Open Access

Hypoglycemic and hypolipidemic effects of different parts and formulations of bitter gourd (Momordica Charantia)

  • Mahwish1,
  • Farhan Saeed1,
  • Muhammad Sajid Arshad1Email author,
  • Mahr un Nisa1,
  • Muhammad Tahir Nadeem1 and
  • Muhammad Umair Arshad1
Lipids in Health and Disease201716:211

https://doi.org/10.1186/s12944-017-0602-7

Received: 15 August 2017

Accepted: 30 October 2017

Published: 10 November 2017

Abstract

Background

Cardiovascular diseases and diabetes are responsible for large number of deaths throughout the globe. Bitter gourd has the potential to become a component of the diet or a dietary supplement for diabetic and pre-diabetic patients owing to the presence of insulin like molecules. Recent investigations have suggested that bitter gourd extracts may ameliorate high fat diet induced obesity and hyperlipidemia in animal models. Moreover, its supplements in food result in lowering weight gain and visceral fat mass.

Methods

The current study was designed to investigate the nutraceutical potential of skin, flesh and whole fruit of bitter gourd cultivars against hyperglycemia and hyperlipidemia. For the purpose, various bitter gourd cultivars were procured from local market. Bio-evaluation studies were carried out on biochemical parameters using rodent experiment model.

Results

From results, it was revealed that maximum reduction in blood glucose skin 1.06%, flesh 2.65%, whole fruit 4.29%, total cholesterol skin 6.60%, flesh 6.04%, whole fruit 6.70%, low density lipoprotein skin 5.55%, flesh 6.81%, whole fruit 6.60%, and triglycerides skin 0.04%, flesh 3.38%, whole fruit 2.02%, were observed. Moreover, insulin skin 2.14%, flesh 3.52%, whole fruit 2.73%, production was slightly enhanced with improved levels of high density lipoprotein in whole fruit of bitter gourd.

Conclusion

Overwhelmingly, it may be inferred here that bitter gourd holds the potential to significantly improve diabetic conditions and associated late complications with no ill effects on body organs.

Keywords

Functional foodsBitter gourdNutraceuticalHyperglycemiaHyperlipidemia

Background

Incidence of chronic diseases is a rising apprehension globally with ever escalating reported cases of physiological syndromes. Besides, continued oxidative stress and oxidative damage lead to chronic inflammation and other physiological abnormalities [1]. Among these chronic diseases, diabetes and cardiovascular (CVD) are responsible for large number of deaths in the world [2]. Diabetes mellitus is an emerging global health perspective that is prevalent in more than 285 million people worldwide. It has been anticipated that diabetes affected people will be around 439 million by 2030. Furthermore, it has been projected that about 75% of the affected people will be from developing countries [3]. As far as the hyperlipidemia is concerned, it is lipid metabolism disorder and major risk factor for the development of cardiovascular aberration. It is prevalent among 7% of the adult population with an estimated 25 million people affected [4, 5].

Diabetes mellitus treatment often results in some late complex abnormalities including nephropathy, neuropathy and retinopathy etc. Due to adverse responses and rely upon low cost therapeutic ways, about 30% of diabetic patients use alternative therapeutic ways [6]. Various plant based remedial strategies are being utilized worldwide to cope with the chronic diseases and infections as preventive and curative measure. According to the statistics of WHO plant based medicines are being used by nearly 80% of the people for their primary healthcare worldwide. This analeptic potential of plant based medication is ratified to an array of valued phytochemicals present predominantly in their waste products. Among these, bitter gourd and its various components and formulations can be used due to their sugar lowering effects via biochemical, pharmacological and physiological modes [7, 8].

Bitter gourd (Momordica charantia L.) is a climbing perennial, tendril-bearing vine belongs to family cucurbitaceae. In the past, it was frequently used as antidote for diabetes, stomach pain, wounds, tumors, malaria, rheumatism, colic, inflammation, measles and fevers [9, 10]. Owing to the presence of insulin like molecules, bitter gourd has the potential to become a component of the diet or a dietary supplement for diabetic and pre-diabetic patients [11]. Recently, many researchers evaluated the role of bitter gourd in lowering blood glucose level [12, 13], cholesterol [13, 14] and visceral fat mass [15].

Recent researches also suggested that bitter gourd extracts may ameliorate high fat diet induced obesity and hyperlipidemia in animal models. Bitter gourd supplements in food result in lowering weight gain and visceral fat mass. This might be due to increase in the level of oxidation of fatty acid and ultimately reduction in weight and peritoneal fat deposition [15]. Most of these studies have been conducted with fruit pulps only. Very little information is available to compare the different parts and formulations of the plant in parallel experiments.

The present study was planned with the objectives to determine hypoglycemic and hypolipidemic effect of bitter gourd on normal, hyperglycemic and hyperlipidemic rats and to identify the part of the plant where the hypoglycemic and hypolipidemic principle is concentrated. Moreover, assessment of different formulations was also undertaken to find the suitable dose under these conditions.

Methods

Procurement of raw material

Fruits of bitter gourd were procured from Vegetable Research Section, Ayub Agriculture Research Institute, Faisalabad. These fruits were washed thoroughly under running tap water to remove adhered dirt, dust and other foreign debris.

Biological assay

To evaluate the hypoglycemic and hypolipidemic properties of skin, flesh and whole fruit powder of bitter gourd, an efficacy trial was planned. For the purpose, male Sprague Dawley rats were procured from the national institute of health, Islamabad. Initially, the rats were acclimatized by feeding basal diet for 1 week period. The environmental conditions were controlled throughout the trial like temperature (23 ± 2 °C) and relative humidity (55 ± 5%) along with 12 h light-dark period. At the initiation of study, some rats were dissected to establish the baseline trend. During efficacy trial, three types of studies were conducted independently by involving normal, hyperglycemic and hyperlipidemic. In Study I, rats were fed on normal diet whereas in study II and study III, high sucrose and high fat diets were administrated, respectively. In the animal modeling, seven groups of rats were formed in three different studies assigning 10 rats in each group. During the entire trial, bitter gourd formulations based feed was given to the respective groups.

Feed plans for experimental rats

For control group, experimental diet was prepared by using corn oil (10%), corn starch (66%), protein (10%), cellulose (10%), mineral (3%) and vitamin mixture (1%). In experimental groups, bitter gourd was added in the aforementioned diet (Table 1).
Table 1

Diet plan used in the studies

 

Study I (Normal diet)

Study II (High sucrose diet)

Study III (High cholesterol diet)

Groups

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Diet

D0

D1

D2

D3

D4

D5

D6

D0

D1

D2

D3

D4

D5

D6

D0

D1

D2

D3

D4

D5

D6

D0: Control

D1: Diet containing bitter gourd skin powder 150 mg / kg of body weight

D2: Diet containing bitter gourd skin powder 300 mg / kg of body weight

D3: Diet containing bitter gourd flesh powder 150 mg / kg of body weight

D4: Diet containing bitter gourd flesh powder 300 mg / kg of body weight

D5: Diet containing bitter gourd whole fruit powder 150 mg / kg of body weight

D6: Diet containing bitter gourd whole fruit powder 300 mg / kg of body weight

Feed and water intake

The gross feed intake of each group was calculated every day, excluding the spilled diet throughout the study period. The net water intake was also recorded on daily basis by measuring the difference in graduated bottles.

Body weight gain

The gain in body weight for each group of rats was monitored on weekly basis to estimate any suppressing effect of bitter gourd formulations.

Hypoglycemic perspectives

In each group, at respective intervals (4th and 8th week) glucose concentration was estimated by GOD-PAP method as described by Katz et al. [16], whereas, insulin level was estimated by following the instructions of Ahn et al. [17].

Serum lipid profile

Serum cholesterol level was determined using CHOD–PAP method [18], low density lipoproteins (LDL) by following the procedure of according to the guidelines of Kim et al. [18], high density lipoprotein (HDL) by HDL Cholesterol Precipitant method [19] and triglycerides level by liquid triglycerides (GPO–PAP) method as described by Kim et al. [18].

Liver functioning tests

For liver soundness, alanine transferase (ALT), aspartate transferase (AST) and alkaline phosphatase (ALP) were estimated [20]. The ALT and AST levels were measured by dinitrophenylhydrazene (DNPH) through Sigma Kits 58–50 and 59–50, respectively whereas; Alkaline Phosphatase-DGKC was used for ALP assessment.

Kidney functioning tests

The serum samples were analyzed for urea by GLDH-method, whilst creatinine by Jaffe procedure via commercial kits to evaluate the kidney functioning [21, 22].

Weight of body organ

After the trial period, the mice were dissected and body organs like heart, lungs, kidney, liver pancreas and spleen were collected and weighed.

Statistical analysis

The generated data was being applied by completely randomized design (CRD) and further subjected to statistical analysis using Statistical Package (Microsoft Excel 2010 and Statistix 8.1). Analysis of variance technique (ANOVA) was used to determine the level of significance [23].

Results

Feed and water intake

Neither feeding with different parts of bitter gourd fruit nor the variations in concentration of bitter gourd in diet influenced food intake during the experimental period. However, this trait affected significantly with time intervals (weeks) in all studies (Fig. 1). The non-substantial effect of addition of bitter gourd in diet on feed intake is in harmony with the findings of Klomann et al. [24]. The different parts and variation in amount of bitter gourd in diet imparted significant effect on water intake in all the studies. The maximum water intake was observed in control group than other groups fed with diet containing bitter gourd (Fig. 2). Shetty et al. [25] reported that water intake increase in diabetic group but the supplementation of bitter gourd in diet significantly decreases the consumption of water. The excessive water intake is a characteristic sign of diabetes. Parmar et al. [26] found that there was an increase in intake of water in diabetic rats as compared to rats of control groups.
Fig. 1

Feed intake (g/rat/day) in different studies with different diets

Fig. 2

Water intake (mL/rat/day) in different studies with different diets

Body weight

Body weight affected substantially with diets containing different parts and concentrations with the passage of time (Fig. 3). It was noted that weight is reduced slightly by giving bitter gourd in rats fed with normal diet while in sucrose and cholesterol fed rats, weight is increased considerably in experimental groups in comparison to their respective control groups. Shetty et al. [25] also found a marginal increase in body weight of diabetic rats fed with diet containing bitter gourd. Similar findings by Hossain et al. [27] also strengthen the current results that body weight of diabetic groups treated with bitter gourd was higher than the untreated diabetic group.
Fig. 3

Body weight gain (g/rat/day) in different studies with different diets

Effect on studied blood parameters

The results of various blood parameters depicted encouraging effect of utilization of bitter gourd in study I, study II and study III (Table 2, 3 and 4).
Table 2

Effects of bitter gourd on blood parameters in comparison to control in normal rats (Study I)

 

Control diet (D0)

Skin

Flesh

Whole fruit

 

150 mg/kg (D1)

300 mg/kg (D2)

150 mg/kg (D3)

300 mg/kg (D4)

150 mg/kg (D5)

300 mg/kg (D6)

Glucose (mg/dL)

0 day

88.23 ± 1.14abc

89.67 ± 2.18ab

88.97 ± 3.29abc

90.97 ± 2.17a

89.03 ± 1.85abc

89.17 ± 2.40abc

89.93 ± 2.49ab

28 day

89.90 ± 2.55ab

88.73 ± 1.27abc

88.03 ± 1.36abc

89.63 ± 2.85ab

88.10 ± 1.97abc

88.00 ± 4.23abc

87.80 ± 2.08abc

56 day

90.37 ± 1.22a

88.60 ± 2.25abc

88.03 ± 0.51abc

87.47 ± 1.21abc

86.73 ± 1.86bc

86.73 ± 1.65bc

86.07 ± 1.23c

Insulin (μIU/mL)

0 day

9.67 ± 0.32abc

9.37 ± 0.21abcde

9.53 ± 0.25abcde

9.57 ± 0.23abcde

9.70 ± 0.35ab

9.30 ± 0.10abcde

9.60 ± 0.36abcd

28 day

9.17 ± 0.06bcde

9.17 ± 0.61bcde

9.20 ± 0.56bcde

9.50 ± 0.10abcde

9.30 ± 0.40abcde

9.00 ± 0.36e

9.37 ± 0.31abcde

56 day

9.03 ± 0.31de

9.10 ± 0.36cde

9.33 ± 0.32abcde

9.07 ± 0.35de

9.37 ± 0.15abcde

9.13 ± 0.25bcde

9.87 ± 0.76a

Cholesterol (mg/dL)

0 day

78.63 ± 1.95bcd

79.70 ± 1.42bc

79.53 ± 1.88bc

79.60 ± 3.24bc

78.47 ± 1.48bcd

80.27 ± 0.95b

79.60 ± 2.34bc

28 day

84.13 ± 0.67a

78.13 ± 0.70bcd

76.37 ± 0.87defg

77.27 ± 1.96cdef

75.17 ± 1.98efg

78.37 ± 2.12bcd

75.93 ± 1.70defg

56 day

85.83 ± 0.35a

77.13 ± 1.19cdef

74.60 ± 0.98fg

75.17 ± 2.22efg

74.00 ± 0.95g

75.90 ± 2.56defg

74.67 ± 1.58fg

LDL (mg/dL)

0 day

29.87 ± 2.06ab

29.93 ± 2.28ab

29.63 ± 3.14ab

28.63 ± 1.21ab

29.80 ± 2.09ab

31.03 ± 2.56a

29.07 ± 2.15ab

28 day

29.97 ± 2.39ab

29.50 ± 2.46ab

29.77 ± 1.40ab

29.33 ± 1.79ab

28.60 ± 1.47ab

27.60 ± 1.15bc

27.27 ± 1.30bc

56 day

29.10 ± 1.51ab

29.00 ± 1.81ab

28.07 ± 3.07ab

28.77 ± 2.06ab

27.90 ± 1.92abc

27.97 ± 1.72ab

27.93 ± 1.55abc

HDL (mg/dL)

0 day

33.83 ± 1.80g

34.07 ± 0.71fg

35.23 ± 2.32efg

34.77 ± 1.71efg

35.03 ± 1.64efg

33.43 ± 1.17g

34.20 ± 1.93efg

28 day

37.30 ± 2.29def

37.53 ± 1.27cde

39.07 ± 2.05bcd

40.87 ± 1.56abc

41.73 ± 1.75ab

40.53 ± 2.18abcd

41.13 ± 2.04ab

56 day

38.80 ± 3.17bcd

40.23 ± 1.65abcd

41.90 ± 2.76ab

41.23 ± 2.90ab

42.63 ± 1.55a

42.73 ± 1.57a

42.77 ± 2.70a

Triglycerides (mg/dL)

0 day

68.43 ± 0.71

67.77 ± 2.29

67.60 ± 0.89

67.80 ± 2.00

68.37 ± 1.65

67.87 ± 1.19

67.37 ± 1.50

28 day

68.20 ± 1.40

67.37 ± 1.43

66.60 ± 1.07

67.53 ± 0.87

67.50 ± 2.12

67.43 ± 3.31

67.03 ± 3.25

56 day

68.33 ± 3.26

68.10 ± 1.37

67.63 ± 1.59

67.23 ± 1.71

66.13 ± 2.64

66.73 ± 2.84

66.03 ± 3.16

ALP (IU/L)

0 day

165.20 ± 3.73

165.77 ± 6.55

164.47 ± 3.84

164.57 ± 7.40

164.83 ± 3.45

164.83 ± 2.60

163.77 ± 7.40

28 day

163.83 ± 2.76

162.73 ± 1.94

161.67 ± 2.31

163.10 ± 6.58

162.30 ± 1.61

163.27 ± 3.48

162.10 ± 2.76

56 day

164.87 ± 3.35

163.17 ± 4.43

163.33 ± 2.08

163.47 ± 3.09

162.10 ± 2.31

163.13 ± 4.44

162. 43 ± 1.46

ALT (IU/L)

0 day

42.53 ± 1.90ab

42.90 ± 1.35a

41.37 ± 0.93abcde

42.00 ± 1.15abcd

42.07 ± 1.23abc

42.93 ± 2.38a

42.60 ± 1.21ab

28 day

42.90 ± 1.37a

41.47 ± 0.49abcde

41.40 ± 0.87abcde

41.37 ± 0.93abcde

41.40 ± 2.18abcde

40.87 ± 0.85abcde

39.83 ± 0.81cde

56 day

42.70 ± 2.23ab

41.37 ± 0.99abcde

41.27 ± 0.91abcde

40.20 ± 1.06bcde

39.87 ± 0.38cde

39.60 ± 2.16de

39.37 ± 2.40e

AST (IU/L)

0 day

136.63 ± 2.87abc

137.40 ± 0.89abc

137.57 ± 1.70ab

136.37 ± 2.08abc

136.30 ± 1.35abc

136.30 ± 2.38abc

135.77 ± 1.42abc

28 day

136.40 ± 2.26abc

135.43 ± 1.89abc

135.37 ± 0.85abc

135.20 ± 1.54abc

135.17 ± 0.40bc

135.20 ± 1.00abc

135.13 ± 1.07bc

56 day

137.67 ± 1.20a

136.40 ± 0.56abc

135.13 ± 1.24bc

135.10 ± 1.54bc

135.08 ± 1.03c

135.10 ± 1.13bc

135.07 ± 1.95c

Serum creatinine (mg/dL)

0 day

0.70 ± 0.02

0.72 ± 0.02

0.70 ± 0.02

0.71 ± 0.02

0.70 ± 0.03

0.72 ± 0.02

0.71 ± 0.02

28 day

0.73 ± 0.05

0.71 ± 0.02

0.70 ± 0.03

0.70 ± 0.02

0.71 ± 0.02

0.70 ± 0.04

0.69 ± 0.02

56 day

0.74 ± 0.03

0.69 ± 0.01

0.69 ± 0.01

0.69 ± 0.02

0.68 ± 0.03

0.69 ± 0.01

0.69 ± 0.01

Serum urea (mg/dL)

0 day

26.47 ± 0.60abc

27.33 ± 1.00ab

27.63 ± 0.81a

26.10 ± 0.62bcd

26.57 ± 0.57abc

26.53 ± 0.87abc

27.53 ± 0.49a

28 day

27.50 ± 1.06a

25.71 ± 0.45cde

25.71 ± 0.45cdef

24.94 ± 0.87defg

24.44 ± 0.55efg

25.04 ± 0.22defg

24.21 ± 0.86fghi

56 day

27.57 ± 1.12a

24.67 ± 1.45efg

23.04 ± 0.82i

24.08 ± 0.78ghi

24.04 ± 0.70ghi

23.24 ± 0.41hi

23.00 ± 0.38i

Values are Mean ± SD of 3 independent determinations; different letters in a row represent significant differences (p < 0.05)

Table 3

Effects of bitter gourd on blood parameters in comparison to control in hyperglycemic rats (Study II)

 

Control diet (D0)

Skin

Flesh

Whole fruit

 

150 mg/kg (D1)

300 mg/kg (D2)

150 mg/kg (D3)

300 mg/kg (D4)

150 mg/kg (D5)

300 mg/kg (D6)

Glucose (mg/dL)

0 day

88.17 ± 0.99i

88.80 ± 1.61i

89.00 ± 3.00i

89.10 ± 1.41i

88.03 ± 0.91i

89.83 ± 2.27i

90.40 ± 1.93i

28 day

113.80 ± 2.03c

102.00 ± 2.26def

100.33 ± 1.93efg

98.13 ± 1.91fgh

97.00 ± 1.35gh

97.50 ± 1.57gh

94.47 ± 3.70h

56 day

142.93 ± 2.70a

117.83 ± 3.07b

112.23 ± 2.46c

110.80 ± 3.36c

104.53 ± 4.23d

103.57 ± 3.00de

97.70 ± 2.17gh

Insulin (μIU/mL)

0 day

9.40 ± 0.26g

9.47 ± 0.23g

9.60 ± 0.36g

9.63 ± 0.25g

9.83 ± 0.51g

9.23 ± 0.12g

9.50 ± 0.10g

28 day

10.80 ± 0.46f

13.83 ± 0.76d

14.00 ± 0.44cd

13.90 ± 0.72d

14.50 ± 0.10bcd

14.40 ± 0.17bcd

14.97 ± 0.35ab

56 day

12.23 ± 0.74e

14.77 ± 0.81abc

14.93 ± 0.75ab

14.80 ± 0.79abc

15.13 ± 0.49ab

15.10 ± 0.30ab

15.33 ± 0.25a

Cholesterol (mg/dL)

0 day

79.50 ± 1.13e

79.55 ± 0.92e

80.45 ± 1.77e

79.75 ± 0.64e

79.65 ± 0.78e

78.00 ± 1.84e

79.80 ± 2.12e

28 day

98.27 ± 1.12c

91.87 ± 1.34d

90.50 ± 1.44d

90.40 ± 2.98d

89.87 ± 1.00d

90.63 ± 2.45d

90.20 ± 3.38d

56 day

129.07 ± 1.25a

103.07 ± 1.83b

100.80 ± 1.30bc

99.50 ± 1.13bc

97.97 ± 1.77c

98.37 ± 1.52c

98.00 ± 3.22c

LDL (mg/dL)

0 day

29.53 ± 3.23hi

28.87 ± 1.37hi

29.30 ± 2.57hi

28.17 ± 1.45i

28.93 ± 2.66hi

28.70 ± 1.55hi

28.07 ± 1.46i

28 day

38.93 ± 1.55f

33.63 ± 1.45g

32.10 ± 2.11gh

31.80 ± 1.95gh

29.77 ± 2.49hi

31.40 ± 3.02ghi

29.17 ± 1.85hi

56 day

63.85 ± 2.47a

55.80 ± 1.87b

51.07 ± 1.77c

49.67 ± 2.40cd

46.33 ± 2.80de

49.57 ± 1.55cd

45.63 ± 2.51e

HDL (mg/dL)

0 day

34.93 ± 2.37de

35.20 ± 1.55de

34.90 ± 2.23de

35.10 ± 2.66de

34.50 ± 1.57de

34.77 ± 0.99de

33.53 ± 0.93e

28 day

35.93 ± 2.27de

37.23 ± 0.95d

41.73 ± 2.24c

41.60 ± 1.51c

41.73 ± 1.75c

40.87 ± 1.99c

42.00 ± 1.90c

56 day

35.97 ± 2.25de

42.23 ± 1.19c

43.23 ± 1.17bc

42.90 ± 1.61bc

43.30 ± 0.98ab

45.63 ± 2.80ab

47.43 ± 1.12a

Triglycerides (mg/dL)

0 day

67.43 ± 0.76g

68.30 ± 1.21g

68.40 ± 2.11g

68.03 ± 2.31g

68.13 ± 1.98g

68.93 ± 1.32g

67.53 ± 0.78g

28 day

81.43 ± 2.70de

78.37 ± 1.56ef

77.37 ± 2.43f

77.33 ± 1.53f

76.53 ± 2.15f

77.30 ± 1.70f

76.30 ± 2.80f

56 day

92.87 ± 3.80a

87.00 ± 2.66b

85.43 ± 1.01bc

85.53 ± 1.60bc

85.10 ± 1.64bc

84.90 ± 2.76bc

82.37 ± 2.44cd

ALP (IU/L)

0 day

165.33 ± 4.52e

164.10 ± 5.85e

164.90 ± 1.51e

164.53 ± 2.01e

165.63 ± 4.87e

164.20 ± 3.28e

164.73 ± 3.54e

28 day

193.43 ± 2.54b

189.80 ± 6.12bcd

187.47 ± 4.66bcd

185.63 ± 4.57cd

184.33 ± 2.06d

184.50 ± 3.68d

184.33 ± 5.66d

56 day

203.40 ± 2.46a

193.67 ± 3.91b

193.60 ± 3.05b

191.53 ± 3.51bc

191.20 ± 2.65bc

191.47 ± 4.28bc

187.83 ± 1.89bcd

ALT (IU/L)

0 day

42.63 ± 0.90bcd

42.20 ± 1.31bcd

42.83 ± 1.75bcd

41.17 ± 1.08d

42.17 ± 0.90bcd

42.00 ± 2.39cd

41.03 ± 2.18d

28 day

44.23 ± 1.88bc

42.47 ± 0.93bcd

42.23 ± 1.70bcd

42.13 ± 1.10bcd

41.30 ± 0.87d

41.93 ± 0.47cd

41.83 ± 2.76cd

56 day

49.37 ± 0.70a

44.57 ± 0.83b

43.93 ± 1.56bc

43.87 ± 1.63bc

43.30 ± 1.11bcd

43.37 ± 1.16bcd

43.20 ± 1.42bcd

AST (IU/L)

0 day

135.27 ± 2.55g

136.90 ± 0.44g

136.97 ± 1.67g

136.70 ± 1.00g

137.10 ± 0.62g

136.13 ± 0.67g

136.43 ± 0.93g

28 day

146.67 ± 2.29b

142.57 ± 1.96cdef

142.37 ± 2.06ef

142.50 ± 1.64def

142.27 ± 0.90ef

142.07 ± 1.12f

141.90 ± 0.85f

56 day

151.93 ± 2.10a

145.40 ± 1.35b

145.13 ± 1.24b

145.20 ± 1.54b

144.83 ± 1.42bcd

145.00 ± 1.41bc

144.60 ± 1.31bcde

Serum creatinine (mg/dL)

0 day

0.74 ± 0.04de

0.74 ± 0.05de

0.73 ± 0.01e

0.72 ± 0.02e

0.74 ± 0.01de

0.73 ± 0.03e

0.73 ± 0.02e

28 day

0.91 ± 0.03a

0.87 ± 0.02b

0.86 ± 0.02b

0.86 ± 0.02b

0.85 ± 0.01b

0.85 ± 0.01b

0.84 ± 0.01b

56 day

0.91 ± 0.03a

0.80 ± 0.02c

0.79 ± 0.03c

0.79 ± 0.03c

0.78 ± 0.02c

0.78 ± 0.02c

0.77 ± 0.01cd

Serum urea (mg/dL)

0 day

27.21 ± 1.03bcd

27.31 ± 0.75bcd

27.90 ± 2.11bcd

27.20 ± 0.40bcd

27.80 ± 1.49bcd

25.90 ± 1.44d

27.57 ± 1.01bcd

28 day

30.90 ± 1.56a

28.67 ± 0.87b

28.30 ± 1.40bc

27.60 ± 1.93bcd

27.43 ± 1.10bcd

26.93 ± 0.81bcd

26.67 ± 1.03bcd

56 day

32.48 ± 1.13a

27.75 ± 0.90bcd

27.47 ± 1.14bcd

27.17 ± 2.05bcd

27.10 ± 1.51bcd

26.73 ± 1.15bcd

26.21 ± 1.58cd

Values are Mean ± SD of 3 independent determinations; different letters in a row represent significant differences (p < 0.05)

Table 4

Effects of bitter gourd on blood parameters in comparison to control in hyperlipidemic rats (Study III)

 

Control diet (D0)

Skin

Flesh

Whole fruit

150 mg/kg (D1)

300 mg/kg (D2)

150 mg/kg (D3)

300 mg/kg (D4)

150 mg/kg (D5)

300 mg/kg (D6)

Glucose (mg/dL)

0 day

87.50 ± 0.80h

87.97 ± 0.67h

88.63 ± 1.38h

89.50 ± 1.57h

88.80 ± 1.31h

88.50 ± 2.08h

87.83 ± 2.00h

28 day

98.43 ± 1.21bcde

96.77 ± 1.25def

96.40 ± 1.23def

96.10 ± 2.13defg

95.40 ± 2.39fg

95.70 ± 1.84efg

94.63 ± 1.72fg

56 day

106.33 ± 2.52a

100.33 ± 1.53b

99.87 ± 1.86bc

98.57 ± 1.03bcd

97.30 ± 2.56cdef

95.27 ± 1.99fg

93.50 ± 0.60g

Insulin (μIU/mL)

0 day

9.53 ± 0.15h

9.57 ± 0.12h

9.66 ± 0.23h

9.36 ± 0.27h

9.68 ± 0.91h

9.86 ± 0.19h

9.57 ± 0.74h

28 day

10.67 ± 0.75g

10.87 ± 0.74g

11.07 ± 0.67fg

10.77 ± 0.46g

11.27 ± 0.32efg

11.20 ± 0.46efg

11.83 ± 0.64cdef

56 day

11.37 ± 0.96defg

12.00 ± 0.62cde

12.93 ± 0.38ab

12.17 ± 0.32bcd

12.97 ± 0.67ab

12.57 ± 0.47abc

13.10 ± 0.20a

Cholesterol (mg/dL)

0 day

80.77 ± 3.15h

80.47 ± 3.72h

79.90 ± 2.01h

79.47 ± 3.07h

80.47 ± 2.34h

79.53 ± 3.43h

78.67 ± 3.06h

28 day

128.00 ± 4.36bc

114.87 ± 3.82ef

109.33 ± 2.42g

110.67 ± 1.31fg

107.40 ± 2.26g

107.33 ± 1.53g

109.33 ± 4.86g

56 day

160.67 ± 4.16a

129.33 ± 2.52b

125.30 ± 3.08bc

123.37 ± 3.28cd

116.70 ± 2.54e

124.70 ± 2.86bc

118.83 ± 1.91de

LDL (mg/dL)

0 day

29.73 ± 3.87i

28.63 ± 1.08i

29.03 ± 2.75i

28.67 ± 2.15i

27.90 ± 0.89i

28.30 ± 2.10i

28.73 ± 1.50i

28 day

49.40 ± 1.35f

40.57 ± 1.63g

40.17 ± 1.27g

39.57 ± 1.53 gh

39.00 ± 0.26gh

37.37 ± 2.30gh

36.13 ± 1.63h

56 day

74.33 ± 3.31a

63.20 ± 3.51b

60.23 ± 3.40bc

57.00 ± 1.28cd

54.67 ± 2.40de

54.57 ± 1.55de

53.20 ± 2.54e

HDL (mg/dL)

0 day

34.57 ± 2.12h

34.27 ± 1.06h

34.83 ± 2.80h

32.23 ± 1.68h

34.30 ± 1.45h

34.83 ± 1.75h

33.40 ± 1.35h

28 day

35.93 ± 1.46gh

39.13 ± 1.24fg

42.40 ± 3.20ef

43.07 ± 3.82def

43.33 ± 2.69de

45.73 ± 2.74bcde

47.70 ± 1.31abc

56 day

35.97 ± 1.72gh

44.90 ± 2.41cde

47.03 ± 2.85bcd

46.00 ± 2.69bcde

49.30 ± 1.97ab

49.20 ± 4.68ab

51.63 ± 4.07a

Triglycerides (mg/dL)

0 day

67.70 ± 2.12e

68.27 ± 1.06e

67.63 ± 2.80e

68.80 ± 1.68e

69.17 ± 1.45e

68.70 ± 1.75e

67.37 ± 1.35e

28 day

96.67 ± 4.09c

81.67 ± 2.18d

80.10 ± 2.46d

81.03 ± 3.10d

79.43 ± 1.63d

78.57 ± 3.19d

77.03 ± 2.75d

56 day

124.67 ± 3.06a

103.57 ± 3.37b

99.70 ± 1.25bc

99.27 ± 4.34bc

99.23 ± 5.19bc

98.67 ± 2.34c

98.23 ± 4.47c

ALP (IU/L)

0 day

163.93 ± 3.04f

162.27 ± 4.73f

165.07 ± 3.21f

164.93 ± 4.46f

165.37 ± 3.75f

163.87 ± 3.21f

164.40 ± 1.66f

28 day

196.13 ± 1.70b

190.37 ± 5.93bcde

187.53 ± 5.15de

186.43 ± 3.57de

187.00 ± 3.65de

186.17 ± 2.27de

185.00 ± 3.60e

56 day

210.43 ± 4.04a

194.67 ± 2.28bc

194.57 ± 3.44bc

192.03 ± 4.24bcd

191.53 ± 3.21bcd

191.30 ± 4.55bcd

189.03 ± 3.48cde

ALT (IU/L)

0 day

42.27 ± 1.25fg

42.37 ± 0.80fg

41.17 ± 0.40g

42.03 ± 1.46fg

41.20 ± 1.49g

42.00 ± 1.55fg

41.43 ± 1.33g

28 day

47.80 ± 1.23bc

43.40 ± 0.56efg

43.30 ± 1.92efg

43.40 ± 0.82efg

43.03 ± 1.26fg

43.27 ± 1.04fg

43.07 ± 1.00fg

56 day

53.77 ± 1.76a

48.77 ± 1.50b

47.27 ± 0.91bc

46.50 ± 3.18bcd

45.87 ± 1.53cde

44.57 ± 3.10def

44.17 ± 1.70def

AST (IU/L)

0 day

136.03 ± 1.22e

137.00 ± 0.78e

136.63 ± 0.76e

136.47 ± 0.93e

136.43 ± 0.85e

137.23 ± 0.55e

135.73 ± 1.11e

28 day

156.00 ± 1.73c

148.07 ± 0.71d

147.70 ± 2.02d

148.07 ± 1.12d

147.27 ± 1.10d

147.47 ± 1.52d

147.83 ± 1.05d

56 day

172.67 ± 2.11a

162.07 ± 1.99b

161.67 ± 1.46b

161.87 ± 2.03b

161.50 ± 1.47b

161.13 ± 1.79b

161.53 ± 1.70b

Serum creatinine (mg/dL)

0 day

0.73 ± 0.02f

0.75 ± 0.02f

0.74 ± 0.01f

0.73 ± 0.02f

0.75 ± 0.01f

0.72 ± 0.02f

0.73 ± 0.02f

28 day

0.98 ± 0.98b

0.91 ± 0.91c

0.89 ± 0.89c

0.91 ± 0.91c

0.89 ± 0.89c

0.89 ± 0.89c

0.88 ± 0.88cd

56 day

1.17 ± 0.05a

0.84 ± 0.03de

0.83 ± 0.04e

0.84 ± 0.02de

0.82 ± 0.02e

0.82 ± 0.01e

0.81 ± 0.01e

Serum urea (mg/dL)

0 day

26.23 ± 0.29f

26.73 ± 0.84ef

27.07 ± 1.25ef

26.67 ± 0.68ef

27.16 ± 1.01ef

27.25 ± 0.27ef

28.05 ± 0.68e

28 day

35.07 ± 2.65b

32.83 ± 1.63cd

32.53 ± 0.83cd

32.43 ± 1.20cd

32.29 ± 0.52cd

31.57 ± 0.96d

31.40 ± 0.89d

56 day

37.47 ± 1.12a

34.00 ± 0.75bc

33.13 ± 0.29cd

33.07 ± 1.31cd

32.50 ± 0.52cd

33.00 ± 0.61cd

32.23 ± 1.15d

Values are Mean ± SD of 3 independent determinations; different letters in a row represent significant differences (p < 0.05)

Glucose and insulin

The study intervals led to an enhancement in the glucose level of control groups. However, bitter gourd enriched diets substantially suppressed this trait with passage of time and the lowest glucose concentration was observed in groups of rats fed with 300 mg/kg body weight of whole fruit of bitter gourd in all the studies (Table 2, 3 and 4). Means concerning insulin were 9.03 ± 0.31, 9.10 ± 0.36, 9.33 ± 0.32, 9.07 ± 0.35, 9.37 ± 0.15, 9.13 ± 0.25 and 9.87 ± 0.76 μIU/mL in study I, 12.23 ± 0.74, 14.77 ± 0.81, 14.93 ± 0.75, 14.80 ± 0.79, 15.13 ± 0.49, 15.10 ± 0.30 and 15.33 ± 0.25 μIU/mL in study II, 11.37 ± 0.96, 12.00 ± 0.62, 12.93 ± 0.38, 12.17 ± 0.32, 12.97 ± 0.67, 12.57 ± 0.47 and 13.10 ± 0.20 μIU/mL in study III for D0, D1, D2, D3, D4, D5 and D6 respectively which clearly indicated that increase in amount of bitter gourd in diet has resulted in production of more insulin.

Cholesterol

Means concerning cholesterol revealed that the highest cholesterol (85.83 ± 0.35 mg/dL) was in D0 that reduced to 77.13 ± 1.19 (D1), 75.90 ± 2.56 mg/dL (D5), 75.17 ± 2.22 mg/dL (D3), 74.67 ± 1.58 mg/dL (D6), 74.60 ± 0.98 mg/dL (D2), 74.00 ± 0.95 mg/dL (D4) in study I. The study interval of 0, 28, 56 day explicated an obvious decrease in cholesterol level from commencement till termination of this study in groups fed with diet containing bitter gourd powder. The cholesterol in diabetic control group D0 (Study II) was 129.07 ± 1.25 mg/dL that substantially reduced to 103.07 ± 1.83, 100.80 ± 1.30, 99.50 ± 1.13, 97.97 ± 1.77, 98.37 ± 1.52 and 98.00 ± 3.22 mg/dL in D1, D2, D3, D4, D5 and D6 respectively. In Hypercholesterolemic rats (Study III), enormous increase in cholesterol was observed in control group D0 (160.67 ± 4.16 mg/dL) while experimental groups fed with bitter gourd showed reduction in the level of cholesterol as 129.33 ± 2.52, 125.30 ± 3.08, 123.37 ± 3.28, 116.70 ± 2.54, 124.70 ± 2.86 and 118.83 ± 1.91 mg/dL in D1, D2, D3, D4, D5 and D6, respectively. The study interval of 0, 28, 56 day explicated an obvious decrease in cholesterol level from commencement till termination of the study in groups fed with diet containing bitter gourd powder.

LDL

LDL level was varied insignificantly from initiation to termination of trial (0, 28th & 56th day) in study I. In this study, maximum LDL level was observed in D0 as 29.10 ± 1.51 mg/dL that substantially reduced in D1 (29.00 ± 1.81 mg/dL) trailed by D3 (28.77 ± 2.06 mg/dL), D2 (28.07 ± 3.072 mg/dL), D5 (27.97 ± 1.72 mg/dL), D6 (27.93 ± 1.55 mg/dL) and D4 (27.90 ± 1.92 mg/dL). In study II, the recorded values showed a diminishing trend in LDL level with values of 55.80 ± 1.87, 51.07 ± 1.77, 49.67 ± 2.40, 46.33 ± 2.80, 49.57 ± 1.55, 45.63 ± 2.51 mg/dL in D1, D2, D3, D4, D5 and D6, respectively compared to control group D0 (63.85 ± 2.47 mg/dL). Similarly, the highest value of LDL was in control group (74.33 ± 3.31 mg/dL) followed by D1 (63.20 ± 3.51 mg/dL), D2 (60.23 ± 3.40 mg/dL), D3 (57.00 ± 1.28 mg/dL), D4 (54.67 ± 2.40 mg/dL), D5 (54.57 ± 1.55 mg/dL) and D6 (53.20 ± 2.54 mg/dL) indicated that bitter gourd powder in diet is helpful in lowering LDL level. The low density lipoproteins are the major carrier for cholesterol in blood [28]. Bitter gourd has the ability to reduce this ‘bad cholesterol’ from the blood. Temitope et al. [29] orally administered aqueous extract of bitter gourd at dose of 80, 100, 120, 140 mg/kg body weight for 14 days. Significant decline in LDL in experimental groups were observed compared to rats fed with normal diet.

HDL

HDL values increased after consumption of bitter gourd in diet. The study interval influenced significantly on the increase in HDL level and the highest increase was observed in D6 in all the studies. The higher amount of HDL in blood is considered valuable because it is found good for health and mostly designated as ‘good cholesterol’. The decline in HDL concentration in blood leads to wide ranging cardiovascular complications. Bitter gourd in diet is helpful in increasing the level of HDL in blood. Bano et al. [30] revealed that increased the serum HDL level rise up to 45% by administering aqueous extract of bitter gourd for 5 weeks. Temitope et al. [29] examined different doses of bitter gourd to analyze HDL level in blood and found diets containing 100 mg/kg and 140 mg/kg body weight as suitable dietary approaches and resulted in marked increase in the HDL level than the rest of the treatments.

Triglycerides

The values for triglycerides rise gradually in control group while reduction was observed by supplementation of bitter gourd in diet. Consistent with current results, Jayasooria et al. [31] determined the effect of bitter gourd on lipid metabolism and found significant reduction of 39.2 and 40.5% in hepatic triglycerides in cholesterol rich and cholesterol free diets, respectively. The present results also supported by the findings of Bano et al. [30] determined 20% decline in serum triglyceride level due to dietary intake of bitter gourd in diabetic rats. Hossain et al. [27] observed significant elevation in triglycerides level (47.02%) in diabetic control rat groups. However, bitter gourd at the rate of 250, 500, 750 mg reduced the triglyceride level to 30.30%, 33.84 and 37.43%, respectively. The findings indicated a decline of triglycerides in a dose dependent manner. They observed effect of diet containing bitter gourd on triglyceride level during study period of 90 days. They obtained blood samples at every 15 days interval and observed continuous reduction in triglycerides compared to control group. Recently,

Liver function test

The reduction in ALP, ALT and AST level was recorded after feeding of diet containing bitter gourd compared to control groups. Serum creatinine and urea concentration was also remained in normal ranges due to feeding of bitter gourd in diet. The current data is comparable to the earlier investigations of Hossain et al. [27] confirmed a reduction in serum ALP, ALT and AST of rats treated with bitter gourd extract. In another study noted that bitter gourd is helpful in reducing the amount of ALT and AST. Moreover, Sathishsekar and Subramamian [32] also reported hepato-protective role of bitter gourd. The present data was comparable with the findings of Nagy et al. [33] showing decline in serum creatinine and urea level after bitter gourd administration.

Effect on different organs

Means for weight of different organs (Table 5) depicted non-significant impact of diet on various organs except for kidney and liver weight that were found higher in diabetic control rat as compared to rats fed with bitter gourd supplemented food. Liver weight was also noted slightly higher in control groups of hypercholesterolemic rats. Platel et al. [34] confirms the current results showed bitter gourd had no adverse effect on major organs of the body. A considerable elevation in kidney weight of diabetic rats might be due to hyperplasia and hypertrophy of tubular and mesangial cells of the kidney [35]. Treating the diabetic rats with bitter gourd caused a decrease in the weight of kidney and liver up to normal ranges.
Table 5

Means for organ weight in different studies

Organs

Studies

Group of rats fed with different diets

D0

D1

D2

D3

D4

D5

D6

Heart

Study I

0.95 ± 0.03

0.93 ± 0.02

0.93 ± 0.02

0.92 ± 0.02

0.91 ± 0.03

0.92 ± 0.02

0.90 ± 0.03

Study II

0.95 ± 0.02

0.94 ± 0.01

0.93 ± 0.02

0.93 ± 0.01

0.92 ± 0.01

0.93 ± 0.03

0.92 ± 0.02

Study III

0.95 ± 0.03

0.95 ± 0.01

0.93 ± 0.01

0.94 ± 0.02

0.93 ± 0.01

0.93 ± 0.03

0.93 ± 0.03

Lung

Study I

1.59 ± 0.06

1.60 ± 0.06

1.62 ± 0.09

1.57 ± 0.11

1.56 ± 0.07

1.60 ± 0.11

1.60 ± 0.02

Study II

1.59 ± 0.03

1.62 ± 0.05

1.62 ± 0.04

1.58 ± 0.09

1.63 ± 0.03

1.58 ± 0.09

1.59 ± 0.06

Study III

1.61 ± 0.08

1.63 ± 0.04

1.62 ± 0.07

1.60 ± 0.08

1.65 ± 0.04

1.61 ± 0.06

1.61 ± 0.03

kidney

Study I

1.94 ± 0.02

1.90 ± 0.03

1.88 ± 0.03

1.89 ± 0.07

1.87 ± 0.05

1.89 ± 0.07

1.88 ± 0.04

Study II

2.01 ± 0.07

1.91 ± 0.04

1.87 ± 0.04

1.90 ± 0.06

1.88 ± 0.04

1.89 ± 0.03

1.87 ± 0.05

Study III

1.96 ± 0.04

1.91 ± 0.04

1.89 ± 0.05

1.90 ± 0.06

1.88 ± 0.03

1.90 ± 0.03

1.90 ± 0.06

Liver

Study I

6.72 ± 0.27

6.60 ± 0.10

6.55 ± 0.22

6.59 ± 0.23

6.51 ± 0.20

6.56 ± 0.12

6.53 ± 0.19

Study II

7.23 ± 0.37

6.69 ± 0.24

6.66 ± 0.12

6.69 ± 0.10

6.60 ± 0.14

6.63 ± 0.17

6.59 ± 0.24

Study III

7.58 ± 0.21

7.04 ± 0.20

6.85 ± 0.16

6.96 ± 0.17

6.84 ± 0.09

6.93 ± 0.26

6.77 ± 0.07

Pancreas

Study I

2.02 ± 0.11

2.03 ± 0.20

2.05 ± 0.11

2.02 ± 0.03

2.02 ± 0.13

2.04 ± 0.06

2.03 ± 0.07

Study II

1.87 ± 0.06

2.01 ± 0.09

2.01 ± 0.07

2.03 ± 0.04

2.04 ± 0.10

2.04 ± 0.05

2.05 ± 0.07

Study III

1.95 ± 0.11

2.04 ± 0.10

2.02 ± 0.03

2.04 ± 0.04

2.01 ± 0.13

2.03 ± 0.04

2.02 ± 0.03

Spleen

Study I

0.49 ± 0.04

0.51 ± 0.06

0.49 ± 0.02

0.49 ± 0.01

0.48 ± 0.03

0.49 ± 0.05

0.48 ± 0.03

Study II

0.41 ± 0.04

0.51 ± 0.04

0.50 ± 0.04

0.50 ± 0.05

0.49 ± 0.04

0.50 ± 0.01

0.48 ± 0.03

Study III

0.48 ± 0.03

0.51 ± 0.05

0.51 ± 0.02

0.51 ± 0.06

0.50 ± 0.03

0.49 ± 0.05

0.49 ± 0.02

Discussions

The findings of Jafri et al. [36] are in harmony with the current study, they reported substantial decrease in glucose of hyperglycemic rats after consuming bitter gourd powder. Singh and Gupta [37] also confirmed antihyperglycemic property of this plant in diabetic condition in both animals as well as in humans. Virdi et al. [38] also observed antihyperglycemic property of bitter gourd. In another study, Jayasooriya et al. [31] observed effects of bitter gourd powder in cholesterol free and cholesterol enriched diets fed rats and noted that there was a continuous decline in glucose level in groups of rat fed with cholesterol free diet while no significant influence was noted in rats fed with cholesterol enriched diets. Clouatre et al. [39] revealed reduction in blood glucose level by giving bitter gourd extracts at 50 mg/kg of body weight in normal rats.

The results for insulin in current study are in accordance with Mohammady et al. [40] noted significant increase in insulin in diabetic rats treated with bitter gourd as compared to diabetic control group. Similarly, Fernandes et al. [41] observed positive effect of bitter gourd extract on serum insulin level. The increase in insulin level in the diabetic rats after giving diet supplemented with bitter gourd might be due to recovery of beta cells of Langerhans [37, 41]. Other studies indicated that addition of bitter gourd in diet enhance the number of beta cells [40]. However, researchers reported that bitter gourd did not involve in restoring of these cells rather it enhance the activity of beta cells.

The current investigation has shown bitter gourd effectiveness against cholesterol synthesis which is in accordance with the work of Jayasooria et al. [31] who used freeze-dried powder of bitter gourd to note its effect on lipid parameters in rats fed with diet supplemented with and without cholesterol. They observed 32.0 and 22.4% decline in total cholesterol level in the absence and presence of dietary cholesterol, respectively. Abas et al. [42] revealed that total cholesterol was significant increase in diabetic rats compared to control. Consumption of bitter gourd for 28 days showed significant reduction in cholesterol compared to diabetic control group. In an experiment on Wistar rats, decrease in cholesterol was noticed after consuming bitter gourd fruit extract [41]. Similarly, Bano et al. [30] observed significant reduction (21%) in cholesterol after oral administration of aqueous extract of bitter gourd for a period of 5 weeks. Later, in an antidiabetic study by Wehash et al. (2012) on male Sprague-Dawley rats indicated lipid lowering effect of bitter gourd. Hossain et al. (2012) investigated antihyperglycemic and antihyperlipidemic effect of aqueous extract of bitter gourd at daily dose of 250, 500 and 750 mg/kg body weight. They observed 12.88, 14.44 and 17.21% reduction in serum cholesterol, respectively.

Wehash et al. [43] observed significant reduction in LDL level from 141.51 to 31.18 mg/dL in diabetic group fed with control diet and bitter gourd supplemented diet, respectively.another researcher noted increase in LDL in STZ induced diabetic control and decline in all the experimental groups at the end of 28 day study period. Similarly, Chaturvedi et al. [44] also found reduction in amount of low density lipoproteins in blood by administering bitter gourd extracts. The lowering of LDL by consuming bitter gourd in diet might be due to secretion of Apolipoprotein-B by the liver.

Conclusions

It is evident from the present research findings that conspicuous from the contemporary endeavor that among various parts of bitter gourd, whole fruit part in a dose of 300 mg/kg body weight found to be suitable in lowering blood glucose level, increasing serum insulin level, reduction in cholesterol, increase in HDL and minimize the amount of low density lipoprotein and triglycerides. Moreover, level of ALP, ALT, AST, serum creatinine and urea reduced to normal ranges by consumption of bitter gourd. Being veracious and concise, it is executed that bitter gourd be endowed with vivid approaching to improve the effect of oxidative stress, thus stopping the chain reactions implicated in the onset of chronic diseases. The outcomes of current project found bitter gourd most effective against obesity and chronic aberrations such as hyperglycemia and hyperlipidemia. It is vigorously suggested to devise diet based modules to use bitter gourd against lifestyle related disorders.

Declarations

Acknowledgements

The authors are highly obliged to the research facilities of the Institute of Home and Food Sciences, Government College University Faisalabad (GCUF) and IT Department, Higher Education Commission (HEC, Islamabad) for access to journals, books and valuable database.

Funding

The authors are grateful to Higher Education Commission (HEC), Government of Pakistan for their financial support to carry out the present research.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article.

Authors’ contributions

The contribution of each author for this manuscript was as follows; M & FS designed the experimental plan of this study as well as conducted the analysis. M and FS and MSA drafted the manuscript. MN, MTN helped to improve the manuscript and especially MUA provided help in reviewing the paper. It is also confirmed that all the authors read and approved the final manuscript.

Ethics approval and consent to participate

Not Applicable

Consent for publication

Not Applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Institute of Home & Food Sciences, Government College University

References

  1. Mugisha JO, Schatz EJ, Randell M, Kuteesa M, Kowal P, Negin J, Seeley J. Chronic disease risk factors and disability in adults aged 50 and above living with and without HIV: findings from the wellbeing of older people study in Uganda. Glob Health Action. 2016;9:31098.View ArticleGoogle Scholar
  2. Dayoub E, Jena AB. Chronic disease prevalence and healthy lifestyle behaviors among US health care professionals. Mayo Clin Proc. 2015;90(12):1659.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Prac. 2010;87(1):4.View ArticleGoogle Scholar
  4. Abid R, Mahmood R, Kumar HSS. Hypolipidemic and antioxidant effects of ethanol extract of Cassia Fistula fruit in hyperlipidemic mice. Pharm Biol. 2016;1:8.Google Scholar
  5. Mundal L, Retterstl K. A systematic review of current studies in patients with familial hypercholesterolemia by use of national familial hypercholesterolemia registries. Curr Opin Lipidol. 2016;27(4):388–97.View ArticlePubMedGoogle Scholar
  6. Raman BV, Krishna NV, Rao NB, Saradhi PM, Rao BMV. Plants with antidiabetic activities and their medicinal values. Int Res J Pharm. 2012;3(3):11.Google Scholar
  7. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for anti-diabetic activity with their phytoconstituent and mechanism of action. Int J Pha Sci Res. 2010;1(1):29.Google Scholar
  8. Taylor L. Herbal secrets of the rainforest. In: Texas A, editor. Bitter melon (Momordica Charantia). 2nd ed. USA: Sage Press; 2002. p. 1.Google Scholar
  9. Dandawate PR, Subramaniam D, Padhye SB, Anan S. Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med. 2016;14:81.PubMedPubMed CentralGoogle Scholar
  10. Kubola J, Siriamornpun S. Phenolic contents and antioxidant activities of bitter gourd (momordica charantia l.) leaf stem and fruit fraction extracts in vitro. Food Chem. 2008;110(4):881.View ArticlePubMedGoogle Scholar
  11. Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Ame J Hea-Sys Pha. 2003;60:356.Google Scholar
  12. Rahman IU, Khan RU, Rahman KU, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015;14:13.View ArticlePubMed CentralGoogle Scholar
  13. Tayyab F, Lal SS. Antidiabetic hypolipidemic and antioxidant activity of Momordica charantia on type-II diabetic patient in Allahabad India. Int J Pharma Bio Sci. 2013;4:932.Google Scholar
  14. Tayyab F, Lal SS, Mishra M, Kumar U. A review: medicinal plants and its impact on diabetes. World J Pharma Res. 2012;1(4):1019.Google Scholar
  15. Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nut. 2012;142:1197.View ArticleGoogle Scholar
  16. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: a simple accurate method for assessing insulin sensitivity in humans. J Cli End Met. 2000;85:2402.View ArticleGoogle Scholar
  17. Ahn J, Choi W, Kim S, Ha T. Anti-diabetic effect of watermelon (Citrullus vulgaris Schrad) on streptozotocin-induced diabetic mice. Food Sci Bio. 2011;20(1):251.View ArticleGoogle Scholar
  18. Kim JI, Paik JK, Kim OY, Park HW, Lee JH, Jang Y, Lee JH. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis. 2011;215:189.View ArticlePubMedGoogle Scholar
  19. Alshatwi AA, Al-Obaaid MA, Al-Sedairy SA, Al-Assaf AH, Zhang JJ, Lei KY. Tomato powder is more protective than lycopene supplement against lipid peroxidation in rats. J Nut Res. 2010;30:66.View ArticleGoogle Scholar
  20. Basuny AM, Gaafar AM, Arafat SM. Tomato lycopene is a natural antioxidant and can alleviate hypercholesterolemia. Afr J Bio. 2009;8(23):6627.Google Scholar
  21. Thomas L. Clinical laboratory diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 241.Google Scholar
  22. Jacobs DS, DeMott WR, Grady HJ, Horvat RT, Huestis DW, Kasten BL. Laboratory test handbook 4th Ed. Hudson (Cleveland): Lexi-comp Inc; 1996.Google Scholar
  23. Steel RGD, Torrie JH, Dickey D. Principles and procedures of statistics: a biometrical approach 3rd Ed. New York: McGraw Hill Book Co. Inc; 1997.Google Scholar
  24. Klomann SD, Mueller AS, Pallauf J, Krawinkel MB. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice. Br J Nutr. 2010;104:1613.View ArticlePubMedGoogle Scholar
  25. Shetty AK, Kumar GS, Sambaiah K, Salimath PV. Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Plant Food Hum Nut. 2005;60:109.View ArticleGoogle Scholar
  26. Parmar K, Patel S, Patel J, Patel B, Patel MB. Effects of bittergourd (Momordica charantia) fruit juice on glucose tolerance and lipid profile in type-II diabetic rats. Int J Drug Dev Res. 2011;3(2):139–46.Google Scholar
  27. Hossain MA, Mostofa M, Debnath D, Alam AKMR, Yasmin Z, Moitry NF. Antihyperglycemic and antihyperlipidemic of Karala (Momordica charantia) fruits in streptozotocin induced diabetic rats. J Env Sci Nat Res. 2012;5(1):29.Google Scholar
  28. Tymoczko JL, Stryer BT, Stryer L, Berg JM. Biochemistry. San Francisco: W.H. Freeman; 2002. p. 726.Google Scholar
  29. Temitope AG, Sheriff OL, Azeezat YF, Taofik A, Fatimah AI. Cardioprotective properties of Momordica charantia in albino rats. Afri J Sci Res. 2013;11(1):600.Google Scholar
  30. Bano F, Akthar N, Naz H. Effect of the aqueous extract of Momordica charantia on body weight of rats. J Bas App Sci. 2011;7(1):1.Google Scholar
  31. Jayasooriya AP, Sakono M, Yukizaki C, Kawano M, Yamamoto K, Fukuda N. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Eth. 2000;72(1–2):331.View ArticleGoogle Scholar
  32. Sathishsekar D, Subramanian S. Antioxidant properties of Momordica charantia (bitter gourd) seeds on Streptozotocin induced diabetic rats. Asia Pac J Clin Nut. 2005;14(2):153–8.Google Scholar
  33. Nagy MA, Bastawy MA, Abdel-Hamid NM. Effects of Momordica charantia on Streptozotocin-induced diabetes in rats: role of insulin oxidative stress and nitric oxide. J Health Sci. 2012;2(2):8.Google Scholar
  34. Platel K, Shurpalekar KS, Srinivasan K. Influence of bitter gourd (Momordica charantia) on growth and blood constituents in albino rats. Nahrung. 1993;37(2):156–60.View ArticlePubMedGoogle Scholar
  35. Bulut HE, Onarlioglu B, Kaloglu C, Ozdemir O, Ayan S. Effects of experimental diabetes an insulin treatment on rabbit renal morphology: a quantitative and qualitative study. Tur J Med Sci. 2001;31:209.Google Scholar
  36. Jafri SA, Ismail MS, Zaman G. Effect of Momordica charantia (karela) in alloxan induced diabetic rats. Pak J Sci. 2009;61(4):220.Google Scholar
  37. Singh N, Gupta M. Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits. Indian J Exp Bio. 2007;45(12):1055–62.Google Scholar
  38. Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM, Biyani MK. Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol. 2003;88:107.View ArticlePubMedGoogle Scholar
  39. Clouatre DL, Rao SN, Preuss HG. Bitter melon extracts in diabetic and normal rats favorably influence blood glucose and blood pressure regulation. J Med Food. 2011;14(12):1496.View ArticlePubMedGoogle Scholar
  40. Mohammady I, Elattar S, Mohammed S, Ewais M. An evaluation of anti-diabetic and anti-lipidemic properties of Momordica charantia (bitter melon) fruit extract in experimentally induced diabetes. Life Sci J. 2012;9(2):363.Google Scholar
  41. Fernandes NP, Lagishetty CV, Panda VS, Naik SR. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Com Alt Med. 2007;7:29.View ArticleGoogle Scholar
  42. Abas R, Das S, Thent ZC. Momordica Charantia fruit extract improve subcellular changes in cardiovascular tissues of diabetic rats. J Med Bio. 2015;4:357.Google Scholar
  43. Wehash FE, Abo-Ghanema I, Saleh RM. Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with Cidophage®world. Acad Sci Eng Tech. 2012;64:1206.Google Scholar
  44. Chaturvedi P, George S, Milinganyo M, Tripathi YB. Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phy Res. 2004;18(11):954.View ArticleGoogle Scholar

Copyright

© The Author(s). 2017

Advertisement