
Tan et al. Lipids in Health and Disease          (2023) 22:204  
https://doi.org/10.1186/s12944-023-01962-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Lipids in Health and Disease

Role of arachidonic acid metabolism 
in intervertebral disc degeneration: 
identification of potential biomarkers 
and therapeutic targets via multi-omics analysis 
and artificial intelligence strategies
Jianye Tan1,2,3,4†, Meiling Shi5†, Bin Li1†, Yuan Liu1,2,3,4, Shengzhong Luo1,2,3,4 and Xigao Cheng1,2,3,4* 

Abstract 

Background Intervertebral disc degeneration (IVDD) is widely recognized as the primary etiological factor under-
lying low back pain, often necessitating surgical intervention as the sole recourse in severe cases. The metabolic 
pathway of arachidonic acid (AA), a pivotal regulator of inflammatory responses, influences the development and pro-
gression of IVDD.

Methods Initially, a comparative analysis was conducted to investigate the relationship between AA expression pat-
terns and different stages of IVDD using single-cell sequencing (scRNA-seq) data. Additionally, three machine learning 
methods (LASSO, random forest, and support vector machine recursive feature elimination) were employed to iden-
tify hub genes associated with IVDD. Subsequently, a novel artificial intelligence prediction model was developed 
for IVDD based on an artificial neural network algorithm and validated using an independent dataset. The identified 
hub genes were further subjected to functional enrichment, immune infiltration, and Connectivity Map analysis. 
Moreover, external validation was performed using flow cytometry and real-time reverse transcription polymerase 
chain reaction analysis.

Results Both scRNA-seq and bulk RNA-seq data revealed a positive correlation between the severity of IVDD 
and the AA metabolic pathway. They also revealed increased AA metabolic activity in macrophages and neutrophils, 
as well as enhanced intercellular communication with nucleus pulposus cells. Utilizing advanced machine learning 
algorithms, five hub genes (AKR1C3, ALOX5, CYP2B6, EPHX2, and PLB1) were identified, and an incipient diagnostic 
model was developed with an AUC of 0.961 in the training cohort and 0.72 in the validation cohort. An in-depth 
exploration of the functionality of these hub genes revealed their notable association with inflammatory responses 
and immune cell infiltration. Lastly, AH6809 was found to delay IVDD by inhibiting AKR1C3.

Conclusions This study offers comprehensive insights into potential biomarkers and small molecules associated 
with the early pathogenesis of IVDD. The identified biomarkers and the developed integrated diagnostic model 
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hold great promise in predicting the onset of early IVDD. AH6809 was established as a therapeutic target for AKR1C3 
in the treatment of IVDD, as evidenced by computer simulations and biological experiments.

Keywords Intervertebral disc degeneration, Machine learning, Artificial neural network, Biomarkers, Single-cell 
sequencing, Arachidonic acid

Introduction
Intervertebral disc degeneration (IVDD) is a prevalent 
condition that significantly contributes to global dis-
ability, particularly by causing debilitating low back pain 
[1, 2]. The intervertebral disc comprises the nucleus 
pulposus (NP), annulus fibrosus, and cartilaginous end-
plates [3]. NP cells and the extracellular matrix (ECM) 
collectively maintain the normal structure and function 
of the intervertebral disc [4, 5]. Disruption of the deli-
cate balance in NP and ECM homeostasis plays a piv-
otal role in the pathogenesis of IVDD, often resulting 
in an inflammatory cascade [6]. The activity of the ara-
chidonic acid (AA) metabolic pathway and the media-
tion of downstream lipid products trigger inflammatory 
reactions, leading to an inflammatory storm. To address 
this issue, the study focus was directed towards the meta-
bolic pathways of AA, a pivotal regulatory factor in the 
inflammatory response influencing the development and 
progression of IVDD.

At present, nonsteroidal anti-inflammatory drugs 
(NSAIDs) are widely employed to mitigate pain and 
inflammation in IVDD [7]. These drugs function by 
impeding AA metabolism, thereby diminishing the 
production of inflammatory mediators [8]. However, 
the utility of NSAIDs is constrained by their potential 
adverse effects, emphasizing the imperative for alterna-
tive approaches that specifically address the aberrant AA 
metabolic pathway associated with IVDD.

The diagnosis of IVDD primarily relies on imaging 
studies such as magnetic resonance imaging (MRI) [9]. 
MRI enables the assessment of intervertebral disc hydra-
tion, disc height, and alterations in disc contour, thereby 
facilitating IVDD diagnosis. However, quantifying these 
changes during the initial stages of IVDD presents con-
siderable challenges. Notably, only patients experienc-
ing severe back pain actively seek MRI examinations, 
impeding the early detection of IVDD. Moreover, MRI 
possesses certain limitations, including high costs and 
prolonged examination durations. Additionally, the clini-
cal utility of MRI is constrained by specific contraindi-
cations, such as patients with pacemakers, intrauterine 
devices, pregnant women, or individuals with claustro-
phobia, who are ineligible for MRI examinations [10]. 
Current clinical management strategies for IVDD pri-
marily emphasize disease progression mitigation, often 
culminating in surgical interventions as a last resort 

[7, 11]. However, these approaches do not adequately 
address the urgent need for early detection and personal-
ized therapeutic interventions, which could alleviate the 
burden on both patients and healthcare systems [12, 13].

The identification of biomarkers associated with AA 
metabolism bears significant clinical relevance. Employ-
ing machine learning algorithms, such as LASSO (Least 
absolute shrinkage and selection operator), random 
forest (RF), support vector machine recursive feature 
elimination (SVM-RFE), and artificial neural networks 
(ANNs), facilitates the screening and selection of bio-
markers indicative of AA pathway dysregulation [14]. 
These biomarkers can serve as valuable clinical tools for 
early diagnosis, risk stratification, and predicting thera-
peutic responses, ultimately enhancing personalized 
treatment strategies for individuals with IVDD.

This study aimed to investigate the clinical significance 
of biomarkers associated with AA metabolism in the 
context of IVDD. Through the application of machine 
learning algorithms, this study to elucidate the intricate 
connection between AA metabolism and IVDD, thereby 
making a substantive contribution to the progress of pre-
cision medicine in this field. The objective was to identify 
dependable biomarkers and pioneer innovative diagnos-
tic and therapeutic strategies, with the overarching goal 
of transforming the clinical management of IVDD and 
enhancing the well-being of patients with IVDD.

Materials and methods
Data collection and preprocessing
The keywords “intervertebral disc,” “degeneration,” and 
“human” were employed to query relevant datasets in 
the Gene Expression Database (GEO) (https:// www. ncbi. 
nlm. nih. gov/ geo/). Following a meticulous screening pro-
cess, four datasets (GSE176205, GSE205535, GSE67567, 
and GSE70362) were selected for subsequent analysis. 
Notably, GSE205535 was a single-cell RNA sequencing 
(scRNA-seq) dataset, while the remaining datasets con-
sisted of bulk RNA-seq data. For the three bulk RNA-seq 
datasets (GSE176205, GSE67567, and GSE70362), the 
"SVA" package was employed to mitigate batch effects. 
IVDD with grades ranging from normal to I–III were 
classified as mild IVDD, whereas discs with a grade of 
IV or higher were classified as severe IVDD. The 62 AA 
genes are provided in Supplementary file S1.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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scRNA‑seq analysis
The “Seurat” R package was utilized for processing the 
scRNA-seq data and generating Seurat objects. The data 
was normalized and scaled accordingly. To filter the 
cells, the following exclusion criteria were applied using 
the “Seurat” R package: 1) Cells expressing less than 
200 genes were excluded. 2) Cells expressing more than 
6,000 genes were excluded. 3) Cells with mitochondrial 
gene content greater than 20% were excluded. Follow-
ing the application of these criteria, a total of 9,161 cells 
remained for subsequent analysis. For dimensional clus-
tering, the number of principal components (PCs) was 
configured to 18. To integrate the samples and mitigate 
batch effects, the “harmony” function was employed. 
Unsupervised cell clustering was accomplished using a 
graph-based method, leveraging the top 18 PCs. Visu-
alization of the cell clusters was performed through 
UMAP plots. The Wilcoxon rank-sum test algorithm 
was employed to identify marker genes for each cell 
cluster, utilizing the “FindAllMarkers” function. Marker 
genes were selected based on the following criteria: 
1) logFC greater than 0.25. 2) P-value less than 0.05. 3) 
min.pct greater than 0.1. In addition, the “AddModuleS-
core” function was utilized to compute the score of AA 
metabolism pathways within each re-clustered nucleus 
pulposus cell (NPC). Based on quartiles of the AA meta-
bolic score of NPCs, the cells were categorized into three 
groups: high, medium, and low AA metabolic activity.

Cell–cell communication analysis
The “CellChat” and “Seurat” packages were integrated to 
conduct cell–cell communication analysis [15]. Follow-
ing data filtration, scRNA-seq data were processed using 
“Seurat.” Next, “CellChat” was employed to quantify com-
munication pathways, compute information flow, and 
identify specific pathways within cell types of interest. In 
the investigation of cell–cell communication across vari-
ous cellular contexts of AA metabolism, a comprehensive 
analysis focused on microglial cells was conducted to 
ascertain the strength of communication in each signal-
ing pathway. Furthermore, particular communication 
pathways were selected for subsequent visualization.

Pseudotime analysis of single‑cell
The dynamic states of NPCs were assessed using the 
Monocle algorithm (version 2.18.0) for pseudotime 
analysis [16]. Monocle employs an unsupervised algo-
rithm to order single-cell whole-transcriptome profiles, 
generating a developmental trajectory that depicts the 
progression of individual cells during differentiation. 
The "reduce Dimension" function was employed to 
compute the "CellDataSet" object, thereby reducing the 

dimensionality of the trajectory. To achieve effective 
dimension reduction and discrimination between data 
points, the discriminative dimensionality reduction 
based on trees method was chosen. Following dimen-
sion reduction, the two most informative features were 
extracted and utilized as coordinate axes to visualize 
the trajectory. To elucidate the mechanisms underlying 
fate decisions, branched expression analysis modeling 
was conducted to identify genes displaying branch-
dependent expression patterns.

Machine learning‑based analysis of bulk RNA‑seq
The LASSO method was employed for dimensional-
ity reduction in the analysis of high-dimensional data. 
Specifically, the LASSO algorithm [17] was imple-
mented using the "glmnet" package in R. In this analy-
sis, the response type was configured as binomial, and 
the alpha parameter was set to 1. Employing LASSO 
regression, a penalty function aimed at refining the 
model was developed by reducing the number of vari-
ables while preserving the most valuable ones. To 
ascertain the optimal penalty parameter (λ), tenfold 
cross-validation was conducted, enabling the identifica-
tion of the λ value corresponding to the lowest cross-
validation error.

Furthermore, the RF method was employed, utilizing 
the “randomForest” package in R, to identify significant 
disease-specific genes [18]. Initially, the optimal number 
of trees in the RF model was determined through the 
evaluation of the minimum cross-validation error. This 
error was computed by comparing discrepancies between 
two sets of samples and the overall error across all sam-
ples. Next, the RF model was constructed, and gene sig-
nificance was gauged using the Gini coefficient method, 
facilitating the acquisition of dimension importance val-
ues. This method assesses model precision by reducing 
the Gini coefficient. Employing this approach, the top 11 
disease-specific genes with the highest importance scores 
were identified.

Finally, the SVM-RFE machine learning strategy was 
employed to identify hub genes [19]. In this approach, the 
“SVM” package in R was utilized to train an SVM model 
on the training dataset, followed by sorting the features 
based on their weights. Subsequently, a stepwise fea-
ture elimination process was initiated, whereby the least 
significant features were iteratively removed, and the 
SVM model was retrained after each elimination until 
the desired number of features was achieved. The opti-
mal number of features was determined through cross-
validation, and the performance of the SVM models was 
assessed using metrics such as accuracy or area under the 
receiver operating characteristic (ROC) curve.
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Construction of a neural network to develop a disease 
classification model
The R software package “NeuralNet” (version 1.44.2) was 
employed to construct the input layer of the ANN model, 
utilizing genes acquired from the RF screening [20]. 
The model parameters consisted of five hidden layers 
within the ANN. The classification model for IVDD was 
developed by incorporating information regarding gene 
weights. In this model, the disease classification score 
was determined as the product of the weight score and 
the gene expression level, as illustrated below.

The confusion matrix function was employed for cross-
validation to assess the model’s accuracy, and the “pROC” 
package was utilized to estimate the AUC for evaluat-
ing the classification performance [21]. Subsequently, a 
nomogram was constructed using the "rms" package in R, 
incorporating the hub genes associated with IVDD.

Gene set variation analysis (GSVA)
Utilizing the R package “GSVA” (version 2.11), GSVA 
was performed to examine disparities in enriched gene 
sets among various subtypes. The database files from 
three sources, namely KEGG, Reactome, and WikiPath-
ways, were extracted from the MSigDB website (https:// 
www. gsea- msigdb. org/ gsea/ msigdb) for GSVA. Differen-
tial biological functions and pathways were identified by 
comparing GSVA scores between subtypes, employing 
the “limma” R package (version 3.52.1) [22].

Gene set enrichment analysis (GSEA)
The reference gene sets were derived from the MSigDB. 
Differential expression analysis was performed via GSEA 
to elucidate the impact of the genome on biological 
functions.

Evaluation of infiltrating cells in IVDD
To investigate disparities in immune cell infiltration 
between the two subtypes, multiple methods and soft-
ware tools were employed, including CIBERSORT-ABS, 
CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, 
TIMER, and XCELL, to assess immune cell infiltration 
levels in patients with IVDD [23–28].

Friends analysis
The method defines functional similarity as the geomet-
ric mean of Gene Ontology (GO) semantic similarity 
for molecular function and cellular components. This 
calculation incorporates both the protein’s functional 
role and its cellular localization. The GO semantic 

neuraHF = (Gene expression× Neural network weight)

similarity is computed utilizing the "GOSemSim" pack-
age, and the resultant functional similarity serves as 
a quantitative measure indicating the strength of the 
association between proteins [29]. This approach can 
be employed to pinpoint crucial genes and significant 
biomarkers in a given pathway.

Screening small‑molecule drugs
In contrast to conventional small-molecule drug 
screening approaches, the eXtreme Sum (XSum) 
method was employed to discern prospective small-
molecule drugs for addressing disc degeneration [30]. 
Initially, the molecular characteristics of drugs were 
obtained from the Connectivity Map database. Sub-
sequently, candidate small-molecule drugs were ana-
lyzed using the XSum algorithm, focusing on hub genes 
implicated in the process of IVDD.

Molecular docking
Molecular docking analysis was conducted as described 
previously. The 3D structures of the proteins aldo–keto 
reductase family 1 member C3 (AKR1C3), cytochrome 
P450 family 2 subfamily B member 6 (CYP2B6), epoxide 
hydrolase 2 (EPHX2), and arachidonate 5-lipoxygenase 
(ALOX5) were retrieved from the Protein Data Bank 
(https:// www. rcsb. org/) with the corresponding protein 
IDs: 4DBS, 4RQL, 6HGV, and 7TTJ, respectively. The 
3D structure of the phospholipase B1 (PLB1) protein 
was predicted using AlphaFold. The ligand structure, 
AH6809 (PubChem CID: 119,461), was acquired from 
the PubChem database (https:// pubch em. ncbi. nlm. nih. 
gov/) and subsequently converted into a 3D structure 
using Open Babel 2.3.1. It was subjected to subsequent 
energy minimization employing the MMFF94 force 
field. The highest-scoring docking results were visual-
ized and analyzed using PyMOL.

Cell lines
The immortalized human NPC line was acquired from 
ScienCell Research Laboratories, Inc. These cells were 
cultivated in Nucleus Pulposus Cell Medium (ScienCell 
Research Laboratories, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum and 1% penicil-
lin/streptomycin. The cells were maintained in a 37  °C 
incubator with a 5%  CO2 atmosphere. NPCs exposed 
to either 100  μM tert-butyl hydroperoxide (TBHP) 
(Invitrogen, Carlsbag, CA) or 10  μM AH6809 (Sigma-
Aldrich, St-Louis, MO) were utilized as an in  vitro 
model for NPC degeneration.

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Real‑time reverse transcription polymerase chain reaction 
(RT‑qPCR)
Total RNA was extracted from NPC lysates using the 
AG RNAex Pro reagent (Accurate Biotechnology Co., 
Ltd., Hunan, China). Subsequently, 500 ng of total RNA 
was reverse transcribed into cDNA employing the Evo 
M-MLV RT Kit (Accurate Biotechnology Co., Ltd., 
Hunan, China) as previously described [31, 32]. RT-qPCR 
analysis was performed using the SYBR Green Premix 
Pro Taq HS qPCR Kit (Accurate Biotechnology Co., 
Ltd., Hunan, China) on the Bio-Rad CFX Connect Sys-
tem (Bio-Rad, CA, USA). Results were calculated using 
relative expression levels and the 2-ΔΔCq method. Primer 
sequences are presented in Table 1.

Cell transfection
Cells were transfected with an overexpression plasmid 
during the logarithmic growth phase. Plasmid transfec-
tion was conducted using EndoFectin™ Max (GeneCo-
poeia, Guangzhou, China) following the manufacturer’s 
instructions. Briefly, the transfection reagent was added 
to 125 µL of Opti-MEM (Gibco, Carlsbad, California, 
USA) containing the plasmid and incubated for 5  min. 
Subsequently, the mixture was left undisturbed for 
15 min. The culture medium was replaced after 8 h, and 
cell harvesting was performed 24  h following plasmid 
transfection, as previously described [31].

Apoptosis analysis
The alterations in apoptosis subsequent to transfec-
tion were assessed as follows: Cells were digested 
using pancreatic enzymes, excluding EDTA, and sub-
sequently centrifuged at 300 × g for 5  min to separate 
the medium. Apoptosis was quantified utilizing flow 
cytometry, employing the Annexin V-FITC Apoptosis 
Assay Kit (BestBio, Shanghai, China) according to the 

manufacturer’s protocol. Data analysis was performed 
using FlowJo software (version 10; FlowJo LLC).

Statistical analyses
All statistical data analysis and graph plotting were con-
ducted using R software (version 4.1.1). To assess dis-
parities between two groups, the Wilcoxon test was 
employed. Meanwhile, a one-way ANOVA was employed 
to ascertain any statistically significant differences among 
multiple groups. The threshold for establishing statistical 
significance was set at a P-value of < 0.05.

Results
ScRNA‑seq profiling revealed heterogeneity in IVDD 
progression
Figure 1 illustrates the flow of this study. Initially, scRNA-
seq data pertaining to a single IVDD sample obtained 
from the GEO database was utilized to elucidate the 
intrinsic heterogeneity underlying the degenerative pro-
cess in IVDD. After rigorous quality control procedures, 
cells exhibiting suboptimal quality were excluded, result-
ing in the selection of 9,161 cells for subsequent analy-
sis (Fig.  2A). Each cell exhibited a mitochondrial UMI 
rate below 10%, and a notable correlation was observed 
between the number of detected genes and sequencing 
depth. Employing a principled approach, PCA-based 
dimensionality reduction was performed with a reso-
lution value set to 1, identifying a total of 18 distinct 
cell clusters. These clusters exhibited pronounced het-
erogeneity, reflecting diverse cellular states within the 
intervertebral disc. Leveraging marker genes reported 
in prior studies, comprehensive cell type annotation was 
performed, and six categories of cells were character-
ized, including NPCs, nucleus pulposus progenitor cells 
(NPPC), macrophages, notochord cells (Noto), neutro-
phils, and endothelial cells (ECs) (Fig. 2B). Furthermore, 
proportional analysis of different cell types in the samples 
indicated that NPCs occupied more than 90% of the NP 
tissue, while the proportion of Noto in severe IVDD was 
lower compared to that in mild IVDD (Fig. 2C).

Dynamic modulation of AA metabolism during NPC 
degeneration
Significant variations were observed in AA metabolic 
pathway activity across various stages of IVDD, with a 
positive correlation observed between higher degenera-
tive degrees and increased AA metabolic pathway activ-
ity (Fig. 2D). Additionally, among all cell types examined, 
NPCs exhibited the most pronounced fluctuations in AA 
metabolic pathway activity, demonstrating elevated levels 
in cells characterized by greater degeneration (Fig. 2E, F). 
Therefore, NPCs were further investigated in this study. 
Subsequently, transcriptomic data pertaining to NPCs 

Table 1 Primer sequences for RT-qPCR in this study

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’)

AKR1C3 GTC ATC CGT ATT TCA ACC 
GGAG 

CCA CCC ATC GTT TGT CTC GTT 

MMP-3 AGT CTT CCA ATC CTA CTG 
TTGCT 

TCC CCG TCA CCT CCA ATC C

ADAMTS5 GAA CAT CGA CCA ACT CTA 
CTCCG 

CAA TGC CCA CCG AAC CAT CT

ACAN ACT CTG GGT TTT CGT GAC TCT ACA CTC AGC GAG TTG TCA TGG 

COL2A1 TGG ACG ATC AGG CGA AAC C GCT GCG GAT GCT CTC AAT CT

COX2 CTG GCG CTC AGC CAT ACA G CGC ACT TAT ACT GGT CAA 
ATCCC 

GAPDH CTC CAA AAT CAA GTG GGG CG TGG TTC ACA CCC ATG ACG AA
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were extracted, and a reanalysis was conducted employ-
ing UMAP visualization (Fig. 2G). To assess AA metabolic 
pathway activity in each cell cluster of NPCs, the "AddMod-
uleScore" function was utilized. The results are presented 
in Fig.  2H. Cluster 3 displayed the highest activity, while 
Cluster 0 exhibited the lowest activity.

Cell communication analysis of NPCs exhibiting varying AA 
metabolic activity: unveiling the intricate interplay
To elucidate the impact of AA on the microenvironment 
of the intervertebral disc, the differences in intercellular 

communication across different cell types were analyzed 
utilizing the “CellChat” R package. NPCs were stratified into 
three distinct categories based on quartiles (25% and 75%) 
derived from prior assessments; specifically, NPCs were cat-
egorized as exhibiting high, medium, or low AA metabolic 
activity. The construction of the intercellular communication 
network involved the aggregation of interaction frequencies 
and their corresponding weights. Figure 3A and B provide a 
visual representation of the strength of interactions in both 
incoming and outgoing signal pathways, thus emphasizing 
the central and intricate role that NPCs play in intercellular 

Fig. 1 Flowchart of the study
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Fig. 2 Enrichment analysis of hub genes in IVDD. A Following standard quality control on all cells pertaining to mild and severe IVDD, 9,161 cells 
were included in the analysis. B A UMAP plot illustrates six distinct cell types within the dataset, as identified through unsupervised clustering 
(NPCs, nucleus pulposus cells; NPPCs, nucleus pulposus progenitor cells; Noto, notochord cells; EC, erythroid cells). Each color represents a specific 
cell type. C Proportions of different cell types in mild-IVDD and severe-IVDD samples. D UMAP plots depict the distribution of AA metabolic activity 
in each cell. E, F A violin plot displays the AA metabolic score of various cell types in mild IVDD and severe IVDD. G, H A violin plot displays the AA 
metabolic score of NPCs in mild IVDD and severe IVDD
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communication. Notably, NPCs with high AA metabolic 
activity exhibited elevated signal strength in outgoing path-
ways compared to the other two categories of NPCs, whereas 
NPCs with low AA metabolic activity exhibited heightened 
activity in incoming signal pathways (Fig.  3C, D). Moreo-
ver, a subsequent analysis, focused on ligand–receptor (LR) 
pairs, delved into the reciprocal communication patterns 
between NPCs of the aforementioned three categories and 
other cell types. NPCs with high AA metabolic activity 
demonstrated the ability to engage in cellular communica-
tion with NPPCs through ANGPTL4–(ITGA5 + ITGB1), 
ANGPTL4–CDH11, ANGPTL4–SDC2, FGF2–FGR1, 
and PDGFC–PDGFRA interactions; with EC through 
ANGPTL4–(ITGA5 + ITGB1) and ANGPTL4–CDH5 inter-
actions; and with Noto via ANGPTL4–(ITGA5 + ITGB1), 
ANGPTL4–SDC2, ANGPTL4–SDC3, ANGPTL4–SDC4, 
FGF2–FGFR1, NAMPT–(ITGA5 + ITGB1), and NAMPT–
INSR interactions. Additionally, NPCs with low AA meta-
bolic activity engaged in cellular communication with 
NPPCs through FGF7–FGFR1, POSTN–(ITGAV + IGTB5), 
and PROS–AXL interactions; with Noto via ANGPTL2–
(ITGA5 + ITGB1), FGF7–FGFR1, FGF7–FGFR2, GAS6–
AXL, GRN–SORT1, POSTN–(ITGAV + ITGB5), and 
PROS1–AXL interactions; with macrophages through 
FGF7–FGFR1, GRN–SORT1, POSTN–(ITGAV + ITGB5), 
and SEMA3E–PLXND1 interactions; and with ECs through 
FGF7–FGFR1, POSTN–(ITGAV + IGTB5), PROS–AXL, 
and SEMA3E–PLXND1 interactions (Fig.  3E). These find-
ings highlight the potential significance of AA metabolic 
pathway activity in NPCs for their communication with vari-
ous cell types through these receptor interactions.

Analyzing the interactions between NPCs and other 
cell types via LR analysis revealed that these interac-
tions were closely associated with several cellular 
processes, including cell proliferation, apoptosis, oxi-
dative stress, ECM formation, and lectin response. 
This study revealed that within the TGFβ signaling 
pathway, NPCs of diverse AA metabolic types function 
as receptors that are influenced to varying degrees by 
macrophages (Fig.  4A). In signaling pathways linked 
to cell proliferation, NPCs of distinct AA metabolic 
types serve multiple roles as recipients, mediators, 
and influencers. They are also influenced by other cell 
types, with particularly strong associations observed 

between NPCs exhibiting low AA metabolism (Fig. 4B, 
C). Regarding processes involving the ECM, fibroblast 
differentiation signaling pathways, and lectin response 
signaling pathways, NPCs characterized by low AA 
metabolism assume more active roles as influencers 
(Fig.  4D–F). In contrast, within stress signaling path-
ways, NPCs with high AA metabolism function were 
observed to be more potent mediators (Fig.  4G–I). 
Therefore, it is evident that NPCs with different AA 
metabolic types play pivotal roles in regulating the 
onset and progression of IVDD by modulating the 
immune microenvironment.

Pseudotime analysis revealed alterations in NPC metabolic 
activity in response to varying AA metabolic activity
To further investigate the cellular trajectories of dis-
tinct clusters of NPCs involved in AA metabolism, the 
Monocle pseudotime algorithm for pseudotime analy-
sis was employed, as shown in Fig.  5A, where various 
NPC clusters are distinguished by different colors. 
In this pseudotime analysis, shades of blue denote 
the temporal progression of cell differentiation, with 
darker shades signifying earlier stages of differentia-
tion. The results presented in Fig. 5B demonstrate that 
NPCs underwent differentiation from right to left over 
time, with the lightest shade of blue corresponding to 
the most recently differentiated cell state 1, while cell 
states 2 and 3 represent later stages of NPC differentia-
tion. Figure 5C illustrates the distribution of early-stage 
degenerated NPCs and late-stage degenerated NPCs 
during the differentiation process, while Fig. 5D show-
cases the distribution of distinct subgroups of NPCs 
along the cellular differentiation trajectory. By examin-
ing the variations in AA metabolic activity among these 
subgroups, Cluster 1, characterized by the lowest meta-
bolic activity, was determined to primarily reside in 
the early stages of the cellular trajectory, correspond-
ing to early degenerated NP tissue. Conversely, Cluster 
3, exhibiting the highest metabolic activity, predomi-
nantly occupied the later stages of the cellular trajec-
tory, indicative of late-stage degenerated NP tissue. 
These findings robustly support the close association 
between AA metabolic activity and IVDD progression.

Fig. 3 Diagram illustrating the intercellular communication network among NPCs exhibiting varying AA metabolic activity and other co-localized 
cell types. A, B Diagram depicting interactions between NPCs of varying AA metabolic activity and other cell types. The thickness of the connecting 
lines between two cell types indicates their interaction weight or intensity. C Point plots of outgoing and incoming signal pathways in various 
cell types. D Heatmap depicting the intensity of intercellular interactions among eight distinct cell type© (E). Summary of LR interactions 
between NPCs of varying AA metabolic activity and other cell types. The horizontal axis represents ligand cells and their corresponding receptor 
cells, while the vertical axis represents different signaling pairs

(See figure on next page.)
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Fig. 4 Circos diagram illustrates the interrelationships between NPCs exhibiting varying AA metabolic activity and other cell types across various 
signaling pathways. A heatmap showcases the relative likelihood of NPCs exhibiting varying AA metabolic types playing four distinct roles (sender, 
receiver, mediator, and influencer) within the signaling pathways. The color intensity corresponds to the magnitude of cellular impact
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Screening hub genes via machine learning algorithms
Three well-validated machine learning algorithms, 
namely LASSO, SVM-RFE, and RF, were employed to 
identify essential biomarkers associated with IVDD 
in datasets GSE70362 and GSE176205. The LASSO 
algorithm was subjected to rigorous tenfold cross-
validation to ensure the robustness of the findings. On 
the basis of the optimal lambda value (0.07000546), 

the most influential features were judiciously selected 
to construct the LASSO model, leading to the identi-
fication of nine pivotal genes (PLA2G1B, PLA2G4F, 
PLB1, PTGDS, AKR1C3, ALOX5, CYP2B6, EPHX2, and 
ALOX15) (Fig. 6A). Additionally, the RF approach iden-
tified 12 significant genes (AKR1C3, ALOX15, ALOX5, 
CYP2B6, EPHX2, LTA4H, PLA2G1B, PLA2G4F, PLB1, 
PTGDS, PTGES2, and PTGES3) (Fig. 6B, C). Employing 
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(See figure on next page.)
Fig. 6 Development of the early diagnosis model for IVDD. A ROC curves of SVM and RF models. B The impact of the number of decision trees 
on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. The error rate stabilized at approximately 
500 decision trees. C Results of the RF classifier’s Gini coefficient approach. Genetic variation is on the x-axis, and the significance index is on the 
y-axis. D, E Gene selection process using SVM-RFE and tenfold cross-validation in the GSE70362 and GSE176205 datasets. The highest model 
accuracy was achieved when 29 genes were selected. F UpSet plot showcasing the characteristic genes in LASSO, RF, DEGs, and SVM-RFE. G ROC 
curve values for the five hub genes in the GSE70362 and GSE176205 datasets. H–L Representative bar graphs reveal the expression differences 
in ALOX5, AKR1C3, CYP2B6, EPHX2, and PLB1 between mild IVDD (n = 17) and severe IVDD (n = 16)



Page 12 of 23Tan et al. Lipids in Health and Disease          (2023) 22:204 

Log Lambda

C
oe

ffi
ci

en
ts

3

Log(λ)

B
in

om
ia

l D
ev

ia
nc

e

Random forest

trees

E
rr
or

CBR3

GPX7
GPX3

Importance

Importance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PLB1 AUC 0.713
AKR1C3 AUC 0.717
ALOX5 AUC 0.703
CYP2B6 AUC 0.791
EPHX2 AUC 0.851

0 5 10 15 20 25 30

0.
50

0.
55

0.
60

0.
65

0.
70

Number of Features

5 
x 

C
V

 A
cc

ur
ac

y

0 5 10 15 20 25 30

0.
30

0.
35

0.
40

0.
45

0.
50

Number of Features
5 

x 
C

V
 E

rr
or

mild-IVDD severe-IVDD
0

1

2

3

CYP2B6

G
en

e
ex

p
re
ss

io
n

mild-IVDD severe-IVDD
0

1

2

3

4

EPHX2

G
en

e
ex

p
re
ss

io
n

mild-IVDD severe-IVDD
0

1

2

3

4

PLB1

G
en

e
ex

p
re
ss

io
n

mild-IVDD severe-IVDD
0

2

4

6

8

AKR1C3

G
en

e
ex

p
re
ss

io
n

mild-IVDD severe-IVDD
1.0

1.5

2.0

2.5

ALOX5

G
en

e
ex

p
re
ss

io
n

A B

C

D E

18

1

4

1

5

0

5

10

15

20

0102030

ALOX5
AKR1C3
CYP2B6
EPHX2
PLB1

F G

H I J K L

Fig. 6 (See legend on previous page.)



Page 13 of 23Tan et al. Lipids in Health and Disease          (2023) 22:204  

the SVM-RFE algorithm, the classifier was observed to 
achieve the highest accuracy and a commendable AUC 
value when employing a set of 29 optimal feature genes. 
Noteworthy among these genes were PTGDS, AKR1C3, 
PLB1, ALOX5, ALOX15, EPHX2, PLA2G1B, GGT5, 
CYP2E1, ALOX12B, PTGES2, PLA2G4F, CYP2B6, 
CBR1, TBXAS1, LTC4S, PLA2G12A, GPX3, GPX7, 
LTA4H, PTGS1, PLA2G6, ALOX15B, PLA2G5, CBR3, 
PTGES3, CYP2C19, PTGES, and PLA2G3 (Fig.  6D, E). 
After obtaining the aforementioned machine learning 
results, the R package was utilized to generate plots 
depicting five hub genes (AKR1C3, ALOX5, CYP2B6, 
EPHX2, and PLB1) based on machine learning-fil-
tered hub genes and differentially expressed genes 
(DEGs) (Fig.  6F). Figure  6G also demonstrates that 
individual hub genes exhibited precision in distin-
guishing different stages of IVDD (all predicted prob-
abilities were greater than 0.7). Figures  6H–L depict 
the differential expression of these five hub genes 
in the NP tissue of IVDD. Among them, AKR1C3, 
CYP2B6, and PLB1 showed high expression in severe 
IVDD, whereas the opposite expression pattern was 
observed for the other genes.

Development of the AI model
To validate the classification potential of the hub genes, 
an ANN was initially utilized to construct an AI pre-
diction model using the GSE70362 and GSE176205 
datasets. The primary objective was to demonstrate 
the predictive capability of the hub genes for the early 
diagnosis of IVDD. In the R "neuralnet" package, the 
ANN architecture comprised five input layers, five hid-
den layers, and two output layers. Specifically, through 
the computation of the gene weights, optimal discrimi-
nation between mild and severe disc degeneration was 
achieved (Fig.  7A). Subsequently, ROC curves were 
generated to evaluate prediction accuracy. The AUC 
values approached 1 (AUC = 0.961), indicating the 
model’s robustness. To assess the diagnostic model’s 
performance, validation was performed using the test 
dataset (GSE67567), which yielded an AUC of 0.720. 
The AUC across all datasets, including both training 
(GSE70362 and GSE176205) and validation (GSE67567) 
datasets, amounted to 0.852. Furthermore, as depicted 
in Fig. 7B–D, the diagnostic efficacy of the AI model in 
discriminating between mild IVDD and severe IVDD 
substantially outperformed that of C-reactive protein 
(CRP) [33]. Thus, AI models exhibited significant diag-
nostic value within the entire dataset, enabling more 
precise assessment of inflammation levels and effective 
differentiation between various stages of IVDD.

IVDD classification based on AA‑related hub genes
To further investigate the relationship between disc 
degeneration and hub genes, an analysis of the expres-
sion profiles of hub genes in 43 IVDD samples was con-
ducted using k-means unsupervised clustering. The most 
stable number of subtypes was determined to be two 
(k = 2) (Fig. 8A). Subsequently, based on the CDF curves, 
the 43 IVDD samples were clustered into two distinct 
subgroups: Subtype A (n = 15) and Subtype B (n = 28) 
(Fig. 8B, C). These findings align with those of the ANN 
model, indicating that a higher proportion of patients 
with Subtype A exhibited severe disc degeneration, 
whereas those classified as Subtype B tended to display 
milder disc degeneration, as represented in the Sankey 
diagram (Fig. 8C).

Pathway activity and immune infiltration landscape 
between two stages of IVDD
To elucidate the functional implications of the hub 
genes and the underlying mechanisms influencing the 
progression of IVDD, GSEA was conducted to iden-
tify dysregulated biological processes and pathways 
between the two subgroups. The aim was to determine 
which biological processes were substantially enriched 
in one group compared to the other. The results 
revealed that Subtype B exhibited enrichment in the fol-
lowing processes: cellular response to external stimuli, 
reactive nutrient deprivation, reactive signaling inter-
leukins (ILs), reactive cell dynamics signaling systems, 
and reactive metabolic disease signaling (Fig.  8D–H). 
Conversely, Subtype A showed higher richness in amino 
acid and derivative metabolism (Fig.  8I). To further 
investigate potential differences in relevant functions 
and pathways between these distinct subtypes, analy-
ses were performed using the KEGG, Reactome, and 
WikiPathways databases to reveal differences in the 
underlying mechanisms of disease progression between 
the subtypes. Compared to Subtype B, Subtype A exhib-
ited a remarkable upregulation of inflammatory-related 
pathways, including apoptosis, the prostaglandin meta-
bolic pathway, pantothenic acid and CoA biosynthesis, 
the peroxisome pathway, oxidative phosphorylation, as 
well as the metabolism of nitric oxide and glutathione 
(Fig. 9A).

Single-cell analysis showed different interactions 
between NPCs with varying AA metabolic activities 
and the immune microenvironment. Therefore, it was 
imperative to investigate the correlation between these 
subtypes and immune cell populations. To this end, 
various algorithms, including CIBERSORT, TIMER, 
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QUANTISEQ, CIBERSORT-ABS, EPIC, and XCELL, 
were employed to assess immune cell infiltration levels 
across the subtypes. Subtype A exhibited a heightened 
infiltration of pro-inflammatory immune cells, including 
M1 macrophages, whereas Subtype B displayed elevated 
levels of anti-inflammatory immune cell infiltration, 
including myeloid dendritic cells, CD4 + T cells, and 
endothelial cells (Fig. 9B).

Prediction of subtype‑specific small molecular compounds 
and their mechanisms of action
Subtype A- and Subtype B-specific small molecular com-
pounds were predicted utilizing the XSum algorithm 

to evaluate their potential as drug candidates against 
the distinct subtypes. Based on the disease subtyping 
approach based on the five hub genes, XSum suggested 
several drugs for the treatment of IVDD, namely AH6809, 
TTNPB, MS-275, NU1025, and clofibrate. The chemical 
structures of these drugs are illustrated in Fig. 10A–F.

Drug–gene interaction and molecular docking analyses 
of hub genes
Based on the XSum results, molecular docking analysis 
of AH6809 with AKR1C3, CYP2B6, EPHX2, ALOX5, 
and PDE1B revealed robust docking of AH6809 with 
these hub genes (Fig. 10G). The binding affinity between 
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AKR1C3 and AH6809 was -7.7  kcal/mol. In this inter-
action, the hydroxyl group of TYR at position 24 in 
AKR1C3 formed a hydrogen bond with the carbonyl oxy-
gen atom of AH6809 at a distance of 2.9 Å. Similarly, the 
carbonyl group of LEU at position 54 in AKR1C3 formed 
a hydrogen bond with the hydroxyl group of AH6809 at 
a distance of 2.5 Å. Additionally, the phenyl ring of TRP 
at position 227 in AKR1C3 engaged in π–π conjugation 
with the phenyl ring of AH6809 at a distance of 4.4  Å 
(Fig.  10H). Supplementary file S2 presents the docking 
results for AH6809 with the other hub genes (Fig. 10I−L).

Friends analysis of hub genes
Using the Friends algorithm, AKR1C3 was found to 
hold the greatest biological significance among the five 
hub genes (Fig. 11A). As depicted in Fig. 11C, several 

pro-inflammatory pathways were significantly nega-
tively associated with AKR1C3, including the IL1R, 
oxidative stress pathway, pentose phosphate metabolic 
pathway, and chemotaxis behavior of macrophages.

AH6809 alleviates IVDD by inhibiting AKR1C3
To date, AKR1C3 has not been reported in association 
with IVDD. To corroborate the biological alterations 
resulting from the upregulation of AKR1C3, qRT-PCR was 
employed to assess the relative efficacy of AKR1C3 over-
expression in NPCs (Fig. 11B). To further substantiate this 
conjecture, overexpression of AKR1C3 was induced in 
the presence of TBHP. The results indicated that AKR1C3 
overexpression enhanced TBHP-induced apoptosis in 
NPCs (Fig. 11D, E). Subsequent experiments revealed that 
AKR1C3 overexpression influences NPC proliferation 
and apoptosis, ECM synthesis and degradation, as well as 
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Fig. 8 Identification of two different IVDD subtypes based on five hub genes. A Unsupervised clustering based on hub gene expression 
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subtypes. D–I GSEA of Subtype A and Subtype B
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the release of inflammatory factors by NPCs. RT-qPCR 
demonstrated an increase in catabolic markers, including 
MMP-3 and ADAMTS5, coupled with a decrease in ana-
bolic markers, such as ACAN and COL2A1, as AKR1C3 
expression levels increased (Fig.  11F). Furthermore, 
AKR1C3 was found to impact IVDD by modulating the 
synthesis and metabolism of cyclooxygenase-2 (COX2). 
These findings collectively establish that AKR1C3, as an 
integral component of the hub gene network, actively par-
ticipates in the regulation of IVDD.

Furthermore, given the pronounced affinity between 
AKR1C3 and AH6809, efforts were initiated to vali-
date the connection between AH6809 and AKR1C3. 
The results revealed that AH6809 possesses the capac-
ity to alleviate IVDD by suppressing AKR1C3 expres-
sion, subsequently influencing apoptosis in NPCs and 

ECM synthesis. In summary, these results imply that 
AH6809 holds promise as a potential treatment for 
IVDD through the inhibition of AKR1C3.

Discussion
IVDD is widely acknowledged as the primary etiologi-
cal factor responsible for lower back pain [34]. In clini-
cal practice, the assessment of IVDD prognosis and 
the formulation of treatment strategies often rely on 
MRI grading and various pathological parameters [35]. 
Mild degeneration typically manifests as a reduction in 
intervertebral disc height and moisture content, accom-
panied by limited lower back pain symptoms or the 
absence of compressed nerve root involvement [7]. In 
such cases, clinicians recommend non-surgical inter-
ventions, encompassing physical therapy and NSAIDs, 

Fig. 9 Biological characteristics of different IVDD subtypes. A A representative heatmap depicting the differences in the immune landscape in IVDD 
between Subtype A and Subtype B, as determined using CIBERSORT, TIMER, QUANTISEQ, CIBERSORT-ABS, EPIC, and XCELL algorithms. The bar chart 
on the right elucidates the correlation between immune cells or stromal cells and their respective subtypes. B A heatmap illustrating differential 
pathway activity between the two subtypes, based on GSVA using the KEGG, Reactome, and WikiPathways databases
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Fig. 10 Five small-molecule drugs identified through XSum analyses. A–F PubChem database displays the molecular structures of the five targeted 
drugs, including AH6809 (B), TTNPB (C), MS-275 (D), NU-1025 (E), and clofibrate (F). G–L Visualization of molecular docking
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to alleviate patient discomfort [36]. Conversely, severe 
degeneration is characterized by a significant reduction 
in intervertebral disc height, intervertebral space nar-
rowing, and conspicuous lower back pain symptoms 
or compressed nerve roots. In these instances, surgical 
intervention becomes the only viable clinical recourse, 
encompassing procedures such as intervertebral disc 
removal, laminectomy, facetectomy, and artificial disc 
replacement [37, 38]. Therefore, timely diagnosis and 
intervention in IVDD can offer distinct advantages by 
mitigating the necessity for surgical interventions and 
enhancing healthcare resource utilization, thereby 
yielding substantial clinical and socio-economic 
benefits.

The etiology of IVDD is considered multifactorial, 
with factors such as smoking, aging, infection, genetic 
susceptibility, and abnormal biomechanical loading [39, 
40]. Importantly, irrespective of the initial factors, IVDD 
degeneration is attributed to the secretion of pro-inflam-
matory molecules by NPCs and peripheral immune cells 
[33, 41]. AA and its metabolites assume a pivotal role in 
the inflammatory response associated with IVDD. Com-
pounds such as prostaglandin E2 (PGE2) and leukotriene 
B4, generated through AA metabolism, can promote 
inflammation and intervertebral disc degradation, while 
agents inhibiting AA metabolism, such as NSAIDs and 
COX2 inhibitors, can ameliorate the inflammatory 
response in IVDD [42, 43]. Furthermore, heightened 
AA metabolic pathway activity expedites the IVDD pro-
cess [6]. Therefore, it is imperative to conduct further 
research on biomarkers and pathological mechanisms 
associated with AA metabolism in IVDD to advance and 
refine personalized treatment strategies.

Using scRNA-seq data, the microenvironmental land-
scape of NP was delineated. NPCs were found to con-
stitute more than 90% of the tissue and represent the 
predominant cellular component. Within this context, 
Noto play a pivotal role in preserving NPCs and are 
closely associated with their repair mechanisms. Nota-
bly, Noto were observed in mild-IVDD cases but were 
nearly absent in severe IVDD. Moreover, an increase in 
neutrophils and macrophages was observed in severely 
degenerated NP tissue, implying that inflammatory 

activation may be a notable contributor to the accelera-
tion of IVDD. These findings underscore the potential 
benefits of early intervention in IVDD to mitigate inflam-
matory responses, reduce Noto apoptosis, and facilitate 
the regeneration of NPCs.

Furthermore, AA metabolism within the interver-
tebral disc microenvironment was analyzed. The find-
ings indicate that as disc degeneration progresses, AA 
metabolism becomes increasingly active. Moreover, 
notable variations in AA metabolism were observed 
among NPCs at varying degeneration stages. To explore 
the heterogeneity in the regulation of NPCs by AA 
metabolism, the harmony integration algorithm was 
employed to categorize cells into distinct subtypes. 
Pseudotime analysis further illuminated that height-
ened AA metabolic activity correlates with a procliv-
ity toward degenerative development. These findings 
underscore the potential for mitigating IVDD by regu-
lating AA metabolism, identifying viable therapeutic 
targets, and designing corresponding pharmaceutical 
interventions.

Furthermore, NPCs exhibiting varying levels of AA 
metabolism displayed divergent communication patterns 
with neighboring cells within the microenvironment. 
The communication dynamics were compared between 
NPCs operating at distinct metabolic levels and other 
cell types within the intervertebral disc NP tissue. This 
analysis encompassed an examination of receptor inter-
actions and signaling pathways. The findings underscore 
that NPCs with heightened AA metabolism are more 
likely to modulate neighboring microenvironmental cells. 
Conversely, NPCs with diminished AA metabolism tend 
to be subject to regulation by surrounding microenviron-
mental cells. This regulation is associated with processes 
such as cell proliferation, ECM formation, and anti-aging 
mechanisms. These findings suggest that the manipu-
lation of AA metabolism in NPCs may hold promise 
as a means to influence the biological functions of the 
microenvironment. Such an approach could potentially 
enhance the anti-apoptotic and regenerative capabilities 
of NPCs.

Subsequently, AI technology was leveraged innova-
tively to discern stable and robust prognostic biomarkers 

Fig. 11 Inhibiting AKR1C3 using AH6809 treats IVDD. A A box plot illustrates the functional similarity of the five hub genes, as revealed 
through Friends analysis. AKR1C3 exhibits the highest degree of correlation with other genes. B AKR1C3 expression in NPCs transfected with an NC 
negative control (empty plasmid) or an AKR1C3 overexpression plasmid, as detected by RT-qPCR. Data are expressed as mean ± SD (n = 3) (*, P < 0.05; 
**, P < 0.01; ***, P < 0.001). C Correlation between AKR1C3 and various biological processes. D, E Apoptosis in NPCs transfected with a control NC 
plasmid or an AKR1C3 overexpression plasmid, as detected by flow cytometry. Data are expressed as mean ± SD (n = 3) (*, P < 0.05; **, P < 0.01; 
***, P < 0.001). F Changes in gene expression of anabolic markers (ACAN and COL2A1) and catabolic markers (MMP-3, ADAMTS5, and COX2), 
as determined by RT-qPCR. Data are expressed as mean ± SD (n = 3) (*, P < 0.05; **, P < 0.01; ***, P < 0.001)

(See figure on next page.)
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for IVDD. Initially, a genomics-driven predictive model 
was developed for the early diagnosis of IVDD. Com-
pared to CRP, the model showcases superior efficacy 
in gauging both the extent of disc degeneration and the 
inflammatory activity in patients. Additionally, the model 
enables patient stratification and facilitates tailored drug 
interventions. These findings offer a more scientifically 
informed approach to clinical diagnosis and treatment, 
furnishing biological substantiation and rationales for 
personalized healthcare in the context of IVDD.

Five hub genes were found to be crucial to the patho-
genesis of IVDD, playing a significant role in its treat-
ment. AKR1C3, a member of the aldo–keto reductase 
family, is involved in multiple metabolic pathways and 
signaling cascades. It catalyzes the direct reduction 
of PGH2 to PGF2α, thereby promoting the release of 
inflammatory mediators, which in turn intensify the mag-
nitude and duration of the inflammatory response [44]. 
ALOX5, a key rate-limiting enzyme in AA metabolism, 
is responsible for catalyzing the conversion of 5-hydrop-
eroxyeicosatetraenoic acid to LTA4, thus contributing 
to the occurrence and progression of inflammation and 
degenerative diseases [45]. CYP2B6, a member of the 
cytochrome P450 family, actively regulates the intensity 
and duration of inflammatory reactions. Its expression 
is modulated by various inflammation-related signaling 
pathways, such as nuclear factor-kappa β and cytokines 
[46, 47]. Research has indicated a significant upregulation 
of CYP2B6 expression under inflammatory conditions, 
facilitating the regulation of inflammatory responses 
through metabolite generation and modulation of sign-
aling pathways [48]. EPHX2, encoding a membrane 
esterase, catalyzes the hydrolysis of epoxy prostaglan-
dins, thus modulating the equilibrium between PGE2 
and prostaglandin D2, among others. Numerous studies 
have established EPHX2’s inhibitory impact on the secre-
tion of inflammatory cytokines and the gene expression 
of COX2, thereby manifesting pro-inflammatory effects 
[49]. PLB1, a member of the phospholipase family, pri-
marily facilitates the hydrolysis of phosphatidic acid 
esters, thereby regulating inflammation’s initiation and 
progression through its involvement in prostaglandin and 
leukotriene production [50]. Based on the stratification 
of patients with IVDD based on these five genes, medi-
cations may be tailored to the patients and facilitate the 
amelioration of IVDD and the reversal of disease onset.

To further elucidate the biological functions of the five 
hub genes, PCA was conducted based on their expression 
levels. This analysis facilitated the categorization of all 
samples into two distinct subtypes: Subtype B, character-
ized by milder disc degeneration, and Subtype A, charac-
terized by more severe disc degeneration. Examination of 
immune cell infiltration patterns underscored the unique 

immune cell profiles and immune functions associated 
with these molecular subtypes. Comparing Subtype A 
to Subtype B, comparable ratios of cellular infiltration 
and shared molecular characteristics, including myeloid 
dendritic cells, CD4 + T cells, and endothelial cells, were 
observed, which suggests an increased prevalence of anti-
inflammatory cells in Subtype B. Conversely, Subtype A 
exhibited a heightened proportion of M1 macrophages, 
indicative of more pronounced inflammatory activity 
within this subtype. GSVA revealed that the disparities 
between these subtypes were associated with inflamma-
tion and ECM regulation. Concurrently, the differential 
expression of inflammation-related genes between the 
subtypes underscored higher levels of pro-inflammatory 
factors in Subtype A relative to Subtype B.

Given the intimate relationship between subtypes 
and underlying biological distinctions, the evaluation 
of small-molecule drugs assumes translational signifi-
cance within clinical settings. Through XSum analysis, 
five small molecular drugs (AH6809, TTNPB, MS-275, 
NU1025, and clorfibrate) were identified for potential 
use in the early reversal of IVDD. The chemical struc-
ture of AH6809 comprises a benzene ring and an imi-
dazole ring, with a molecular formula of  C17H14N=2O2. 
This small-molecule compound serves as a PGE2 recep-
tor antagonist and has exhibited efficacy in the treat-
ment of rheumatoid arthritis, gout, and inflammatory 
bowel disease [51]. TTNPB functions by inhibiting the 
release of inflammatory factors by binding to the reti-
noic acid receptor or vitamin D receptor. Addition-
ally, it possesses the ability to attenuate oxidative stress 
and impart anti-aging effects on cells. The pharmaco-
logical activity of TTNPB aligns with the mechanisms 
underlying IVDD, rendering it potentially valuable 
in the treatment of this condition [52]. MS-275 is an 
HDAC inhibitor capable of suppressing the expression 
of inflammation-related genes by inhibiting HDAC 
enzyme activity, thus mitigating the inflammatory 
response [53, 54]. NU1025 is a potent Poly (ADP-
ribose) polymerase (PARP) inhibitor extensively stud-
ied and applied in cancer treatment [55, 56]. However, 
it is important to highlight that PARP inhibitors effec-
tively mitigate NAD + and ATP depletion, subsequently 
reducing cellular oxidative stress levels and providing 
cellular protection against oxidative damage [56]. Clorf-
ibrate, formerly employed for high cholesterol and tri-
glyceride management, falls within the category of fibric 
acid derivatives [57, 58]. A few studies suggest that 
fibric acid derivatives may possess anti-inflammatory 
and antioxidant properties, but further investigation is 
required to elucidate the relationship between clorfi-
brate and inflammation [59].
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To validate the findings, the influence of AKR1C3 on 
NPCs was examined. The examination revealed that 
heightened AKR1C3 expression correlates with elevated 
instances of apoptosis, ECM degradation, and accelerated 
IVDD. Molecular docking results indicated a promising 
interaction between AH6809 and AKR1C3, implying the 
potential of AH6809 to inhibit NPC apoptosis and ECM 
degradation. Consequently, AH6809 emerges as a pro-
spective pharmaceutical agent for the treatment of IVDD. 
These assertions were validated through flow cytometry 
and RT-PCR.

Strengths and limitations
By harnessing machine learning and ANNs, bio-
markers associated with the AA metabolism pathway 
were identified, demonstrating exceptional efficacy 
in predicting the progression of IVDD in patients. 
These biomarkers hold substantial promise as poten-
tial biological indicators for the clinical diagnosis 
of IVDD. The findings underscore the capacity of AI 
and genomics to identify high-risk individuals at an 
early stage, thus facilitating targeted preventive inter-
ventions through proactive monitoring and manage-
ment. For instance, in the context of early-stage IVDD, 
pharmacological interventions, such as the five drugs 
identified in this study, can be employed for early 
intervention, mitigating inflammation, and achiev-
ing the objective of prevention. Additionally, patients 
with early-stage IVDD may derive benefits from the 
utilization of lumbar support belts or participation in 
rehabilitative exercises designed to enhance the func-
tionality of lumbar and back muscles, thereby facilitat-
ing early prevention, precise diagnosis, and alleviating 
the economic burden on both patients and society. 
Therefore, the disease stratification predictive model, 
based on the AA metabolism pathway, holds substan-
tial promise as a prospective molecular biomarker.

Although this study has yielded promising results, 
there are several limitations that require attention. 
Firstly, to validate the study findings and enhance their 
generalizability, larger-scale and multi-center stud-
ies are imperative. Employing such study designs will 
enable the presentation of more compelling evidence to 
corroborate the study findings. Additionally, conduct-
ing in  vitro drug testing and clinical trials is crucial 
to corroborate the therapeutic effects of various small 
molecules on the progression of IVDD. These valida-
tions will establish a robust foundation for this study 
and facilitate the application of the study findings into 
the realm of personalized medicine for managing IVDD 
progression.

Conclusion
By elucidating the role of AA metabolism in IVDD, this 
study seeks to advance the understanding of this com-
plex condition. Through the identification of robust bio-
markers and the development of predictive models, this 
study aim to improve early detection, risk assessment, 
and treatment decision-making for IVDD patients. Such 
endeavors hold great promise for optimizing patient 
outcomes, reducing the reliance on surgical interven-
tions, and paving the way for more effective, personal-
ized approaches in the management of IVDD.
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