Tamar K, Manana A. Involvement of chronic herpesviral infection in intravaskular inflammatory response and destabilisation of current CAD. Atherosclerosis. 2017;263:e115.
Article
Google Scholar
Burke AC, Huff MW. Regression of atherosclerosis: lessons learned from genetically modified mouse models. Curr Opin Lipidol. 2018;29:87–94.
Article
CAS
Google Scholar
Wang L, Qiu XM, Hao Q, Li D-J. Anti-inflammatory effects of a Chinese herbal medicine in atherosclerosis via estrogen receptor beta mediating nitric oxide production and NF-kappa B suppression in endothelial cells. Cell Death Dis. 2013;4:551–61.
Article
CAS
Google Scholar
Poduri A, Rateri DL, Saha SK, Saha S, Daugherty A. Citrullus lanatus 'sentinel' (watermelon) reduces atherosclerosis in LDL receptor-deficient mice. J Nutr Biochem. 2013;24:882–6.
Article
CAS
Google Scholar
Sun GB, Qin M, Ye JX, Pan RL, Meng XB, Wang M, Luo Y, Li ZY, Wang HW, Sun XB. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE-/- mice. Toxicol Appl Pharmacol. 2013;271:114–26.
Article
CAS
Google Scholar
Tsai TH, Huang WC, Ying HT, Kuo YH, Shen CC, Lin YK, Tsai PJ. Wild Bitter Melon Leaf Inhibits Porphyromonas gingivalis-Induced Inflammation:Identification of Active Compounds through Bioassay-Guided Isolation. molecules. 2016;21:1–15.
Google Scholar
Hsueh-Ling CC, YiKuoYun WLC, Lin C. EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-α-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. Eur J Pharmacol. 2012;689:241–8.
Article
Google Scholar
Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, Shah P, Feher D, Williams PG, Nerurkar VR. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflamm. 2011;8:64–83.
Article
CAS
Google Scholar
Raish M, Ahmad A, Ansari MA, Alkharfy KM, Aljenoobi FI, Jan BL, Al-Mohizea AM, Khan A, Ali N. Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol. 2018;111:193–9.
Article
CAS
Google Scholar
Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol. 2008;15:263–73.
Article
Google Scholar
Sasa M, Inoue I, Shinoda Y, Takahashi S, Seo M, Komoda T, Awata T, Katayama S. Activating Effect of Momordin, of Bitter Melon (Momordica Charantia L.), on the Promoter of Human PPARδ. J Atheroscler Thromb. 2009;16:888–92.
Article
CAS
Google Scholar
Iseli TJ, Turner N, Zeng XY, Cooney GJ, Kraegen EW, Yao S, Ye Y, James DE, Ye JM. Activation of AMPK by bitter melon triterpenoids involves CaMKKbeta. PLoS ONE. 2013;8:e62309.
Article
CAS
Google Scholar
Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A Cell-Based Screening Identifies Compounds from the Stem of Momordica charantia that Overcome Insulin Resistance and Activate AMP-Activated Protein Kinase. J Agr Food Chem. 2008;56:6835–43.
Article
CAS
Google Scholar
McCarty MF. Does bitter melon contain an activator of AMP-activated kinase? Med Hypotheses. 2004;63:340–3.
Article
CAS
Google Scholar
Cheng HL, Kuo CY, Liao YW, Lin CC. EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-alpha-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. Eur J Pharmacol. 2012;689:241–8.
Article
CAS
Google Scholar
Shih CC, Shlau MT, Lin CH, Wu JB. Momordica charantia Ameliorates Insulin Resistance and Dyslipidemia with Altered Hepatic Glucose Production and Fatty Acid Synthesis and AMPK Phosphorylation in High-fat-fed Mice. Phytother Res. 2013;28:363–71.
Article
Google Scholar
Zhang Y, Qiu J, Wang X, Zhang Y, Xia M. AMP-Activated Protein Kinase Suppresses Endothelial Cell Inflammation Through Phosphorylation of Transcriptional Coactivator p300. Arterioscler Thromb Vasc Biol. 2011;31:2897–908.
Article
CAS
Google Scholar
Xu Q, Si L-Y. Protective effects of AMP-activated protein kinase in the cardiovascular system. J Cell Mol Med. 2010;14:2604–13.
Article
CAS
Google Scholar
Tsai TY, Chu LH, Lee CL, Pan TM. Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with momordica charantia. J Agr Food Chem. 2009;57:2065–71.
Article
CAS
Google Scholar
Wang ZQ, Zhang XH, Yu Y, Poulev A, Ribnicky D, Floyd ZE, Cefalu WT. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice. J Nutr Biochem. 2011;22:1064–73.
Article
CAS
Google Scholar
Talayero BG, Sacks FM. The role of triglycerides in atherosclerosis. Curr Cardiol Rep. 2011;13:544–52.
Article
Google Scholar
Chao CY, Sung PJ, Wang WH, Kuo YH. Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules. 2014;19:12777–88.
Article
Google Scholar
Ching RH, Yeung LO, Tse IM, Sit WH, Li ET. Supplementation of bitter melon to rats fed a high-fructose diet during gestation and lactation ameliorates fructose-induced dyslipidemia and hepatic oxidative stress in male offspring. J Nutr. 2011;141:1664–72.
Article
CAS
Google Scholar
Senanayake GV, Fukuda N, Nshizono S. Mechanisms underlying decreased hepatic triacylglycerol and Cholesterol by dietary bitter melon in the rat. Lipids. 2012;47:495–503.
Article
CAS
Google Scholar
Ballantyne CM, Entman ML. Soluble Adhesion Molecules and the Search for Biomarkers for Atherosclerosis. Circulation. 2002;106:766–7.
Article
CAS
Google Scholar
Bro S, Moeller F, Andersen CB, Olgaard K, Nielsen LB. Increased Expression of Adhesion Molecules in Uremic Atherosclerosis in Apolipoprotein-E-Deficient Mice. J Am Soc Nephrol. 2004;15:1495–503.
Article
CAS
Google Scholar
Shebuski RJ, Kilgore KS. Role of Inflammatory Mediators in Thrombogenesis. J Pharmacol Exp Ther. 2002;300:729–35.
Article
CAS
Google Scholar
Handelsman Y, Shapiro MD. Triglycerides, atherosclerosis, and cardiovascular outcome studies: focus on omega-3 fatty acides. Endocr Pract. 2017;23:100–12.
Article
Google Scholar
Dron JS, Hegele RA. Genetics of Triglycerides and the Risk of Atherosclerosis. Curr Atheroscler Rep. 2017;19:31.
Article
Google Scholar
Kajikawa M, Maruhashi T, Matsumoto T. Relationship between serum triglyceride levels and endothelial function in a large community-based study. Atherosclerosis. 2016;249:70–5.
Article
CAS
Google Scholar