Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Hypertension Lancet. 2015;386(9995):801–12. https://doi.org/10.1016/S0140-6736(14)61468-9.
Article
PubMed
Google Scholar
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.
Article
PubMed
PubMed Central
Google Scholar
Cheng HM, Chuang SY, Wang TD, Kario K, Buranakitjaroen P, Chia YC, et al. Central blood pressure for the management of hypertension: is it a practical clinical tool in current practice? J Clin Hypertens (Greenwich). 2020;22(3):391–406. https://doi.org/10.1111/jch.13758.
Article
Google Scholar
Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865–71. https://doi.org/10.1093/eurheartj/ehq024.
Article
PubMed
Google Scholar
Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27(3):461–7. https://doi.org/10.1097/HJH.0b013e3283220ea4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi C, Yu X, Auckle R, Lu Y, Fan X, Yu S, et al. Hypertensive target organ damage is better associated with central than brachial blood pressure: the northern Shanghai study. J Clin Hypertens (Greenwich). 2017;19(12):1269–75. https://doi.org/10.1111/jch.13110.
Article
CAS
Google Scholar
Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of Central Versus Brachial Blood Pressure with Target-Organ Damage: systematic review and meta-analysis. Hypertension. 2016;67(1):183–90. https://doi.org/10.1161/HYPERTENSIONAHA.115.06066.
Article
CAS
PubMed
Google Scholar
Wilkinson IB, Prasad K, Hall IR, Thomas A, MacCallum H, Webb DJ, et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol. 2002;39(6):1005–11. https://doi.org/10.1016/S0735-1097(02)01723-0.
Article
PubMed
Google Scholar
Ferrara LA, Guida L, Iannuzzi R, Celentano A, Lionello F. Serum cholesterol affects blood pressure regulation. J Hum Hypertens. 2002;16(5):337–43. https://doi.org/10.1038/sj.jhh.1001388.
Article
CAS
PubMed
Google Scholar
Mancia G, Facchetti R, Bombelli M, Polo Friz H, Grassi G, Giannattasio C, et al. Relationship of office, home, and ambulatory blood pressure to blood glucose and lipid variables in the PAMELA population. Hypertension. 2005;45(6):1072–7. https://doi.org/10.1161/01.HYP.0000165672.69176.ed.
Article
CAS
PubMed
Google Scholar
Yan Z, Bi-Rong D, Hui W, Chang-Quan H. Serum lipid/lipoprotein and arterial blood pressure among Chinese nonagenarians/centenarians. Blood Press. 2011;20(5):296–302. https://doi.org/10.3109/08037051.2011.572590.
Article
CAS
PubMed
Google Scholar
Castaner O, Pinto X, Subirana I, Amor AJ, Ros E, Hernaez A, et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J Am Coll Cardiol. 2020;76(23):2712–24. https://doi.org/10.1016/j.jacc.2020.10.008.
Article
CAS
PubMed
Google Scholar
Joshi PH, Khokhar AA, Massaro JM, Lirette ST, Griswold ME, Martin SS, et al. Remnant Lipoprotein Cholesterol and Incident Coronary Heart Disease: The Jackson Heart and Framingham Offspring Cohort Studies. J Am Heart Assoc. 2016;5(5). https://doi.org/10.1161/JAHA.115.002765.
Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Boren J, Catapano AL, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345–61. https://doi.org/10.1093/eurheartj/ehr112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasahara A, Adachi H, Hirai Y, Enomoto M, Fukami A, Yoshikawa K, et al. High level of plasma remnant-like particle cholesterol may predispose to development of hypertension in normotensive subjects. Am J Hypertens. 2013;26(6):793–8. https://doi.org/10.1093/ajh/hpt011.
Article
CAS
PubMed
Google Scholar
Fan F, Qi L, Jia J, Xu X, Liu Y, Yang Y, et al. Noninvasive central systolic blood pressure is more strongly related to kidney function decline than peripheral systolic blood pressure in a Chinese community-based population. Hypertension. 2016;67(6):1166–72. https://doi.org/10.1161/HYPERTENSIONAHA.115.07019.
Article
CAS
PubMed
Google Scholar
Momin M, Fan F, Li J, Qin X, Jia J, Qi L, et al. Associations of plasma homocysteine levels with peripheral systolic blood pressure and noninvasive central systolic blood pressure in a community-based Chinese population. Sci Rep. 2017;7(1):6316. https://doi.org/10.1038/s41598-017-06611-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan F, Jia J, Li J, Huo Y, Zhang Y. White blood cell count predicts the odds of kidney function decline in a Chinese community-based population. BMC Nephrol. 2017;18(1):190. https://doi.org/10.1186/s12882-017-0608-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Zhou Z, Fan F, Qi L, Jia J, Sun P, et al. Joint effect of non-invasive central systolic blood pressure and peripheral systolic blood pressure on incident hypertension in a Chinese community-based population. Sci Rep. 2018;8(1):3229. https://doi.org/10.1038/s41598-018-21023-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takazawa K, Kobayashi H, Kojima I, Aizawa A, Kinoh M, Sugo Y, et al. Estimation of central aortic systolic pressure using late systolic inflection of radial artery pulse and its application to vasodilator therapy. J Hypertens. 2012;30(5):908–16. https://doi.org/10.1097/HJH.0b013e3283524910.
Article
CAS
PubMed
Google Scholar
Takazawa K, Kobayashi H, Shindo N, Tanaka N, Yamashina A. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave. Hypertens Res. 2007;30(3):219–28. https://doi.org/10.1291/hypres.30.219.
Article
PubMed
Google Scholar
Ding FH, Fan WX, Zhang RY, Zhang Q, Li Y, Wang JG. Validation of the noninvasive assessment of central blood pressure by the SphygmoCor and Omron devices against the invasive catheter measurement. Am J Hypertens. 2011;24(12):1306–11. https://doi.org/10.1038/ajh.2011.145.
Article
PubMed
Google Scholar
Wohlfahrt P, Krajcoviechova A, Seidlerova J, Mayer O, Filipovsky J, Cifkova R. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave. Am J Hypertens. 2014;27(2):162–8. https://doi.org/10.1093/ajh/hpt166.
Article
PubMed
Google Scholar
Kips JG, Schutte AE, Vermeersch SJ, Huisman HW, Van Rooyen JM, Glyn MC, et al. Comparison of central pressure estimates obtained from SphygmoCor, Omron HEM-9000AI and carotid applanation tonometry. J Hypertens. 2011;29(6):1115–20. https://doi.org/10.1097/HJH.0b013e328346a3bc.
Article
CAS
PubMed
Google Scholar
Yeom H, Kim HC, Lee JM, Jeon Y, Suh I. Triglyceride to high density lipoprotein cholesterol ratio among adolescents is associated with adult hypertension: the Kangwha study. Lipids Health Dis. 2018;17(1):212. https://doi.org/10.1186/s12944-018-0861-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adank MC, Benschop L, Peterbroers KR, Smak Gregoor AM, Kors AW, Mulder MT, et al. Is maternal lipid profile in early pregnancy associated with pregnancy complications and blood pressure in pregnancy and long term postpartum? Am J Obstet Gynecol. 2019;221(2):150 e1- e13.
Article
CAS
Google Scholar
Stancu CS, Toma L, Sima AV. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res. 2012;349(2):433–46. https://doi.org/10.1007/s00441-012-1437-1.
Article
CAS
PubMed
Google Scholar
Zheng XY, Liu L. Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res. 2007;48(8):1673–80. https://doi.org/10.1194/jlr.R700001-JLR200.
Article
CAS
PubMed
Google Scholar
Doi H, Kugiyama K, Oka H, Sugiyama S, Ogata N, Koide SI, et al. Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation. 2000;102(6):670–6. https://doi.org/10.1161/01.CIR.102.6.670.
Article
CAS
PubMed
Google Scholar
Borghi C, Urso R, Cicero AF. Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia. Nutr Metab Cardiovasc Dis. 2017;27(2):115–20. https://doi.org/10.1016/j.numecd.2016.07.013.
Article
CAS
PubMed
Google Scholar
Kurtel H, Rodrigues SF, Yilmaz CE, Yildirim A, Granger DN. Impaired vasomotor function induced by the combination of hypertension and hypercholesterolemia. J Am Soc Hypertens. 2013;7(1):14–23. https://doi.org/10.1016/j.jash.2012.11.005.
Article
PubMed
PubMed Central
Google Scholar
Sposito AC. Emerging insights into hypertension and dyslipidaemia synergies. Eur Heart J Suppl. 2004;6(7):G8–G12. https://doi.org/10.1016/j.ehjsup.2004.10.003.
Article
CAS
Google Scholar
Ivanovic B, Tadic M. Hypercholesterolemia and hypertension: two sides of the same coin. Am J Cardiovasc Drugs. 2015;15(6):403–14. https://doi.org/10.1007/s40256-015-0128-1.
Article
CAS
PubMed
Google Scholar
Kabutoya T, Kario K. Comparative assessment of cutoffs for the cardio-ankle vascular index and brachial-ankle pulse wave velocity in a Nationwide registry: a cardiovascular prognostic coupling study. Pulse (Basel). 2019;6(3–4):131–6. https://doi.org/10.1159/000489604.
Article
Google Scholar
Salvi P, Scalise F, Rovina M, Moretti F, Salvi L, Grillo A, et al. Noninvasive estimation of aortic stiffness through different approaches. Hypertension. 2019;74(1):117–29. https://doi.org/10.1161/HYPERTENSIONAHA.119.12853.
Article
CAS
PubMed
Google Scholar
Namba T, Masaki N, Takase B, Adachi T. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int J Mol Sci. 2019;20(15). https://doi.org/10.3390/ijms20153664.
Pavlovska I, Kunzova S, Jakubik J, Hruskova J, Skladana M, Rivas-Serna IM, et al. Associations between high triglycerides and arterial stiffness in a population-based sample: Kardiovize Brno 2030 study. Lipids Health Dis. 2020;19(1):170. https://doi.org/10.1186/s12944-020-01345-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan B, Huang X, Wang J, Qin X, Zhang J, Cao J, et al. Association between lipid profiles and arterial stiffness in Chinese patients with hypertension: insights from the CSPPT. Angiology. 2019;70(6):515–22. https://doi.org/10.1177/0003319718823341.
Article
CAS
PubMed
Google Scholar
Gottsater M, Ostling G, Persson M, Engstrom G, Melander O, Nilsson PM. Non-hemodynamic predictors of arterial stiffness after 17 years of follow-up: the Malmo diet and Cancer study. J Hypertens. 2015;33(5):957–65. https://doi.org/10.1097/HJH.0000000000000520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Ye P, Luo L, Xiao W, Qi L, Bian S, et al. Association of serum lipids with arterial stiffness in a population-based study in Beijing. Eur J Clin Investig. 2011;41(9):929–36. https://doi.org/10.1111/j.1365-2362.2011.02481.x.
Article
CAS
Google Scholar
White DA, Anand GM, Qayum O, Ibezim CF, Sherman AK, Raghuveer G. Modifiable clinical correlates of vascular health in children and adolescents with dyslipidemia. Pediatr Cardiol. 2019;40(4):805–12. https://doi.org/10.1007/s00246-019-02071-w.
Article
PubMed
Google Scholar
Wang L, Zhi F, Gao B, Ni J, Liu Y, Mo X, et al. Association between lipid profiles and arterial stiffness: a secondary analysis based on a cross-sectional study. J Int Med Res. 2020;48(7):300060520938188. https://doi.org/10.1177/0300060520938188.
Article
CAS
PubMed
Google Scholar
Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, et al. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol. 2002;39(6):1020–5. https://doi.org/10.1016/S0735-1097(02)01717-5.
Article
CAS
PubMed
Google Scholar
Sahebkar A, Pecin I, Tedeschi-Reiner E, Derosa G, Maffioli P, Reiner Z. Effects of statin therapy on augmentation index as a measure of arterial stiffness: a systematic review and meta-analysis. Int J Cardiol. 2016;212:160–8. https://doi.org/10.1016/j.ijcard.2016.03.010.
Article
PubMed
Google Scholar
Townsend RR, Rosendorff C, Nichols WW, Edwards DG, Chirinos JA, Fernhall B, et al. American Society of Hypertension position paper: central blood pressure waveforms in health and disease. J Am Soc Hypertens. 2016;10(1):22–33. https://doi.org/10.1016/j.jash.2015.10.012.
Article
PubMed
Google Scholar
Choudhary MK, Eraranta A, Tikkakoski AJ, Koskela J, Hautaniemi EJ, Kahonen M, et al. LDL cholesterol is associated with systemic vascular resistance and wave reflection in subjects naive to cardiovascular drugs. Blood Press. 2019;28(1):4–14. https://doi.org/10.1080/08037051.2018.1521263.
Article
CAS
PubMed
Google Scholar
Sandesara PB, Virani SS, Fazio S, Shapiro MD. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev. 2019;40(2):537–57. https://doi.org/10.1210/er.2018-00184.
Article
PubMed
Google Scholar
Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31(3):132–9. https://doi.org/10.1097/MOL.0000000000000682.
Article
CAS
PubMed
Google Scholar
Varbo A, Nordestgaard BG. Remnant lipoproteins. Curr Opin Lipidol. 2017;28(4):300–7. https://doi.org/10.1097/MOL.0000000000000429.
Article
CAS
PubMed
Google Scholar
Saeed A, Feofanova EV, Yu B, Sun W, Virani SS, Nambi V, et al. Remnant-like particle cholesterol, low-density lipoprotein triglycerides, and incident cardiovascular disease. J Am Coll Cardiol. 2018;72(2):156–69. https://doi.org/10.1016/j.jacc.2018.04.050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, Hovingh GK, Kastelein JJ, Melamed S, et al. Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation. 2018;138(8):770–81. https://doi.org/10.1161/CIRCULATIONAHA.117.032318.
Article
CAS
PubMed
Google Scholar
Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a cause of ischemic heart disease: evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol Ther. 2014;141(3):358–67. https://doi.org/10.1016/j.pharmthera.2013.11.008.
Article
CAS
PubMed
Google Scholar
Hartz J, Krauss RM, Gottsater M, Melander O, Nilsson P, Mietus-Snyder M. Lipoprotein particle predictors of arterial stiffness after 17 years of follow up: the Malmo diet and Cancer study. Int J Vasc Med. 2020;2020:4219180.
PubMed
PubMed Central
Google Scholar
Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41(24):2313–30. https://doi.org/10.1093/eurheartj/ehz962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taguchi M, Ishigami M, Nishida M, Moriyama T, Yamashita S, Yamamura T. Remnant lipoprotein-cholesterol is a predictive biomarker for large artery atherosclerosis in apparently healthy women: usefulness as a parameter for annual health examinations. Ann Clin Biochem. 2011;48(Pt 4):332–7. https://doi.org/10.1258/acb.2011.010244.
Article
CAS
PubMed
Google Scholar
Balling M, Afzal S, Varbo A, Langsted A, Davey Smith G, Nordestgaard BG. VLDL cholesterol accounts for one-half of the risk of myocardial infarction associated with apoB-containing lipoproteins. J Am Coll Cardiol. 2020;76(23):2725–35. https://doi.org/10.1016/j.jacc.2020.09.610.
Article
CAS
PubMed
Google Scholar
Strazzullo P, Kerry SM, Barbato A, Versiero M, D'Elia L, Cappuccio FP. Do statins reduce blood pressure?: a meta-analysis of randomized, controlled trials. Hypertension. 2007;49(4):792–8. https://doi.org/10.1161/01.HYP.0000259737.43916.42.
Article
CAS
PubMed
Google Scholar
Golomb BA, Dimsdale JE, White HL, Ritchie JB, Criqui MH. Reduction in blood pressure with statins: results from the UCSD statin study, a randomized trial. Arch Intern Med. 2008;168(7):721–7. https://doi.org/10.1001/archinte.168.7.721.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanaki AI, Sarafidis PA, Georgianos PI, Kanavos K, Tziolas IM, Zebekakis PE, et al. Effects of low-dose atorvastatin on arterial stiffness and central aortic pressure augmentation in patients with hypertension and hypercholesterolemia. Am J Hypertens. 2013;26(5):608–16. https://doi.org/10.1093/ajh/hps098.
Article
CAS
PubMed
Google Scholar
Williams B, Lacy PS, Cruickshank JK, Collier D, Hughes AD, Stanton A, et al. Impact of statin therapy on central aortic pressures and hemodynamics: principal results of the conduit artery function evaluation-lipid-lowering arm (CAFE-LLA) study. Circulation. 2009;119(1):53–61. https://doi.org/10.1161/CIRCULATIONAHA.108.785915.
Article
CAS
PubMed
Google Scholar
Spannella F, Giulietti F, Di Pentima C, Sarzani R. Prevalence and control of dyslipidemia in patients referred for high blood pressure: the disregarded "double-trouble" lipid profile in overweight/obese. Adv Ther. 2019;36(6):1426–37. https://doi.org/10.1007/s12325-019-00941-6.
Article
PubMed
PubMed Central
Google Scholar
Spannella F, Filipponi A, Giulietti F, Di Pentima C, Bordoni V, Sarzani R. Statin therapy is associated with better ambulatory blood pressure control: a propensity score analysis. J Hypertens. 2020;38(3):546–52. https://doi.org/10.1097/HJH.0000000000002276.
Article
CAS
PubMed
Google Scholar
Lamarche F, Agharazii M, Nadeau-Fredette AC, Madore F, Goupil R. Central and brachial blood pressures, statins, and low-density lipoprotein cholesterol: a mediation analysis. Hypertension. 2018;71(3):415–21. https://doi.org/10.1161/HYPERTENSIONAHA.117.10476.
Article
CAS
PubMed
Google Scholar