Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90. https://doi.org/10.1038/nrgastro.2013.171.
Article
CAS
PubMed
Google Scholar
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–9. https://doi.org/10.1016/j.jhep.2020.03.039.
Article
PubMed
Google Scholar
Eslam M, Sanyal AJ, George J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014 e1991.
Article
CAS
Google Scholar
Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, et al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology. 2011;54(1):344–53. https://doi.org/10.1002/hep.24376.
Article
PubMed
PubMed Central
Google Scholar
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 2017;49(2):197–211. https://doi.org/10.1080/03602532.2017.1293683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijk W, Kersten S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol. 2016;27(3):249–56. https://doi.org/10.1097/MOL.0000000000000290.
Article
CAS
PubMed
Google Scholar
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, et al. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta. 2020;503:19–34. https://doi.org/10.1016/j.cca.2019.12.029.
Article
CAS
PubMed
Google Scholar
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: novel functions beyond lipoprotein lipase modulation. Prog Lipid Res. 2020;80:101067. https://doi.org/10.1016/j.plipres.2020.101067.
Article
CAS
PubMed
Google Scholar
Kersten S. New insights into angiopoietin-like proteins in lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol. 2019;30(3):205–11. https://doi.org/10.1097/MOL.0000000000000600.
Article
CAS
PubMed
Google Scholar
Davies BSJ. Can targeting ANGPTL proteins improve glucose tolerance? Diabetologia. 2018;61(6):1277–81. https://doi.org/10.1007/s00125-018-4604-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang R, Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol. 2014;13(1):133. https://doi.org/10.1186/s12933-014-0133-8.
Article
PubMed
PubMed Central
Google Scholar
Fugier C, Tousaint JJ, Prieur X, Plateroti M, Samarut J, Delerive P. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J Biol Chem. 2006;281(17):11553–9. https://doi.org/10.1074/jbc.M512554200.
Article
CAS
PubMed
Google Scholar
Ye J, Qin Y, Wang D, Yang L, Yuan G. The relationship between circulating ANGPTL8/Betatrophin concentrations and adult obesity: a meta-analysis. Dis Markers. 2019;2019:5096860.
Article
Google Scholar
Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG, Kersten S. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res. 2016;57(9):1670–83. https://doi.org/10.1194/jlr.M067363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruscica M, Macchi C, Fogacci F, Ferri N, Grandi E, Rizzoli E, et al. Angiopoietin-like 3 and subclinical peripheral arterial disease: evidence from the Brisighella heart study. Eur J Prev Cardiol. 2020;27(19):2251–4. https://doi.org/10.1177/2047487319884378.
Article
PubMed
Google Scholar
Zhang R. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol. 2016;6(4):150272. https://doi.org/10.1098/rsob.150272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oike Y, Akao M, Kubota Y, Suda T. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med. 2005;11(10):473–9. https://doi.org/10.1016/j.molmed.2005.08.002.
Article
CAS
PubMed
Google Scholar
Li Y, Teng C. Angiopoietin-like proteins 3, 4 and 8: regulating lipid metabolism and providing new hope for metabolic syndrome. J Drug Target. 2014;22(8):679–87. https://doi.org/10.3109/1061186X.2014.928715.
Article
CAS
PubMed
Google Scholar
Kadomatsu T, Tabata M, Oike Y. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J. 2011;278(4):559–64. https://doi.org/10.1111/j.1742-4658.2010.07979.x.
Article
CAS
PubMed
Google Scholar
Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol. 2009;62(1):97–128. https://doi.org/10.1348/000711007X255327.
Article
PubMed
Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
Article
PubMed
PubMed Central
Google Scholar
Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: JPT H, editor. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Chapter 10: Cochrane; 2021. Available from www.training.cochrane.org/handbook.
Google Scholar
Xu C, Doi SA: Meta-Regression. In Meta-Analysis. Statistics for Biology and Health. Chapter 11. Khan S. Singapore: Springer; 2020:243–254.
Google Scholar
Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials II: the quality effects model. Contemp Clin Trials. 2015;45(Pt A):123–9. https://doi.org/10.1016/j.cct.2015.05.010.
Article
PubMed
Google Scholar
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.
Article
PubMed
Google Scholar
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furuya-Kanamori L, Xu C, Lin L, Doan T, Chu H, Thalib L, et al. P value-driven methods were underpowered to detect publication bias: analysis of Cochrane review meta-analyses. J Clin Epidemiol. 2020;118:86–92. https://doi.org/10.1016/j.jclinepi.2019.11.011.
Article
PubMed
Google Scholar
Gao FL, Xie CS, Zhang LL. Establishment and analysis of a nonalcoholic fatty liver disease nomogram prediction model based on serum Betatrophin levels. China Med Herald. 2019;16:103–106+119.
Google Scholar
Hong BS, Liu J, Zheng J, Ke W, Huang Z, Wan X, et al. Angiopoietin-like protein 8/betatrophin correlates with hepatocellular lipid content independent of insulin resistance in non-alcoholic fatty liver disease patients. J Diabetes Investig. 2018;9(4):952–8. https://doi.org/10.1111/jdi.12792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, et al. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep. 2016;6(1):24013. https://doi.org/10.1038/srep24013.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Loeffelholz C, Pfeiffer AFH, Lock JF, Lieske S, Döcke S, Murahovschi V, et al. ANGPTL8 (Betatrophin) is expressed in visceral adipose tissue and relates to human hepatic steatosis in two independent clinical collectives. Horm Metab Res. 2017;49:343–9.
Article
Google Scholar
Long YL, Wei XM. Application value of serum Betatrophin levels in assessing the severity of non-alcoholic fatty liver disease. Chin Hepatol. 2019;24:933–5.
Google Scholar
Yang DF. The value of novel insulin hormone levelss in the clinical diagnosis of non-alcoholic fatty liver disease. Chin J Integrated Trad Western Med Liver Dis. 2017;27:291–3.
Google Scholar
Zhang LL, Xie CS, Li L, Ji GX. Study on the effect of β-trophinon in the pathogenesis of non-alcoholic fatty liver disease. Med J West China. 2018;31:1057–60.
Google Scholar
Zhang CJ. Changes and significance of serum ALT, AST and betatrophin levels in patients with nonalcoholic fatty liver disease. Mod Med Health Res. 2021;5:101–2.
Google Scholar
Zhu JZ, Li CX, Dai YN, Fang ZY, Zhao DJ, Zhu HT, et al. Serum betatrophin level increased in subjects with nonalcoholic fatty liver disease. Int J Clin Exp Med. 2016;9:6580–8.
CAS
Google Scholar
Altun Ö, Dikker O, Arman Y, Ugurlukisi B, Kutlu O, Ozgun Cil E, et al. Serum angiopoietin-like peptide 4 levels in patients with hepatic steatosis. Cytokine. 2018;111:496–9. https://doi.org/10.1016/j.cyto.2018.05.030.
Article
CAS
PubMed
Google Scholar
Yang LY, Wang Y, Xu YC, Cheng YN, Ma Y, Zhao D. Effect of angiopoietin-like 4 in the diagnosis of nonalcoholic fatty liver. J Cap Med Univ. 2020;41:31–4.
Google Scholar
Ma Y, Wang Y, Wang X, Yang L, Lang J, Zhao D. Serum ANGPTL2, ANGPTL3, and ANGPTL4 as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. Diabetes. 2019;68(Supplement 1):1884–P. https://doi.org/10.2337/db19-1884-P.
Article
Google Scholar
Yilmaz Y, Ulukaya E, Atug O, Dolar E. Serum concentrations of human angiopoietin-like protein 3 in patients with nonalcoholic fatty liver disease: association with insulin resistance. Eur J Gastroenterol Hepatol. 2009;21(11):1247–51. https://doi.org/10.1097/MEG.0b013e32832b77ae.
Article
CAS
PubMed
Google Scholar
Tikka A, Soronen J, Laurila PP, Metso J, Ehnholm C, Jauhiainen M. Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci Rep. 2014;34(6):e00160. https://doi.org/10.1042/BSR20140115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dikker O, Çetin Dağ N, Şahin M, Türkkan E, Dağ H. The association of angiopoietin-like peptide 4 levels with obesity and hepatosteatosis in adolescents. Cytokine. 2020;125:154802. https://doi.org/10.1016/j.cyto.2019.154802.
Article
CAS
PubMed
Google Scholar
Zhang L, Shannon CE, Bakewell TM, Abdul-Ghani MA, Fourcaudot M, Norton L. Regulation of ANGPTL8 in liver and adipose tissue by nutritional and hormonal signals and its effect on glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2020;318(5):E613–e624. https://doi.org/10.1152/ajpendo.00339.2019.
Article
CAS
PubMed
Google Scholar
Sweet PH, Khoo T, Nguyen S. Nonalcoholic fatty liver disease. Prim Care. 2017;44(4):599–607. https://doi.org/10.1016/j.pop.2017.07.003.
Article
PubMed
Google Scholar
Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2(11):901–10. https://doi.org/10.1016/S2213-8587(14)70032-4.
Article
CAS
PubMed
Google Scholar
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2019;7(4):313–24. https://doi.org/10.1016/S2213-8587(18)30154-2.
Article
PubMed
Google Scholar
Tana C, Ballestri S, Ricci F, Di Vincenzo A, Ticinesi A, Gallina S, et al. Cardiovascular risk in non-alcoholic fatty liver disease: mechanisms and therapeutic implications. Int J Environ Res Public Health. 2019;16(17). https://doi.org/10.3390/ijerph16173104.
Anstee QM, Mantovani A, Tilg H, Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2018;15(7):425–39. https://doi.org/10.1038/s41575-018-0010-0.
Article
PubMed
Google Scholar