World Health Organization. Global tuberculosis report 2012.[http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502$4eng.pdf].
Global report. UNAIDS report on the global AIDS epidemic 2013. http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf.
World Health Organization Global Tuberculosis Report. 2015. 2015, WHO; Geneva, Switzerland.
Saha A, Shanthi MFX, Winston BA, Das S, Kumar A, Balamugesh MJS. T. Prevalence of hepatotoxicity from antituberculosis therapy: a five-year experience from South India. J Prim Care Commun Health. 2016;7(3):171–4.
Baynes HW, Tegene B, Gebremichael M, Birhane G, Kedir W, Biadgo B. Assessment of the effect of anti-retroviral therapy on renal and liver functions among HIV-infected patients: a retrospective study, HIV/AIDS - Res. Palliat Care. 2017;9:1–7.
Google Scholar
Hamed MA, Aremu GO, Akhigbe RE. Concomitant administration of HAART aggravates anti-koch-induced oxidative hepatorenal damage via dysregulation of glutathione and elevation of uric acid production. Biomedicine Pharmacotherapy. 2021;137:111309. https://doi.org/10.1016/j.biopha.2021.111309.
Article
CAS
PubMed
Google Scholar
Thanoon IA, Alrahman AA. Glycemic control, serum leptin and lipid profile in patients with pulmonary tuberculosis: effect of initial two months anti-tuberculosis therapy. QMJ. 2014;10(17):1–10.
Google Scholar
Barbaro G. Highly active anti-retroviral therapy-associated metabolic syndrome: pathogenesis and cardiovascular risk. Am J Ther. 2006;13:248–60.
Article
PubMed
Google Scholar
The Data Collection on Adverse Events of Anti-HIV Drugs (DAD) Study Group. Combination Anti-retroviral therapy and the risk of myocardial infarction. NEJM. 2003;349(21):1993–2003.
Article
Google Scholar
European Paediatric Lipodystrophy Group. Anti-retroviral therapy, fat redistribution and hyperlipidaemia in HIV-infected children in Europe. AIDS. 2004;18:1443–51.
Article
Google Scholar
Thomas CM, Smart EJ. How HIV protease inhibitors promote atherosclerotic lesion formation. Curr Opin Lipidol. 2007;18:561–5.
Article
CAS
PubMed
Google Scholar
Baghaei P, Marjani M, Javanmard P, Tabarsi P, Masjedi R. Diabetes mellitus and tuberculosis facts and controversies. Journal of Diabetes Metabolic Disorders. 2013;12:58.
Article
PubMed
PubMed Central
Google Scholar
Kibirige D, Ssekitoleko R, Mutebi E, Worodria W. Overt diabetes mellitus among newly diagnosed Ugandan tuberculosis patients: a cross sectional study. BMC Infect Dis. 2013;13:122.
Article
PubMed
PubMed Central
Google Scholar
Niazi AK, Kalra S. Diabetes and tuberculosis: a review of the role of optimal glycemic control. Journal of Diabetes Metabolic Disorders. 2012;11:28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Winterbauer R, Bedon G, Ball W. Recurrent Pneumonia: Predisposing illness and clinical pattern of 158 patients. Ann Intern Med. 1969;70:689.
Article
CAS
PubMed
Google Scholar
Geevarghese PJ. Pancreatic diabetes. Popular Prakashan: Bombay 1967;26–28.
Atkin SL, Masson EA, Bodmer CW, Walker BA, White MC. Increased insulin requirement in a patient with Type 1 diabetes on rifampicin [letter]. Diabet Med. 1993;10:392.
Article
CAS
PubMed
Google Scholar
Wu P, Hung C, Liu W, Hsieh C, Sun H, Lu C, Wu H, Chien K. Metabolic syndrome among HIV-infected Taiwanese patients in the era of highly active retroviral therapy: prevalence and associated factors. J Antimicrob Chemother. 2012;67:1001–9.
Article
CAS
PubMed
Google Scholar
Friis-Moller N, Weber R, Reiss P, Thiebaut R, Kirk O, Monforte A, Pradier C, Morfeldt L, Mateu S, Law M, El-Sadr W, De Wit S, Sabin CA, Phillips AN, Lundgren JD. Cardiovascular disease risk factors in HIV patients-association with anti-retroviral therapy. Results from the DAD study. AIDS. 2003;17(8):1179–93. (for the DAD study group).
Article
PubMed
Google Scholar
Purnell JQ, Zambon A, Knopp RH, Pizzuti DJ, Achari R, Leonard JM, Locke C, Brunze JD. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS. 2000;14:51–7.
Article
CAS
PubMed
Google Scholar
Guaraldi G, Stentarelli C, Zona S, Orlando G, Carli F, Ligabue G, Lattanzi A, Zaccherini G, Rossi R, Modena MG, Alexopoulos N, Palella F, Raggi P. Lipodystrophy and anti-retroviral therapy as predictors of sub-clinical atherosclerosis in human immunodeficiency virus infected subjects. Atherosclerosis. 2010;208:222–7.
Article
CAS
PubMed
Google Scholar
Lekakis J, Tsiodras S, Ikonomidis I, Palios J, Poulakou G, Rallidis L, Antoniadou A, Panagopoulos P, Papadopoulos A, Giamarellou H, Kremastinos DT. HIV positive patients treated with protease inhibitors have vascular changes resembling those observed in atherosclerotic cardiovascular disease. Clin Sci. 2008;115(6):189–96. https://doi.org/10.1042/CS20070353.hal-00479406.
Article
CAS
Google Scholar
The RESPOND Study Group. Incidence of dyslipidemia in people with HIV who are treated with integrase inhibitors versus other anti-retroviral agents. AIDS. 2021;35(6):869–82.
Article
Google Scholar
Palios J, Kadoglou NPE, Lampropoulos S. The pathophysiology of HIV-/HAART-related metabolic syndrome leading to cardiovascular disorders: the emerging role of adipokines. Experimental Diabetes Research 2012; Article ID 103063: 7 pages. doi:https://doi.org/10.1155/2012/103063.
Murata H, Hruz PW, MuecklerM. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275:20251.
Article
CAS
PubMed
Google Scholar
Behrens GM, Stoll M, Schmidt RE. Lipodystrophy syndrome in HIV infection: what is it, what causes it and how can it be managed? Drug Saf. 2000;23:57–76.
Article
CAS
PubMed
Google Scholar
Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589–606.
Article
CAS
PubMed
Google Scholar
Akhigbe RE, Ajayi AF. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids in Health Disease. 2021;20:23. https://doi.org/10.1186/s12944-021-01435-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endotheliumderived microparticles impair endothelial function in vitro. Am J Physiol. 2004;286:H1910–5.
CAS
Google Scholar
Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med. 2004;32:818–25.
Article
CAS
PubMed
Google Scholar
Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E. Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev. 2001;21(2):105–28.
Article
CAS
PubMed
Google Scholar
Akhigbe RE, Hamed MA, Odetayo AF. HAART and anti-Koch’s impair sexual competence, sperm quality and offspring quality when used singly and in combination in male Wistar rats. Andrologia. 2021;00:e13951. https://doi.org/10.1111/and.13951.
Article
CAS
Google Scholar
Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS ONE. 2020;15(3):e0224052. https://doi.org/10.1371/journal.pone.0224052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saka WA, Akhigbe RE, Abidoye AO, Dare OS, Adekunle AO. Suppression of uric acid generation and blockade of glutathione dysregulation by L-arginine ameliorates dichlorvos-induced oxidative hepatorenal damage in rats. Biomed Pharmacother. 2021;138:111443. https://doi.org/10.1016/j.biopha.2021.111443.
Article
CAS
PubMed
Google Scholar
Ajayi AF, Akhigbe RE. In vivo exposure to codeine induces reproductive toxicity: role of HER2 and p53/Bcl-2 signaling pathways. Heliyon. 2020;6:e05589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Han K, Yang HK, Kim HS, Cho JH, Kwon HS, Park YM, Cha BY. Yoon K.H. A novel criterion for identifying metabolically obese but normal weight individuals using the product of triglycerides and glucose. Nutr Diabetes. 2015;5:e149–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhigbe RE, Ajayi LO, Ajayi AF. Codeine exerts cardiorenal injury via upregulation of adenine deaminase/xanthine oxidase and caspase 3 signaling. Life Sciences 2020. https://doi.org/10.1016/j.lfs.2020.118717.
Adegunlola JG, Afolabi OK, Akhigbe RE, Adegunlola GA, Adewumi OM, Oyeyipo IP, et al. Lipid peroxidation in brain tissue following administration of low and high doses of arsenite and L-ascorbate in Wistar strain rats. Toxicol Int 2012; 19:47–50. https://doi.org/10.4103/0971-6580.94516 PMID: 22736903.
Ajayi AF, Akhigbe RE. Codeine-induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Rep. 2020;25(1):33–40. DOI:https://doi.org/10.1080/13510002.2020.1752003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fridovich I, Misra HP. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5. PMID: 4623845.
Article
PubMed
Google Scholar
Saka WA, Ayoade TE, Akhigbe TM, Akhigbe RE. Moringa oleifera seed oil partially abrogates 2,3-dichlorovinyl dimethyl phosphate (Dichlorvos)-induced cardiac injury in rats: evidence for the role of oxidative stress. J Basic Clin Pharmacol 2020; 20190313. https://doi.org/10.1515/jbcpp-2019-0313.
Akhigbe RE, Ajayi LO, Adelakun AA, Olorunnisola OS, Ajayi AF. Codeine-induced hepatic injury is via oxido-inflammatory damage and caspase-3-mediated apoptosis. Mol Biol Rep. 2020. https://doi.org/10.1007/s11033-020-05983-6.
Article
PubMed
Google Scholar
Johnsen S, Dolan SE, Fitch KV, et al. Carotid intimal medial thickness in human immunodeficiency virus-infected women: effects of protease inhibitor use, cardiac risk factors, and the metabolic syndrome. J Clin Endocrinol Metab. 2006;91:4916–24.
Article
CAS
PubMed
Google Scholar
Noor MA, Lo JC, Mulligan K. Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS. 2001;15:F11–8.
Article
CAS
PubMed
Google Scholar
Noor MA, Seneviratne T, Aweeka FT. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS. 2002;16:F1–8.
Article
PubMed
Google Scholar
Kroncke KD, Fehsel K, Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection – how, why, when, and where? Nitric Oxide. 1997;2:107–20.
Article
Google Scholar
Charakida M, Donald AE, Green H, Storry C, Clapson M, Caslake M, Dunn DT, Halcox JP, Gibb DM, Klein NJ, Deanfield JE. Early structural and functional changes of the vasculature in HIV-infected children. Circulation. 2005;112:103–9.
Article
PubMed
Google Scholar
Fujiwara Y, Watanabe S, Kaji T. Promotion of cultured vascular smooth muscle cell proliferation by low levels of cadmium. Toxicol Lett. 1998;94:175–80.
Article
CAS
PubMed
Google Scholar
Yoopan N, Watcharasit P, Wongsawatkul O, Piyachaturawat P, Satayavivad J. Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol Lett. 2008;176:157–61.
Article
CAS
PubMed
Google Scholar
Kolwicz SCJr., Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113:603–16. doi:https://doi.org/10.1161/CIRCRESAHA.113.302095.
Article
CAS
Google Scholar
Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA. Grisham M.B. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem. 1996;271:40–7.
Article
CAS
PubMed
Google Scholar
Otani H. Oxidative Stress as Pathogenesis of Cardiovascular Risk Associated with Metabolic Syndrome. Antioxidants Redox Signaling. 2011;15(7):1911–26.
Article
CAS
PubMed
Google Scholar
Kang D-H, Ha S-K. Uric acid puzzle: dual role as anti-oxidant and pro-oxidant. Electrolyte Blood Press. 2014;12:1–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorne RF, Mhaidat NM, Ralston KJ, Burns GF. CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett. 2007;581:1227–32.
Article
CAS
PubMed
Google Scholar
Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res. 2007;75:468–77.
Article
CAS
PubMed
Google Scholar
Lewis W, Copeland WC, Day BJ. Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Lab Invest. 2001;81:777–90.
Article
CAS
PubMed
Google Scholar
Day BJ, Lewis W. Oxidative stress in NRTI-induced toxicity: evidence from clinical experience and experiments in vitro and in vivo. Cardiovasc Toxicol. 2004;4:207–16.
Article
CAS
PubMed
Google Scholar
Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.
Article
CAS
PubMed
Google Scholar
Buckley BJ, Tanswell AK, Freeman BA. Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury. J Appl Physiol. 1987;63:359–67.
Article
CAS
PubMed
Google Scholar
Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57:1825–35.
Article
CAS
PubMed
Google Scholar
Rahman Q, Abidi P, Afaq F, Schiffmann D, Mossman BT. Kamp D.W. Glutathione redox system in oxidative lung injury. Crit Rev Toxicol. 1999;29:543–68.
Article
CAS
PubMed
Google Scholar