Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5:56. https://doi.org/10.1038/s41572-019-0106-z.
Article
PubMed
Google Scholar
Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12. https://doi.org/10.1038/s41569-018-0119-4.
Article
PubMed
Google Scholar
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. https://doi.org/10.1093/eurheartj/ehz425.
Article
PubMed
Google Scholar
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res. 2020;161:105212. https://doi.org/10.1016/j.phrs.2020.105212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angeli F, Angeli E, Ambrosio G, Mazzotta G, Cavallini C, Reboldi G, et al. Neutrophil count and ambulatory pulse pressure as predictors of cardiovascular adverse events in postmenopausal women with hypertension. Am J Hypertens. 2011;24:591–8. https://doi.org/10.1038/ajh.2011.18.
Article
PubMed
Google Scholar
Zhu B, Pan Y, Jing J, Meng X, Zhao X, Liu L, et al. Neutrophil counts, neutrophil ratio, and new stroke in minor ischemic stroke or TIA. Neurology. 2018;90:e1870–8. https://doi.org/10.1212/wnl.0000000000005554.
Article
PubMed
Google Scholar
Curcic S, Holzer M, Frei R, Pasterk L, Schicho R, Heinemann A, et al. Neutrophil effector responses are suppressed by secretory phospholipase A2 modified HDL. Biochim Biophys Acta. 2015;1851:184–93. https://doi.org/10.1016/j.bbalip.2014.11.010.
Article
CAS
PubMed
Google Scholar
Murphy AJ, Woollard KJ, Suhartoyo A, Stirzaker RA, Shaw J, Sviridov D, et al. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler Thromb Vasc Biol. 2011;31:1333–41. https://doi.org/10.1161/atvbaha.111.226258.
Article
CAS
PubMed
Google Scholar
Pownall HJ, Rosales C, Gillard BK, Gotto AM Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol. 2021;18:712–23. https://doi.org/10.1038/s41569-021-00538-z.
Article
CAS
PubMed
Google Scholar
Jia C, Anderson JLC, Gruppen EG, Lei Y, Bakker SJL, Dullaart RPF, et al. High-density lipoprotein anti-inflammatory capacity and incident cardiovascular events. Circulation. 2021;143:1935–45. https://doi.org/10.1161/circulationaha.120.050808.
Article
CAS
PubMed
Google Scholar
Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler Thromb Vasc Biol. 2010;30:151–5. https://doi.org/10.1161/atvbaha.108.179226.
Article
CAS
PubMed
Google Scholar
Chen G, Yang N, Ren J, He Y, Huang H, Hu X, et al. Neutrophil counts to high-density lipoprotein cholesterol ratio: a potential predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. Neurotox Res. 2020;38:1001–9. https://doi.org/10.1007/s12640-020-00274-1.
Article
CAS
PubMed
Google Scholar
Huang JB, Chen YS, Ji HY, Xie WM, Jiang J, Ran LS, et al. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: a comparison study. Lipids Health Dis. 2020;19:59. https://doi.org/10.1186/s12944-020-01238-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kou T, Luo H, Yin L. Relationship between neutrophils to HDL-C ratio and severity of coronary stenosis. BMC Cardiovasc Disord. 2021;21:127. https://doi.org/10.1186/s12872-020-01771-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51:527–39. https://doi.org/10.1007/s00125-007-0918-3.
Article
CAS
PubMed
Google Scholar
Ning F, Zhang L, Dekker JM, Onat A, Stehouwer CD, Yudkin JS, et al. Development of coronary heart disease and ischemic stroke in relation to fasting and 2-hour plasma glucose levels in the normal range. Cardiovasc Diabetol. 2012;11:76. https://doi.org/10.1186/1475-2840-11-76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko H, Itoh H, Kiriyama H, Kamon T, Fujiu K, Morita K, et al. Fasting plasma glucose and subsequent cardiovascular disease among young adults: analysis of a nationwide epidemiological database. Atherosclerosis. 2021;319:35–41. https://doi.org/10.1016/j.atherosclerosis.2020.12.024.
Article
CAS
PubMed
Google Scholar
Shi H, Ge Y, Wang H, Zhang Y, Teng W, Tian L. Fasting blood glucose and risk of Stroke: a Dose-Response meta-analysis. Clin Nutr. 2021;40:3296–304. https://doi.org/10.1016/j.clnu.2020.10.054.
Article
CAS
PubMed
Google Scholar
Di Bonito P, Sanguigno E, Forziato C, Saitta F, Iardino MR, Capaldo B. Fasting plasma glucose and clustering of cardiometabolic risk factors in normoglycemic outpatient children and adolescents. Diabetes Care. 2011;34:1412–4. https://doi.org/10.2337/dc10-1783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JY, Lee HR, Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol. 2011;10:30. https://doi.org/10.1186/1475-2840-10-30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander CM, Landsman PB, Teutsch SM. Diabetes mellitus, impaired fasting glucose, atherosclerotic risk factors, and prevalence of coronary heart disease. Am J Cardiol. 2000;86:897–902. https://doi.org/10.1016/s0002-9149(00)01118-8.
Article
CAS
PubMed
Google Scholar
Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020;370:m2297. https://doi.org/10.1136/bmj.m2297.
Article
PubMed
PubMed Central
Google Scholar
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. https://doi.org/10.1093/eurheartj/ehz486.
Article
PubMed
Google Scholar
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17:122. https://doi.org/10.1186/s12933-018-0762-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci. 2020;21.https://doi.org/10.3390/ijms21051835
Wang C, Yuan Y, Zheng M, Pan A, Wang M, Zhao M, et al. Association of age of onset of hypertension with cardiovascular diseases and mortality. J Am Coll Cardiol. 2020;75:2921–30. https://doi.org/10.1016/j.jacc.2020.04.038.
Article
PubMed
Google Scholar
Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34Suppl 1:S62-69. https://doi.org/10.2337/dc11-S062
Song QR, Liu SL, Bi YG, Chen SH, Wu SL, Cai J. Non-alcoholic fatty liver disease is associated with cardiovascular outcomes in subjects with prediabetes and diabetes: a prospective community-based cohort study. Front Cardiovasc Med. 2022;9:889597. https://doi.org/10.3389/fcvm.2022.889597.
Article
PubMed
PubMed Central
Google Scholar
Ferreira-Gonzalez I, Busse JW, Heels-Ansdell D, Montori VM, Akl EA, Bryant DM, et al. Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials. BMJ. 2007;334:786. https://doi.org/10.1136/bmj.39136.682083.AE.
Article
PubMed
PubMed Central
Google Scholar
Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A, Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994;90:583–612. https://doi.org/10.1161/01.cir.90.1.583.
Article
CAS
PubMed
Google Scholar
Stroke--198. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke. 1989;20:1407–31. https://doi.org/10.1161/01.str.20.10.1407.
Article
Google Scholar
Chevret S, Seaman S, Resche-Rigon M. Multiple imputation: a mature approach to dealing with missing data. Intensive Care Med. 2015;41:348–50. https://doi.org/10.1007/s00134-014-3624-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leonardi S, Gragnano F, Carrara G, Gargiulo G, Frigoli E, Vranckx P, et al. Prognostic Implications of Declining Hemoglobin Content in Patients Hospitalized With Acute Coronary Syndromes. J Am Coll Cardiol. 2021;77:375–88. https://doi.org/10.1016/j.jacc.2020.11.046.
Article
CAS
PubMed
Google Scholar
Montecucco F, Liberale L, Bonaventura A, Vecchiè A, Dallegri F, Carbone F. The role of inflammation in cardiovascular outcome. Curr Atheroscler Rep. 2017;19:11. https://doi.org/10.1007/s11883-017-0646-1.
Article
CAS
PubMed
Google Scholar
Kain V, Halade GV. Role of neutrophils in ischemic heart failure. Pharmacol Ther. 2020;205:107424. https://doi.org/10.1016/j.pharmthera.2019.107424.
Article
CAS
PubMed
Google Scholar
Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol. 2015;35:288–95. https://doi.org/10.1161/atvbaha.114.303564.
Article
PubMed
Google Scholar
Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res. 2017;120:736–43. https://doi.org/10.1161/circresaha.116.309692.
Article
PubMed
Google Scholar
Wang XS, Kim HB, Szuchman-Sapir A, McMahon A, Dennis JM, Witting PK. Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Arch Biochem Biophys. 2016;612:103–14. https://doi.org/10.1016/j.abb.2016.10.013.
Article
CAS
PubMed
Google Scholar
Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, et al. HDL and endothelial protection. Br J Pharmacol. 2013;169:493–511. https://doi.org/10.1111/bph.12174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soria-Florido MT, Schröder H, Grau M, Fitó M, Lassale C. High density lipoprotein functionality and cardiovascular events and mortality: a systematic review and meta-analysis. Atherosclerosis. 2020;302:36–42. https://doi.org/10.1016/j.atherosclerosis.2020.04.015.
Article
CAS
PubMed
Google Scholar
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EPC. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev. 2020;159:94–119. https://doi.org/10.1016/j.addr.2020.10.006.
Article
CAS
PubMed
Google Scholar
Liu Z, Fan Q, Wu S, Wan Y, Lei Y. Compared with the monocyte to high-density lipoprotein ratio (MHR) and the neutrophil to lymphocyte ratio (NLR), the neutrophil to high-density lipoprotein ratio (NHR) is more valuable for assessing the inflammatory process in Parkinson’s disease. Lipids Health Dis. 2021;20:35. https://doi.org/10.1186/s12944-021-01462-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Feng S, Zhan X, Peng F, Feng X, Zhou Q, et al. Neutrophil to high-density lipoprotein ratio associates with higher all-cause mortality and new onset cardiovascular events in peritoneal dialysis patients. IntUrol Nephrol. 2022. https://doi.org/10.1007/s11255-022-03202-8
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436–43. https://doi.org/10.1093/eurheartj/eht149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31:2090–7. https://doi.org/10.1161/atvbaha.111.229260.
Article
CAS
PubMed
Google Scholar