Zhang W, Du W, Li G, Zhang C, Yang W, Yang S, et al. Constituents and Anti-Hyperuricemia Mechanism of Traditional Chinese Herbal Formulae Erding Granule. Molecules. 2019;24(18):3248. https://doi.org/10.3390/molecules24183248.
Article
CAS
Google Scholar
Hu C, Wu X. Treatment of asymptomatic hyperuricemia complicated by renal damage: a controversial issue. Int Urol Nephrol. 2019;51(12):2227–33. https://doi.org/10.1007/s11255-019-02256-5.
Article
Google Scholar
Shan B, Chen T, Huang B, Liu Y, Chen J. Untargeted metabolomics reveal the therapeutic effects of Ermiao wan categorized formulas on rats with hyperuricemia. J Ethnopharmacol. 2021;281:114545. https://doi.org/10.1016/j.jep.2021.114545.
Article
CAS
Google Scholar
Guo LF, Chen X, Lei SS, Li B, Zhang NY, Ge HZ, et al. Effects and Mechanisms of Dendrobium officinalis Six Nostrum for Treatment of Hyperuricemia with Hyperlipidemia. Evid Based Complement Alternat Med. 2020;2914019. doi:https://doi.org/10.1155/2020/2914019.
Kielstein JT, Pontremoli R, Burnier M. Management of Hyperuricemia in Patients with Chronic Kidney Disease: a Focus on Renal Protection. Curr Hypertens Rep. 2020;22(12):102. https://doi.org/10.1007/s11906-020-01116-3.
Article
Google Scholar
Wang F, Sun L, Zong G, Gao X, Zhang H, Xiong Q, et al. Associations of Amino Acid and Acylcarnitine Profiles With Incident Hyperuricemia in Middle-Aged and Older Chinese Individuals. Arthritis Care Res (Hoboken). 2020;72(9):1305–14. https://doi.org/10.1002/acr.24013.
Article
CAS
Google Scholar
Zhao H, Zhang Y, Liu B, Zhang L, Bao M, Li L, et al. A pilot study to identify the longitudinal serum metabolite profiles to predict the development of hyperuricemia in essential hypertension. Clin Chim Acta. 2020;510:466–74. https://doi.org/10.1016/j.cca.2020.08.002.
Article
CAS
Google Scholar
Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism. 2016;65(8):1109–23. https://doi.org/10.1016/j.metabol.2016.05.003.
Article
CAS
Google Scholar
Hager MR, Narla AD, Tannock LR. Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord. 2017;18(1):29–40. https://doi.org/10.1007/s11154-016-9402-z.
Article
CAS
Google Scholar
He P, Fan SY, Guan JQ, Song WJ, Obore N, Chen WQ, et al. Mediation analysis for the relationship between dyslipidemia and coronary artery disease via hypersensitive C-reactive protein in a case-control study. Coron Artery Dis. 2020;31(7):613–9. https://doi.org/10.1097/MCA.0000000000000911.
Article
Google Scholar
Xu HP, Rao LL, Huang H, Zhou QQ. Epidemiological investigation on TCM syndrome of patients with hyperuricemia and hyperlipidemia in Hakka population in Huizhou. China Med Pharmacy. 2016;6(14):155–7+165.
Google Scholar
Guo J, Luo WH, Xian W. Study on the correlation between high blood uric acid level and hyperlipidemia. Mod Med. 2019;47(07):801–4.
Google Scholar
Dong PF. Correlation between fatty liver and hyperlipidemia, diabetes, hyperuricemia and hypertension in middle-aged and elderly people.Medical Diet and Health. 2019;(11):35+38.
Lai RK, Sheng XG, Pan GM. Correlation between hyperlipidemia with hyperuricemia and coronary artery disease. Guangdong Medical Journal. 2016;37(06):895–7. https://doi.org/10.13820/j.cnki.gdyx.2016.06.027.
Article
CAS
Google Scholar
Liu XL. Study on the correlation between hyperlipidemia with hyperuricemia and coronary heart disease. Hebei Medical Journal. 2016;38(22):3437–9.
Google Scholar
Wu XM, Yang X, Fan XC, Chen X, Wang YX, Zhang LX, et al. Serum metabolomics in chickens infected with Cryptosporidium baileyi. Parasit Vectors. 2021;14(1):336. https://doi.org/10.1186/s13071-021-04834-y.
Article
CAS
Google Scholar
Li J, Zhang Y, Wang X, Walk ST, Wang G. Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms. Front Microbiol. 2021;12:617050. https://doi.org/10.3389/fmicb.2021.617050.
Article
Google Scholar
Wishart DS. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev. 2019;99(4):1819–75. https://doi.org/10.1152/physrev.00035.2018.
Article
CAS
Google Scholar
Wang YP, Li JT, Qu J, Yin M, Lei QY. Metabolite sensing and signaling in cancer. J Biol Chem. 2020;295(33):11938–46. https://doi.org/10.1074/jbc.REV119.007624.
Article
CAS
Google Scholar
Du B, Jin N, Zhu X, Lu D, Jin C, Li Z, et al. A prospective study of serum metabolomic and lipidomic changes in myopic children and adolescents. Exp Eye Res. 2020;199:108182. https://doi.org/10.1016/j.exer.2020.108182.
Article
CAS
Google Scholar
Pan J, Ren Z, Li W, Wei Z, Rao H, Ren H, et al. Prevalence of hyperlipidemia in Shanxi Province, China and application of Bayesian networks to analyse its related factors. Sci Rep. 2018;8(1):3750. https://doi.org/10.1038/s41598-018-22167-2.
Article
CAS
Google Scholar
Han B, Gong M, Li Z, Qiu Y, Zou Z. NMR-Based Metabonomic Study Reveals Intervention Effects of Polydatin on Potassium Oxonate-Induced Hyperuricemia in Rats. Oxid Med Cell Longev. 2020;6943860. doi: https://doi.org/10.1155/2020/6943860.
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62(10):3307–15. https://doi.org/10.2337/db12-1814.
Article
CAS
Google Scholar
Qin N, Jiang Y, Shi W, Wang L, Kong L, Wang C, et al. High-Throughput Untargeted Serum Metabolomics Analysis of Hyperuricemia Patients by UPLC-Q-TOF/MS. Evid Based Complement Alternat Med. 2021;5524772. doi: https://doi.org/10.1155/2021/5524772.
Maciejewska D, Ossowski P, Drozd A, Ryterska K, Jamioł-Milc D, Banaszczak M, et al. Metabolites of arachidonic acid and linoleic acid in early stages of non-alcoholic fatty liver disease–A pilot study. Prostaglandins Other Lipid Mediat. 2015;121(Pt B):184–9. https://doi.org/10.1016/j.prostaglandins.2015.09.003.
Article
CAS
Google Scholar
Schuster S, Johnson CD, Hennebelle M, Holtmann T, Taha AY, Kirpich IA, et al. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res. 2018;59(9):1597–609. https://doi.org/10.1194/jlr.M083741.
Article
CAS
Google Scholar
Whelan J, Fritsche K. Linoleic acid. Adv Nutr. 2013;4(3):311–2. https://doi.org/10.3945/an.113.003772.
Article
Google Scholar
Zhao YM, Yang QX, Zuo LF, Zhan Y, Yin YJ, Zhang J. Effects of saturated and unsaturated fatty acids on the inflammatory state of macrophages. Genomics and Applied Biology. 2021;40(Z3):3364–71. https://doi.org/10.13417/j.gab.040.003364.
Article
Google Scholar
Luo Y, Wang L, Liu XY, Chen X, Song YX, Li XH, et al. Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia. Amino Acids. 2018;50(11):1539–48. https://doi.org/10.1007/s00726-018-2627-2.
Article
CAS
Google Scholar
Mahbub MH, Yamaguchi N, Takahashi H, Hase R, Amano H, Kobayashi-Miura M, et al. Alteration in plasma free amino acid levels and its association with gout. Environ Health Prev Med. 2017;22(1):7. https://doi.org/10.1186/s12199-017-0609-8.
Article
CAS
Google Scholar
Shen X, Wang C, Liang N, Liu Z, Li X, Zhu ZJ, et al. Serum Metabolomics Identifies Dysregulated Pathways and Potential Metabolic Biomarkers for Hyperuricemia and Gout. Arthritis Rheumatol. 2021;73(9):1738–48. https://doi.org/10.1002/art.41733.
Article
Google Scholar
Huang B, Hu X, Wang J, Li P, Chen J. Study on chemical constituents of herbal formula Er Miao Wan and GC-MS based metabolomics approach to evaluate its therapeutic effects on hyperuricemic rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1118–1119:101–8. https://doi.org/10.1016/j.jchromb.2019.04.032.
Article
CAS
Google Scholar
Zhao JC, Song YJ, Wang Z, Li CL. Relationship between phenylalanine/tyrosine metabolic pathway and its related products and nonalcoholic fatty liver disease. Chinese J Bases and Clin Gen Surg. 2022;29(03):404–9.
Google Scholar
Suzuki R, Sato Y, Fukaya M, Suzuki D, Yoshizawa F, Sato Y. Energy metabolism profile of the effects of amino acid treatment on hepatocytes: Phenylalanine and phenylpyruvate inhibit glycolysis of hepatocytes. Nutrition. 2021;82:111042. https://doi.org/10.1016/j.nut.2020.111042.
Article
CAS
Google Scholar
Yazıcı D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp Med Biol. 2017;960:277–304. https://doi.org/10.1007/978-3-319-48382-5_12.
Article
CAS
Google Scholar
Marušić M, Paić M, Knobloch M, Liberati Pršo AM. NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Can J Gastroenterol Hepatol. 2021;6613827.
He LQ, Jin SS, Zhou XH, Li TJ, Yin YL. Research progress on the effect of serine on animal health. Chinese J Anim Nutri. 2020;32(10):4480–90.
CAS
Google Scholar
Pan L, Han P, Ma S, Peng R, Wang C, Kong W, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B. 2020;10(2):249–61. https://doi.org/10.1016/j.apsb.2019.10.007.
Article
CAS
Google Scholar
Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. J Immunol. 2019;202(6):1704–14. https://doi.org/10.4049/jimmunol.1801166.
Article
CAS
Google Scholar
Wang Y, Kong W, Wang L, Zhang T, Huang B, Meng J, et al. Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis. Int J Mol Sci. 2020;21(20):7695. https://doi.org/10.3390/ijms21207695.
Article
CAS
Google Scholar
Son M, Seo J, Yang S. Association between dyslipidemia and serum uric acid levels in Korean adults: Korea National Health and Nutrition Examination Survey 2016–2017. PLoS ONE. 2020;15(2):e0228684. https://doi.org/10.1371/journal.pone.0228684.
Article
CAS
Google Scholar
Liu F, Du GL, Song N, Ma YT, Li XM, Gao XM, et al. Hyperuricemia and its association with adiposity and dyslipidemia in Northwest China: results from cardiovascular risk survey in Xinjiang (CRS 2008–2012). Lipids Health Dis. 2020;19(1):58. https://doi.org/10.1186/s12944-020-01211-z.
Article
CAS
Google Scholar
Zhang SL, Wang YP, Du ZX, Xue M, Zhang J, Ma Q. Lipid metabolomics in serum of hyperuricemic rats induced by fructose based on UPC2-Q/TOF-MS. China J Chin Materia Med. 2016;41(6):1135–9. https://doi.org/10.4268/cjcmm20160627.
Article
Google Scholar
Song LY. Research progress on the relationship between hyperuricemia and metabolic syndrome. Heilongjiang Med J. 2019;44(09):1134–11351138.
Google Scholar