cell death
[85]. Resistance to traditional cancer treatments like cis-
platin or irradiation was associated with nSMase inhib-
ition, leading to SM accumulation and low Cer levels
[86]. Conversely, etoposide used for the treatments of
lung, testicular and ovarian cancer, lymphoma, leukemia,
and neuroblastoma, and cytarabine used to treat acute
myeloid leukemia, acute lymphocytic leukemia, chronic
myelogenous leukemia, and non-Hodgkin’s lymphoma
promote nSMase activation, leading to reduced surface
membrane SM content and Cer accumulation [46, 47,
69]. The phospholipid analogue miltefosine, which has
been approved for the treatment of breast cancer metas-
tasis, and is currently used for the treatment of cutane-
ous metastases of mammary carcinoma was shown to
significantly inhibit SM biosynthesis in human hepatoma
and other tumor cells [87], promote efflux of cholesterol
and SM from the surface membrane [88], and modulate
membrane physical properties [89]. The anti-cancer
drug daunorubicin induced specific activation of
nSMase-2 in the human breast cancer cell line MCF-7,
leading to depletion of surface membrane SM and accu-
mulation of intracellular Cer [90]. Arsenic trioxide anti-
cancer activity against human multiple myeloma and
gastric cancer cell lines appeared to be attributed to al-
terations in the sphingolipid pathway [91]. Gentamicin
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induction of delayed cell growth and cell death of Hodg-
kin’s T-cell human lymphoblastic lymphoma acted via
SM metabolism, notably nSMase stimulation in whole
cells, increase in SM levels in nuclear but not outer
membrane [92], and increase in cell surface elasticity
[83]. Inhibition of cell proliferation and induction of
apoptosis in myeloid, lymphoid, and solid cancer cell
lines by Withanolide D isolated from the herb Withania
somnifera, root extracts from Panax ginseg, or propolis-
derived caffeic acid phenethyl ester were attributed to
nSMase activation-mediated production of apoptotic
Cer from membrane SM [93–95].

Manipulating sphingomyelin metabolism for
cancer control
Targeting SM metabolism may represent viable target
for cancer cure [96–98]. This is supported by multiple
reports. Blocking SM synthesis was recently found to in-
crease immune responses to hepatic cell carcinoma,
mantle cell lymphoma, and glioblastoma [99–101]. Add-
itionally, therapeutic treatments that increased SM hy-
drolysis via activating the surface membrane-associated
nSMase allowed tumor cell apical membrane antigens
exposure to the host immune effectors and prevention
of an instrumental immune escape mechanism, together
with accumulation of intracellular Cer [46, 69]. Interfer-
ence with SM metabolism was exploited to overcome
multidrug resistance [49, 50, 102]. Specifically, inhibitors

of sphingosine kinase were proposed for cancer treat-
ment via increasing Cer levels [73].

Surface membrane sphingomyelin-based prophylactic
and therapeutic approaches to cancer
The alkyl-lysophospholipid analogue edelfosine, resvera-
trol, miltefosine, and inhibitors of SM metabolism en-
zymes were used to alter tumor cell membrane fluidity
and permeability and showed remarkable efficacy in pre-
venting tumor progression [54, 85, 103, 104]. Devising
novel anticancer strategies based on the modulation of
lipid metabolism and the composition of the cell mem-
brane was recently advised for the treatment of cancer
and overcoming drug resistance, pioneering a novel field
named membrane-lipid therapy [104–106]. Combination
of chemotherapeutic drugs and Cer is presently increas-
ingly used for tumor treatment [47, 51, 107–109]. In-
creasing the activity of nSMase 2 led to overcoming
immune escape in melanoma cells [110]. Arachidonic
acid (ARA), a potent nSMase activator, was shown to at-
tenuate leukemia-derived HL-60, gastric, prostate and
breast cancer cells growth via nSMase activation path-
ways [111–113]. Arachidonic acid was advocated as hav-
ing the potential to increase the efficacy of currently
used glioma treatments via its activation of nSMase
[114]. Additionally, activation of HepG2 and Huh-7
tumor cells with ARA led to considerable decrease in
surface membrane SM content as assessed using the
lysenin test, increase in nSMase activity as judged by the

Fig. 6 Sphingomyelin metabolism and proliferative capacity of hepatic tumor cells. Mean fluorescence counts in hepatic tumor cells
quantitatively assayed for proliferation by the Alamar blue microplate test, and showing significant (P < 0.005, ★) decrease following exposure to
arachidonic acid (ARA), a known activator of nSMase, which leads to SM hydrolysis and release of intracellular apoptotic ceramide, reflected in cell
viability and proliferation decrease. Myriocin interferes with SM synthesis via blocking the initial step in the de novo synthesis of ceramide,
leading to reduction of SM content in the cell membrane, and reduced proliferation.
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Sphingomyelinase Amplex Red Assay, likely mediating
highly significant (P < 0.0001) reduction in HepG2 and
Huh-7 tumor cells proliferation level in the Alamar blue
test (Fig. 6) [64]. These results are in entire accord with
the reports documenting ARA selective tumoricidal ac-
tion [115, 116].

Study strength and limitations
In this review the role of the cell surface membrane SM
in tumor initiation, progression, and metastasis was em-
phasized for the first time. Proposals in this review are
directly and indirectly supported by a large number of
published studies and findings. The review is, however,
limited by the lack of experiments and trials dedicated
to the assessment of the validity and efficacy of anti-
tumor therapies based on reducing the level and distri-
bution of sphingomyelin in experimental animals and
humans.

Conclusions and further perspectives
Cancer that becomes clinically detectable has evaded im-
munological surveillance, possibly due to failure of prop-
erly exposing cell surface membrane molecules, which
are instrumental in interaction with the host immune ef-
fectors. Immunotherapy strategies may, therefore, not be
of significant use. Future cancer management strategies
should be directed at elucidating the fundamental flaw
leading to low or absent surface membrane expression
of molecules critical for tumor eradication. The review
proposes that cell surface membrane SM accumulation,
propensity to form intermolecular hydrogen bond bar-
rier with adjacent molecules and surrounding water, and
impairment of a major generation mechanism of the
pro-apoptic Cer are instrumental in tumor initiation,
progression, and metastasis. Innumerable published
findings, reports, and studies supporting the hypothesis
were presented. The recent progress in membrane-lipid
therapy was delineated. Treatment with ARA, the
membrane-associated nSMase-2 powerful activator, was
proposed for prevention of tumor cells immune evasion
and cancer management via hydrolysis of surface mem-
brane SM, allowing proper cell-cell-contact inhibition,
exposure of immune check molecules, and release of vig-
orous apoptotic signals. Experiments will be designed to
assess the impact of ARA and other molecules capable
of modulating the cell surface SM content in preventing
tumor initiation, reversing tumor growth, and preventing
cancer cells locomotion, migration, and metastasis in ex-
perimental hosts. Possible safe and highly efficacious
prophylactic and therapeutic agents and molecules will
be proposed for pre-clinical trials in experimental hosts
and humans.
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